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Abstract

Semantic error detection and correction is an
important task for applications such as fact
checking, speech-to-text or grammatical er-
ror correction. Current approaches gener-
ally focus on relatively shallow semantics and
do not account for numeric quantities. Our
approach uses language models grounded in
numbers within the text. Such groundings
are easily achieved for recurrent neural lan-
guage model architectures, which can be fur-
ther conditioned on incomplete background
knowledge bases. Our evaluation on clinical
reports shows that numerical grounding im-
proves perplexity by 33% and F1 for semantic
error correction by 5 points when compared
to ungrounded approaches. Conditioning on a
knowledge base yields further improvements.

1 Introduction

In many real world scenarios it is important to de-
tect and potentially correct semantic errors and in-
consistencies in text. For example, when clinicians
compose reports, some statements in the text may
be inconsistent with measurements taken from the
patient (Bowman, 2013). Error rates in clinical
data range from 2.3% to 26.9% (Goldberg et al.,
2008) and many of them are number-based errors
(Arts et al., 2002). Likewise, a blog writer may
make statistical claims that contradict facts recorded
in databases (Munger, 2008). Numerical concepts
constitute 29% of contradictions in Wikipedia and
GoogleNews (De Marneffe et al., 2008) and 8.8%
of contradictory pairs in entailment datasets (Dagan
et al., 2006).

Figure 1: Semantic error correction using language models.

“EF” is a clinical term and stands for “ejection fraction”.

These inconsistencies may stem from oversight,
lack of reporting guidelines or negligence. In fact
they may not even be errors at all, but point to inter-
esting outliers or to errors in a reference database. In
all cases, it is important to spot and possibly correct
such inconsistencies. This task is known as semantic
error correction (SEC) (Dahlmeier and Ng, 2011).

In this paper, we propose a SEC approach to sup-
port clinicians with writing patient reports. A SEC
system reads a patient’s structured background in-
formation from a knowledge base (KB) and their
clinical report. Then it recommends improvements
to the text of the report for semantic consistency. An
example of an inconsistency is shown in Figure 1.
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The SEC system has been trained on a dataset of
records and learnt that the phrases “non dilated” and
“severely dilated” correspond to high and low val-
ues for “EF” (abbreviation for “ejection fraction”, a
clinical measurement), respectively. If the system
is then presented with the phrase “non dilated” in
the context of a low value, it will detect a seman-
tic inconsistency and correct the text to “severely di-
lated”.

Our contributions are: 1) a straightforward ex-
tension to recurrent neural network (RNN) language
models for grounding them in numbers available in
the text; 2) a simple method for modelling text con-
ditioned on an incomplete KB by lexicalising it; 3)
our evaluation on a semantic error correction task
for clinical records shows that our method achieves
F1 improvements of 5 and 6 percentage points with
grounding and KB conditioning, respectively, over
an ungrounded approach (F1 of 49%).

2 Methodology

Our approach to semantic error correction (Figure 1)
starts with training a language model (LM), which
can be grounded in numeric quantities mentioned in-
line with text (Subsection 2.1) and/or conditioned
on a potentially incomplete KB (Subsection 2.2).
Given a document for semantic checking, a hypoth-
esis generator proposes corrections, which are then
scored using the trained language model (Subsec-
tion 2.3). A final decision step involves accepting
the best scoring hypothesis.

2.1 Numerically grounded language modelling

Let {w1, ..., wT } denote a document, where wt is
the one-hot representation of the t-th token and V
is the vocabulary size. A neural LM uses a ma-
trix, Ein ∈ RD×V , to derive word embeddings,
ewt = Einwt. A hidden state from the previous time
step, ht−1, and the current word embedding, ewt , are
sequentially fed to an RNN’s recurrence function to
produce the current hidden state, ht ∈ RD. The con-
ditional probability of the next word is estimated as
softmax(Eoutht), where Eout ∈ RV×D is an output
embeddings matrix.

We propose concatenating a representation, ent , of
the numeric value of wt to the inputs of the RNN’s
recurrence function at each time step. Through this

Figure 2: A language model that is numerically grounded and

conditioned on a lexicalised KB. Examples of data in rounded

rectangles.

numeric representation, the model can generalise
to out-of-vocabulary numbers. A straightforward
representation is defining ent = float(wt), where
float(.) is a numeric conversion function that returns
a floating point number constructed from the string
of its input. If conversion fails, it returns zero.

The proposed mechanism for numerical ground-
ing is shown in Figure 2. Now the probability of
each next word depends on numbers that have ap-
peared earlier in the text. We treat numbers as a
separate modality that happens to share the same
medium as natural language (text), but can convey
exact measurements of properties of the real world.
At training time, the numeric representations medi-
ate to ground the language model in the real world.

2.2 Conditioning on incomplete KBs

The proposed extension can also be used in con-
ditional language modelling of documents given a
knowledge base. Consider a set of KB tuples accom-
panying each document and describing its attributes
in the form < attribute, value >, where attributes
are defined by a KB schema. We can lexicalise the
KB by converting its tuples into textual statements
of the form ”attribute : value”. An example of
how we lexicalise the KB is shown in Figure 2. The
generated tokens can then be interpreted for their
word embeddings and numeric representations. This
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train dev test
#documents 11,158 1,625 3,220

#t
ok

en
s/

do
c

all 204.9 204.4 202.2
words 95.7% 95.7% 95.7%

numeric 4.3% 4.3% 4.3%

#u
ni

qu
e

to
ke

ns all 18,916 6,572 9,515
words 47.8% 58.25% 54.1%

numeric 52.24% 41.9% 45.81%

O
O

V

ra
te

all 5.0% 5.1% 5.2%
words 3.4% 3.5% 3.5%

numeric 40.4% 40.8% 41.8%
Table 1: Statistics for clinical dataset. Counts for non-numeric

(words) and numeric tokens reported as percentage of counts for

all tokens. Out-of-vocabulary (OOV) rates are for vocabulary of

1000 most frequent words in the train data.

approach can incorporate KB tuples flexibly, even
when values of some attributes are missing.

2.3 Semantic error correction
A statistical model chooses the most likely correc-
tion from a set of possible correction choices. If the
model scores a corrected hypothesis higher than the
original document, the correction is accepted.

A hypothesis generator function, G, takes the
original document, H0, as input and generates a
set of candidate corrected documents G(H0) =
{H1, ...,HM}. A simple hypothesis generator uses
confusion sets of semantically related words to pro-
duce all possible substitutions.

A scorer model, s, assigns a score s(Hi) ∈ R
to a hypothesis Hi. The scorer is based on a likeli-
hood ratio test between the original document (null
hypothesis, H0) and each candidate correction (al-
ternative hypotheses, Hi), i.e. s(Hi) = p(Hi)

p(H0)
. The

assigned score represents how much more probable
a correction is than the original document.

The probability of observing a document, p(Hi),
can be estimated using language models, or
grounded and conditional variants thereof.

3 Data

Our dataset comprises 16,003 clinical records from
the London Chest Hospital (Table 1). Each patient
record consists of a text report and accompanying
structured KB tuples. The latter describe 20 possible
numeric attributes (age, gender, etc.), which are also

description confusion set
intensifiers (adv): non, mildly, severely
intensifiers (adj): mild, moderate, severe

units: cm, mm, ml, kg, bpm
viability: viable, non-viable
quartiles: 25, 50, 75, 100

inequalities: <, >
Table 2: Confusion sets.

partly contained in the report. On average, 7.7 tuples
are completed per record. Numeric tokens constitute
only a small proportion of each sentence (4.3%), but
account for a large part of the unique tokens vocab-
ulary (>40%) and suffer from high OOV rates.

To evaluate SEC, we generate a “corrupted”
dataset of semantic errors from the test part of the
“trusted” dataset (Table 1, last column). We manu-
ally build confusion sets (Table 2) by searching the
development set for words related to numeric quanti-
ties and grouping them if they appear in similar con-
texts. Then, for each document in the trusted test
set we generate an erroneous document by sampling
a substitution from the confusion sets. Documents
with no possible substitution are excluded. The re-
sulting “corrupted” dataset is balanced, containing
2,926 correct and 2,926 incorrect documents.

4 Results and discussion

Our base LM is a single-layer long short-term mem-
ory network (LSTM, Hochreiter and Schmidhuber
(1997) with all latent dimensions (internal matrices,
input and output embeddings) set to D = 50. We
extend this baseline to a conditional variant by con-
ditioning on the lexicalised KB (see Section 2.2).
We also derive a numerically grounded model by
concatenating the numerical representation of each
token to the inputs of the base LM model (see Sec-
tion 2.1). Finally, we consider a model that is both
grounded and conditional (g-conditional).

The vocabulary contains the V = 1000 most fre-
quent tokens in the training set. Out-of-vocabulary
tokens are substituted with <num unk>, if nu-
meric, and <unk>, otherwise. We extract the
numerical representations before masking, so that
the grounded models can generalise to out-of-
vocabulary numbers. Models are trained to min-
imise token cross-entropy, with 20 epochs of back-
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model tokens PP APP

base LM
all 14.96 22.11

words 13.93 17.94
numeric 72.38 2289.47

conditional
all 14.52 21.47

words 13.49 17.38
numeric 74.48 2355.77

grounded
all 9.91 14.66

words 9.28 11.96
numeric 42.67 1349.59

g-conditional
all 9.39 13.88

words 8.80 11.33
numeric 39.84 1260.28

Table 3: Language modelling evaluation results on the test set.

We report perplexity (PP) and adjusted perplexity (APP). Best

results in bold.

propagation and adaptive mini-batch gradient de-
scent (AdaDelta) (Zeiler, 2012).

For SEC, we use an oracle hypothesis generator
that has access to the groundtruth confusion sets (Ta-
ble 2). We estimate the scorer (Section 2.3) using the
trained base, conditional, grounded or g-conditional
LMs. As additional baselines we consider a scorer
that assigns random scores from a uniform distribu-
tion and always (never) scorers that assign the low-
est (highest) score to the original document and uni-
formly random scores to the corrections.

4.1 Experiment 1: Numerically grounded LM

We report perplexity and adjusted perplexity (Ue-
berla, 1994) of our LMs on the test set for all tokens
and token classes (Table 3). Adjusted perplexity is
not sensitive to OOV-rates and thus allows for mean-
ingful comparisons across token classes. Perplexi-
ties are high for numeric tokens because they form a
large proportion of the vocabulary. The grounded
and g-conditional models achieved a 33.3% and
36.9% improvement in perplexity, respectively, over
the base LM model. Conditioning without ground-
ing yields only slight improvements, because most
of the numerical values from the lexicalised KB are
out-of-vocabulary.

The qualitative example in Figure 3 demonstrates
how numeric values influence the probability of to-
kens given their history. We select a document from
the development set and substitute its numeric val-

Figure 3: Qualitative example. Template document and docu-

ment probabilities for <WORD>={‘non’, ‘mildly’, ‘severely’}
and varying numbers. Probabilities are renormalised over the

set of possible choices.

ues as we vary EF (the rest are set by solving
a known system of equations). The selected ex-
act values were unseen in the training data. We
calculate the probabilities for observing the docu-
ment with different word choices {“non”, “mildly”,
“severely”} under the grounded LM and find that
“non dilated” is associated with higher EF values.
This shows that it has captured semantic dependen-
cies on numbers.

4.2 Experiment 2: Semantic error correction

We evaluate SEC systems on the corrupted dataset
(Section 3) for detection and correction.

For detection, we report precision, recall and F1
scores in Table 4. Our g-conditional model achieves
the best results, a total F1 improvement of 2 points
over the base LM model and 7 points over the best
baseline. The conditional model without ground-
ing performs slightly worse in the F1 metric than
the base LM. Note that with more hypotheses the
random baseline behaves more similarly to always.
Our hypothesis generator generated on average 12
hypotheses per document. The results of never are
zero as it fails to detect any error.

For correction, we report mean average precision
(MAP) in addition to the same metrics as for detec-
tion (Table 5). The former measures the position
of the ranking of the correct hypothesis. The al-
ways (never) baseline ranks the correct hypothesis
at the top (bottom). Again, the g-conditional model

990



model P R F1
random 50.27 90.29 64.58
always 50.00 100.0 66.67

never 0.0 0.0 0.0
base LM 57.51 94.05 71.38

conditional 56.86 94.43 70.98
grounded 58.87 94.70 72.61

g-conditional 60.48 95.25 73.98
Table 4: Error detection results on the test set. We report preci-

sion (P), recall (R) and F1. Best results in bold.

yields the best results, achieving an improvement of
6 points in F1 and 5 points in MAP over the base
LM model and an improvement of 47 points in F1
and 9 points in MAP over the best baseline. The
conditional model without grounding has the worst
performance among the LM-based models.

5 Related Work

Grounded language models represent the relation-
ship between words and the non-linguistic con-
text they refer to. Previous work grounds lan-
guage on vision (Bruni et al., 2014; Socher et al.,
2014; Silberer and Lapata, 2014), audio (Kiela and
Clark, 2015), video (Fleischman and Roy, 2008),
colour (McMahan and Stone, 2015), and olfactory
perception (Kiela et al., 2015). However, no pre-
vious approach has explored in-line numbers as a
source of grounding.

Our language modelling approach to SEC is in-
spired by LM approaches to grammatical error de-
tection (GEC) (Ng et al., 2013; Felice et al., 2014).
They similarly derive confusion sets of semantically
related words, substitute the target words with al-
ternatives and score them with an LM. Existing se-
mantic error correction approaches aim at correct-
ing word error choices (Dahlmeier and Ng, 2011),
collocation errors (Kochmar, 2016), and semantic
anomalies in adjective-noun combinations (Vecchi
et al., 2011). So far, SEC approaches focus on
short distance semantic agreement, whereas our ap-
proach can detect errors which require to resolve
long-range dependencies. Work on GEC and SEC
shows that language models are useful for error cor-
rection, however they neither ground in numeric
quantities nor incorporate background KBs.

model MAP P R F1
random 27.75 5.73 10.29 7.36
always 20.39 6.13 12.26 8.18

never 60.06 0.0 0.0 0.0
base LM 64.37 39.54 64.66 49.07

conditional 62.76 37.46 62.20 46.76
grounded 68.21 44.25 71.19 54.58

g-conditional 69.14 45.36 71.43 55.48
Table 5: Error correction results on the test set. We report mean

average precision (MAP), precision (P), recall (R) and F1. Best

results in bold.

6 Conclusion

In this paper, we proposed a simple technique to
model language in relation to numbers it refers to,
as well as conditionally on incomplete knowledge
bases. We found that the proposed techniques lead to
performance improvements in the tasks of language
modelling, and semantic error detection and correc-
tion. Numerically grounded models make it possible
to capture semantic dependencies of content words
on numbers.

In future work, we will plan to apply numeri-
cally grounded models to other tasks, such as nu-
meric error correction. We will explore alternative
ways for deriving the numeric representations, such
as accounting for verbal descriptions of numbers.
For SEC, a trainable hypothesis generator can po-
tentially improve the coverage of the system.
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