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Abstract

In this paper, we study the task of response
selection for multi-turn human-computer con-
versation. Previous approaches take word as
a unit and view context and response as se-
quences of words. This kind of approaches
do not explicitly take each utterance as a
unit, therefore it is difficult to catch utterance-
level discourse information and dependencies.
In this paper, we propose a multi-view re-
sponse selection model that integrates infor-
mation from two different views, i.e., word
sequence view and utterance sequence view.
We jointly model the two views via deep neu-
ral networks. Experimental results on a public
corpus for context-sensitive response selection
demonstrate the effectiveness of the proposed
multi-view model, which significantly outper-
forms other single-view baselines.

1 Introduction

Selecting a potential response from a set of can-
didates is an important and challenging task for
open-domain human-computer conversation, espe-
cially for the retrieval-based human-computer con-
versation. In general, a set of candidate responses
from the indexed conversation corpus are retrieved,
and then the best one is selected from the candidates
as the system’s response (Ji et al., 2014).

Previous Deep Neural Network (DNN) based ap-
proaches to response selection represent context and
response as two embeddings. The response is se-
lected based on the similarity of these two embed-
dings (Lowe et al., 2015; Kadlec et al., 2015). In

∗These two authors contributed equally

these work, context and response are taken as two
separate word sequences without considering the re-
lationship among utterances in the context and re-
sponse. The response selection in these models is
largely influenced by word-level information. We
called this kind of models as word sequence model
in this paper. Besides word-level dependencies,
utterance-level semantic and discourse information
are also very important to catch the conversation top-
ics to ensure coherence (Grosz and Sidner, 1986).
For example an utterance can be an affirmation,
negation or deduction to the previous utterances,
or starts a new topic for discussion. This kind of
utterance-level information is generally ignored in
word sequence model, which may be helpful for se-
lecting the next response. Therefore, it is necessary
to take each utterance as a unit and model the context
and response from the view of utterance sequence.

This paper proposes a multi-view response selec-
tion model, which integrates information from both
word sequence view and utterance sequence view.
Our assumption is that each view can represent rela-
tionships between context and response from a par-
ticular aspect, and features extracted from the word
sequence and the utterance sequence provide com-
plementary information for response selection. An
effective integration of these two views is expected
to improve the model performance. To the best of
our knowledge, this is the first work to improve the
response selection for multi-turn human-computer
conversation in a multi-view manner.

We evaluate the performance of the multi-view re-
sponse selection model on a public corpus contain-
ing about one million context-response-label triples.
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This corpus was extracted from an online chatting
room for Ubuntu troubleshooting, which is called
the Ubuntu Corpus in this paper (Lowe et al., 2015).
Experimental results show that the proposed multi-
view response selection model significantly outper-
forms the current best single-view models for multi-
turn human-computer conversation.

The rest of this paper is organized as follows. In
Section 2, we briefly introduce related works. Then
we move on to a detailed description of our model
in Section 3. Experimental results are described in
Section 4. Analysis of our models is shown in Sec-
tion 5. We conclude the paper in Section 6.

2 Related Work

2.1 Conversation System

Establishing a machine that can interact with hu-
man beings via natural language is one of the most
challenging problems in Artificial Intelligent (AI).
Early studies of conversation models are generally
designed for specific domain, like booking restau-
rant, and require numerous domain knowledge as
well as human efforts in model design and feature
engineering (Walker et al., 2001). Hence it is too
costly to adapt those models to other domains. Re-
cently leveraging “big dialogs” for open domain
conversation draws increasing research attentions.
One critical issue for open domain conversation is
to produce a reasonable response. Responding to
this challenge, two promising solutions have been
proposed: 1) retrieval-based model which selects a
response from a large corpus (Ji et al., 2014; Yan et
al., 2016; Yan et al., ). 2) generation-based model
which directly generates the next utterance (Wen et
al., 2015a; Wen et al., 2015b).

2.2 Response Selection

Research on response selection for human-computer
conversation can be classified into two branches,
i.e., single-turn and multi-turn response selection.
Single-turn models only leverage the last utterance
in the context for selecting resposne and most of
them take the word sequence view. Lu and Li
(2013) proposed a DNN-based matching model for
response selection. Hu et al., (2014) improved the
performance using Convolutional Neural Networks
(CNN) (LeCun et al., 1989). In 2015, a further

study conducted by Wang et al. (2015a) achieved
better results using tree structures as the input of a
DNN model. Nevertheless, those models built for
single-turn response selection ignore the whole con-
text information, which makes it difficult to be im-
plemented in the multi-turn response selection tasks.

On the other hand, research on multi-turn re-
sponse selection usually takes the whole context into
consideration and views the context and response
as word sequences. Lowe et al., (2015) proposed a
Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) based response selection model
for multi-turn conversation, where words from con-
text and response are modeled with LSTM. The se-
lection of a response is based on the similarity of
embeddings between the context and response. Sim-
ilar to the work of Lowe et al., Kadlec et al., (2015)
replaced LSTM with Temporal Convolutional Neu-
ral Networks (TCNN) (Kim, 2014) and Bidirect-
LSTM. Their experimental results show that mod-
els with LSTM perform better than other neural net-
works. However, the utterance-level discourse infor-
mation and dependencies have been left out in these
studies since they view the context and response as
word sequences.

2.3 Response Generation

Another line of related research focuses on gener-
ating responses for human-computer conversation.
Ritter et al., (2011) trained a phrase-based statisti-
cal machine translation model on a corpus of ut-
terance pairs extracted from Twitter human-human
conversation and used it as a response generator for
single-turn conversation. Vinyals and Le (2015) re-
garded single-turn conversation as a sequence-to-
sequence problem and proposed an encoder-decoder
based response generation model, where the post re-
sponse is first encoded using LSTM and its embed-
ding used as the initialization state of another LSTM
to generate the response. Shang et al., (2015) im-
proved the encoder-decoder based model using at-
tention signals. Sordoni et al., (2015) proposed a
context-sensitive response generation model, where
the context is represented by bag-of-words and fed
into a recurrent language model to generate the next
response.

In this paper, we focused on the task of response
selection.
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Figure 1: Word sequence model for response selection

3 Response Selection Model

In the task of response selection, a conventional
DNN-based architecture represents the context and
response as low dimensional embeddings with deep
learning models. The response is selected based on
the similarity of these two embeddings. We formu-
late it as

p(y = 1|c, r) = σ(−→c TW−→r + b) (1)

where c and r denote the context and response,
−→c and −→r are their embeddings constructed with
DNNs. σ(x) is a sigmoid function defined as
σ(x) = 1

1+e−x . p(y = 1|c, r) is the confidence of
selecting response r for context c. The matrix W
and the scalar b are metric parameters to be learned
to measure the similarity between the context and
response.

We extend this architecture in a multi-view man-
ner, which jointly models the context and response
in two views. In this section, we first briefly describe
the word sequence model. Then we introduce the
utterance sequence model and multi-view response
selection model in details.

3.1 Word Sequence Model

The word sequence model in this paper is similar
to the LSTM-based model proposed in Lowe et al.
(2015). As shown in Figure 1, three utterances of
context c, written as u1, u2 and u3, are connected
as a sequence of words. A special word sos
is inserted between every two adjacent utterances,
denoting the boundary between utterances. Given
the word sequences of context and response, words
are mapped into word embeddings through a shared
lookup table. A Gated Recurrent Unit neural net-
work (GRU) (Chung et al., 2014) is employed to
construct the context embedding and response em-
bedding. It operates recurrently on the two word
embedding sequences as Equation 2 to Equation 5,
where ht−1 is the hidden state of GRU when it reads
a word embedding et−1 of word wt−1, h0 is a zero
vector as the initiation state, zt is an update gate and
rt is a reset gate. The new hidden state ht for em-
bedding et is a combination of the previous hidden
state ht−1 and the input embedding et, controlled
by the update gate zt and reset gate rt. U , Uz , Ur,
W , Wz and Wr are model parameters of GRU to be
learned. ⊗ denotes element-wise multiplication.
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Figure 2: Multi-view response selection model

ht = (1− zt)⊗ ht−1 + zt ⊗ ĥt (2)

zt = σ(Wzet + Uzht−1) (3)

ĥt = tanh(Wet + U(rt ⊗ ht−1)) (4)

rt = σ(Wret + Urht−1) (5)

After reading the whole word embedding sequence,
word-level semantic and dependencies in the whole
sequence are encoded in the hidden state of GRU,
which represents the meaning of the whole sequence
(Karpathy et al., 2015). Therefore we use the
last hidden state of GRU as the context embedding
and response embedding in word sequence model,
named −→cw and −→rw respectively1. The confidence of
selecting response in word sequence model is then
calculated as in Equation 6:

pw(y = 1|c, r) = σ(−→cwTWw
−→rw + bw) (6)

where Ww and bw are metric parameters to be
trained in word sequence model. −→cw and −→rw are con-
structed by a same GRU in word sequence model.

1We use two subscripts, i.e., w and u, to distinguish notation
in the two views.

3.2 Utterance Sequence Model
Utterance sequence model regards the context as a
hierarchical structure, where the response and each
utterance are first represented based on word embed-
dings, then the context embedding is constructed for
the confidence calculation of response selection. As
the lower part of Figure 2 illustrates, the construc-
tion of the utterance embedding and response em-
bedding is in a convolutional manner, which con-
tains the following layers:

Padding Layer: Given a word embedding
sequence belonging to a certain utter-
ance (response), namely [e1, ..., em], the
padding layer makes its outer border with
bn/2c zero vectors, the padded sequence is
[01, .., 0bn/2c, e1, ..., em, 01, .., 0bn/2c], where
n is the size of convolution window used in
temporal convolutional layer.

Temporal Convolutional Layer: Temporal convo-
lutional layer reads the padded word embed-
ding sequence through a sliding convolution
window with size n. For every step that the
sliding window moves, a region vector is pro-
duced by concatenating the word embeddings
within the sliding window, denoted as [ei⊕...⊕
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ei+n−1] ∈ Rn|e|, where ⊕ denotes the concate-
nation of embeddings, |e| is the size of word
embedding. The temporal convolutional layer
consists of k kernels, each of which implies
a certain dimension and maps the region vec-
tor to a value in its dimension by convolution
operation. The convolution result of each ker-
nel, termed convi, is further activated with the
RELU non-linear activation function (Xu et al.,
2015), which is formulated as:

frelu(convi) = max(convi, 0) (7)

Pooling Layer: Because utterance and response are
naturally variable-sized, we put a max-over-
time pooling layer on the top of temporal con-
volutional layer (Kim, 2014), which extracts
the max value for each kernel, and gets a fix-
sized representation of length k for utterance
and response.

In particular, representations constructed by CNN
with max-pooling reflect the core meanings of ut-
terance and response. The embeddings of utter-
ance ui and response r in utterance sequence view

are referred to as
−→
uiu and −→ru. Utterance embed-

dings are connected in the sequence and fed into a
GRU, which captures utterance-level semantic and
discourse information in the whole context and en-
codes those information as context embedding, writ-
ten as −→cu . The confidence of selecting response r
for context c in utterance sequence model, named
pu(y = 1|c, r), is calculated using Equation 8:

pu(y = 1|c, r) = σ(−→cuTWu
−→ru + bu) (8)

It is worth noticing that the TCNN used here is
shared in constructing the utterance embedding and
response embedding. The word embeddings are
also shared for both the context and response. The
sos tag in word sequence view is not used in the

utterance sequence model.

3.3 Multi-view Model

Organic integration of different views has been
proven to be very effective in the field of recommen-
dation, representation learning and other research
areas (Elkahky et al., 2015; Wang et al., 2015b).

Most existing multi-view models integrate differ-
ent views via a linear/nonlinear combination. Re-
searchers have demonstrated that jointly minimizing
two factors, i.e., 1) the training error of each view
and 2) the disagreement between complementary
views can significantly improve the performance of
the combination of multi-views (Xu et al., 2013).

Our multi-view response selection model is de-
signed as shown in Figure 2. As we can see, the
context and response are jointly represented as se-
mantic embeddings in these two views. The under-
lying word embeddings are shared across the con-
text and response in these two views. The com-
plementary information of these two views is ex-
changed via the shared word embeddings. The ut-
terance embeddings are modeled through a TCNN
in the utterance sequence view. Two independent
Gated Recurrent Units are used to model the word
embeddings and utterance embeddings separately on
word sequence view and utterance sequence view,
the former of which captures dependencies in word
level and the latter captures utterance-level semantic
and discourse information. Confidences for select-
ing the response in these two views are calculated
separately. We optimize the multi-view model by
minimizing the following loss:

L = LD + LL +
λ

2
‖θ‖ (9)

LD =
∑

i

(pw(li)p̄u(li) + pu(li)p̄w(li)) (10)

LL =
∑

i

(1− pw(li)) +
∑

i

(1− pu(li)) (11)

where the object function of the multi-view model L
is comprised of the disagreement loss LD, the like-
lihood loss LL and the regular term λ

2‖θ‖. pw(li) =
pw(y = li|c, r) and pu(li) = pu(y = li|c, r) de-
note the likelihood of the i-th instance with label li
from training set in these two views. Only two la-
bels, {0, 1}, denote the correctness of the response
during training. p̄w(li) and p̄u(li) denote the proba-
bility pw(y 6= li) and pu(y 6= li) respectively. The
multi-view model is trained to jointly minimize the
disagreement loss and the likelihood loss. θ denotes
all the parameters of the multi-view model.

The unweighted summation of confidences from
these two views is used during prediction, defined as
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Model/Metrics 1 in 10 R@1 1 in 10 R@2 1in 10 R@5 1 in 2 R@1
Random-guess 10% 20% 50% 50%

TF-IDF 41.0% 54.5% 70.8% 65.9%
Word-seq-LSTM (Lowe et al., 2015) 60.40% 74.50% 92.60% 87.80%

Word-seq-GRU 60.85% 75.71% 93.13% 88.55%
Utter-seq-GRU 62.19% 76.56% 93.42% 88.83%

Multi-view 66.15% 80.12% 95.09% 90.80%

Table 1: Performance comparison between our models and baseline models. In the table, Word-seq-LSTM is the experiment
result of the LSTM-based word sequence model reported by Lowe et at (2015). Word-seq GRU is the word sequence model that
we implement with GRU. Utter-seq-GRU is the proposed utterance-sequence model. The Multi-view is our multi-view response
selection model. In addition, we list the performance of Random-guess and TF-IDF

in Equation 12:

smtv(y = 1|c, r) =

pw(y = 1|c, r) + pu(y = 1|c, r) (12)

The response with larger smtv(y = 1|c, r) is more
likely to be selected. We will investigate other com-
bination models in our future work.

4 Experiment

4.1 Dataset
Our model is evaluated on the public Ubuntu Cor-
pus (Lowe et al., 2015), designed for response selec-
tion study of multi-turn human-computer conversa-
tion (Serban et al., 2015). The dataset contains 0.93
million human-human dialogues crawled from an
Internet chatting room for Ubuntu trouble shooting.
Around 1 million context-response-labeled triples,
namely < c, r, l >, are generated for training af-
ter preprocessing2, where the original context and
the corresponding response are taken as the positive
instances while the random utterances in the data
set taken as the negative instances, and the number
of positive instance and negative instance in train-
ing set is balanced. The validation set and testing
set are constructed in a similar way to the training
set, with one notable difference that for each context
and the corresponding positive response, 9 negative
responses are randomly selected for further evalua-
tion.

4.2 Experiment Setup
Following the work of Lowe et al., (2015), the eval-
uation metric is 1 in m Recall@k (denoted 1 in m

2Preprocessing includes tokenization, recognition of named
entity, urls and numbers.

R@k), where a response selection model is designed
to select k most likely responses among m candi-
dates, and it gets the score “1” if the correct response
is in the k selected ones. This metric can be seen
as an adaptation of the precision and recall metrics
previously applied to dialogue datasets (Schatzmann
et al., 2005). It is worth noticing that 1 in 2 R@1
equals to precision and recall in binary classifica-
tion.

4.3 Model Training and Hyper-parameters

We initialize word embeddings with a pre-trained
embedding matrix through GloVe (Pennington et al.,
2014) 3. We use Stochastic Gradient Descent (SGD)
for optimizing. Hidden size for a gated recurrent
unit is set to 200 in both word sequence model and
utterance sequence model. The number of convo-
lutional kernels is set to 200. Our initial learning
rate is 0.01 with mini-batch size of 32. Other hyper-
parameters are set exactly the same as the baseline.
We train our models with a single machine using
12 threads and each model will converge after 4-5
epochs of training data. The best model is selected
with a holdout validation dataset.

4.4 Comparison Approaches

We consider the word sequence model implemented
by Lowe et at., (2015) with LSTM as our base-
line, the best model in context-sensitive response
selection so far. Moreover, we also implement the
word sequence model and the utterance sequence
model with GRU for further analysis. Two simple
approaches are also implemented, i.e., the Random-

3Initialization of word embedding can be obtained on
https://github.com/npow/ubottu
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(a) 1 in 2 R@1 (b) 1 in 10 R@1

(c) 1 in 10 R@2 (d) 1 in 10 R@5

Figure 3: Performance comparison between word sequence model (with/without sos tags) and utterance sequence model. We
choose the number of utterances in range of [2,6], since most samples in testset fall in this interval

guess and the TF-IDF, as the bottom line for perfor-
mance comparison. The performance of Random-
guess is calculated by mathematics with an assump-
tion that each response in candidates has the equal
probability to be selected. The TF-IDF is imple-
mented in the same way in Lowe et al., (2015). TF
for a word is calculated as the count of times it
appears in a certain context or response. IDF for
each word w is log( N

|d∈D:w∈d|), where D denotes
the whole training set, N is the size of D, d is a
conversation in D. The context and the response in
testset are represented as a bag-of-words according
to TF-IDF. The selection confidence is estimated as
the cosine score between context and response.

4.5 Experimental Result

We summarize the experiment result in Table 1. As
shown in Table 1, all DNN-based models achieve
significant improvements compared to Random-
guess and TF-IDF, which implies the effectiveness
of DNN models in the task of response selection.
The word sequence models implemented with GRU
and LSTM achieve similar performance. The ut-
terance sequence model significantly outperforms

word sequence models for 1 in 10 R@1. Multi-
view model significantly outperforms all the other
models, especially for 1 in 10 R@1, which is more
difficult and closer to the real world scenario than
other metrics. The experimental result demonstrates
the effectiveness of multi-view model and proves
that word sequence view and utterance sequence
view can bring complementary information for each
other.

5 Analysis

We examine the complementarity between word se-
quence model and utterance sequence model in two
folds, i.e., via statistic analysis and case study.

5.1 Statistical Analysis

We compare the performance of word sequence
model4 and utterance sequence model for different
number of utterances in the contexts. In addition,
we also examine what the contribution sos tag
makes in word sequence view. The performance

4The GRU-based word sequence model that we imple-
mented is used for comparison.
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 __url__  __url__

Wildintell
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(Utteranc
e-3)

thanks but that list 
seems incomplete 

thanks but that list 
seems incomplete 
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(Utteranc
e-4)

__url__ __url__

Selected 
Respons
e

i already looked at that 
one , also 
incomplete , lacks the 
locales within a 
language group

does it work ?

User
(utterance) Word Sequence View Utterance Sequence View

astra-x:
(Utteranc
e-1)

alright so has anyone 
solved an error with 
__path__ ext4 
leaking ? 

alright so has anyone 
solved an error with 
__path__ ext4 
leaking ? 

sipior:
(Utteranc
e-2)

what sort of error ? what sort of error ? 

astra-x:
(Utteranc
e-3)

my reported free disk 
space says full , yet 
last week it was 60g 
free on __path__ , 
and i cannot find 
anymore than 29g of 
files. yet __path__ 
and __path__ are 
reported correctly 

my reported free disk 
space says full , yet last 
week it was 60g free on 
__path__ , and i cannot 
find anymore than 29g 
of files. yet __path__ 
and __path__ are 
reported correctly 

sipior:
(Utteranc
e-4)

how are you getting 
the disk space 
information ?

how are you getting 
the disk space 
information ?

Selected 
Respons
e

__path__ should be 
10g and __path__ 
should be 19g

want me to pastebin all 
my debugging ?

anyone know where to 
find a list of all 
language codes a 
locales with each ? 

Figure 4: Case studies for analysis of word sequence model and utterance sequence model. The context and the selected responses
are collected from testset. Response with a green checkmark means it is a correct one, otherwise it is incorrect. Words (Utterances)
in bold are the important elements recognized by our importance analysis approach. The yellow start denotes the selection of
multi-view model.

is shown in Figure 3. We can see that as the
number of turns increases, the utterance sequence
model outperforms word sequence model more sig-
nificantly, which implies that utterance sequence
model can provide complementary information to
word sequence model for a long context. Further-
more, word sequence model without sos tag has
an obvious fall in performance compared with word
sequence model with sos , which implies its cru-
cial role in distinguishing utterances for modeling
context.

5.2 Case Study

We analyze samples from testset to examine the
complementarity between these two views. The key
words for word sequence model and core utterances
for utterance sequence model are extracted for anal-
ysis. These important elements are recognized based
on the work of Li et al. (2015), where the gradi-
ents of their embeddings are used for importance

analysis. After studying the testset, we find that the
word sequence model selects responses according to
the matching of key words while the utterance se-
quence model selects responses based on the match-
ing of core utterances. We list two cases in Figure
4 as examples.

As it shows, the word sequence model prefers to
select the response that shares similar key words to
the context, such as the words “incomplete” and
“locales” in example 1 or “60g” and “19g” in ex-
ample 2. Although key word matching is a use-
ful feature in selecting response for cases such as
example 1, it fails in cases like example 2, where
incorrect response happens to share similar words
with the context. Utterance sequence model, on the
other side, leverages core utterances for selecting re-
sponse. As shown in example 2, utterance-1 and
utterance-2 are recognized as the core utterances, the
main topic of the two utterance is “solved” and “er-
ror”, which is close to the topic of the correct re-
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sponse. However, for cases like example 1, where
the core meaning of correct response is jointly com-
bined with different words in different utterances,
the utterance sequence model does not perform well.

The multi-view model can successfully select the
correct responses in both two examples, which im-
plies its ability to jointly leverage information from
these two views.

6 Conclusion

In this paper, we propose a multi-view response se-
lection model for multi-turn human-computer con-
versation. We integrate the existing word sequence
view and a new view, i.e., utterance sequence view,
into a unified multi-view model. In the view of utter-
ance sequence, discourse information can be learnt
through utterance-level recurrent neural network,
different from word sequence view. The represen-
tations learnt from the two views provide comple-
mentary information for each other in the task of re-
sponse selection. Experiments show that our multi-
view model significantly outperforms the state-of-
the-art word sequence view models. We will extend
our framework to response generation approaches in
our future work. We believe it will help construct
a better representation of context in the encoding
phrase of DNN-based generation model and thus im-
prove the performance.
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