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Abstract

We present a new approach for unsuper-
vised semantic role labeling that lever-
ages distributed representations. We in-
duce embeddings to represent a predi-
cate, its arguments and their complex in-
terdependence. Argument embeddings are
learned from surrounding contexts involv-
ing the predicate and neighboring argu-
ments, while predicate embeddings are
learned from argument contexts. The in-
duced representations are clustered into
roles using a linear programming formu-
lation of hierarchical clustering, where
we can model task-specific knowledge.
Experiments show improved performance
over previous unsupervised semantic role
labeling approaches and other distributed
word representation models.

1 Introduction

In recent years, an increasing body of work has
been devoted to learning distributed word repre-
sentations and their successful usage in numerous
tasks and real-world applications. Examples in-
clude language modeling (Collobert et al., 2011;
Mikolov et al., 2013c; Mnih and Kavukcuoglu,
2013), paraphrase detection (Socher et al., 2011a),
sentiment analysis (Socher et al., 2011b; Kalch-
brenner et al., 2014), and most notably machine
translation (Kalchbrenner and Blunsom, 2013;
Cho et al., 2014; Auli et al., 2013). Distributed
word representations (also known as word embed-
dings) are trained by predicting the contexts in
which the words or phrases occur.

In this paper, we present a new approach for
unsupervised semantic role labeling that leverages
distributed representations. The goal of semantic
role labeling is to discover the relations that hold
between a predicate and its arguments in a given

input sentence (e.g., “who” did “what” to “whom”,
“when”, “where”, and “how”).

1. [The burglar]A0 [broke]V [the window]A1.

2. [The window]A1 [broke]V.

In sentence (1), A0 represents the Agent of the
breaking event, A1 represents the Patient (i.e., the
physical object affected by the breaking event)
and V determines the boundaries of the predicate.
The semantic roles in the example are labeled
in the style of PropBank (Palmer et al., 2005),
a broad-coverage human-annotated corpus of se-
mantic roles and their syntactic realizations. In the
unsupervised case, the model must induce such la-
bels from data without access to a predefined set of
semantic roles.

Role induction is commonly treated as a cluster-
ing problem (Titov and Klementiev, 2012; Lang
and Lapata, 2014). The input to the model are
instances of arguments (e.g., window, the burglar
in sentence (1)) and the output is a grouping of
these instances into clusters such that each cluster
contains arguments corresponding to a specific se-
mantic role and each role corresponds to exactly
one cluster. In other words, the syntactic repre-
sentations of verbal predicates, and argument po-
sitions are observable, whereas the associated se-
mantic roles are latent and need to be inferred.

The task is challenging due to its unsupervised
nature — it is difficult to define a learning objec-
tive function whose optimization will yield an ac-
curate model — but also because each predicate
can allow several alternate mappings or linkings
between its semantic roles and their syntactic real-
ization. Despite occupying different syntactic po-
sitions (subject in sentence (1) and object in sen-
tence (2)), the noun phrase the window expresses
the same role in both sentences. To learn such
linkings, previous work has made use of syntac-
tic and semantic features (e.g., whether two argu-
ments are in the same position in the parse tree,
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whether they have the same POS-tags, whether
they are lexically similar). These features are typ-
ically defined on argument instances, without tak-
ing the predicate into account, and do not interact
but instead are sequentially applied.

In this work we propose to learn these features
and their complex interactions (e.g., selectional
restrictions) automatically from data. Specifi-
cally, we induce embeddings to represent a pred-
icate and its arguments. Argument embeddings
are learned from surrounding contexts involving
the predicate and neighboring arguments. Anal-
ogously, predicate embeddings are learned from
contexts representing their arguments. Our model
learns a rich feature space which can serve as input
to any clustering algorithm. We use a linear pro-
gramming formulation of hierarchical clustering
which is advantageous for two reasons. Firstly, ex-
pressing clustering as a global optimization prob-
lem with an explicit objective function can po-
tentially yield higher quality output compared to
greedy algorithms (such as agglomerative cluster-
ing). Secondly, through the use of constraints, we
can model task-specific knowledge (e.g., seman-
tic roles are unique within a frame). Experimen-
tal results show improved performance over both
previous unsupervised semantic role labeling ap-
proaches and other distributed word representation
models.

2 Related Work

Our model is inspired by recent work in learning
distributed representations of words (Bengio et al.,
2006; Mnih and Hinton, 2008; Collobert et al.,
2011; Turian et al., 2010; Mikolov et al., 2013a).
In this framework, a neural network is used to pre-
dict a word taking into account its context. Words
are represented by vectors which are concatenated
or averaged in order to form a representation of the
context. We induce vector representations to rep-
resent each predicate and its argument. As a learn-
ing objective, vectors are required to contribute
to a prediction task about the target argument in
the sentence, given the predicate and a small win-
dow of surrounding arguments. Similarly, predi-
cate vectors are learned from the contexts of pre-
ceding arguments, and are required to contribute
to the prediction of upcoming arguments. Our
vectors encode the semantics of arguments, predi-
cates, and their interdependence.

Approaches to unsupervised semantic role la-

beling follow two main modeling paradigms. Un-
der the the first variant, semantic roles are mod-
eled as latent variables in a (directed) graphical
model that relates a verb, its semantic roles, and
their possible syntactic realizations (Grenager and
Manning, 2006; Lang and Lapata, 2010; Garg
and Henderson, 2012). Role induction here corre-
sponds to inferring the state of the latent variables
representing the semantic roles of arguments. The
second approach is similarity-driven and based
on clustering. For instance, Lang and Lapata
(2014) induce semantic roles via graph partition-
ing: each vertex in a graph corresponds to an ar-
gument instance of a predicate and edges repre-
sent features expressing syntactic or semantic sim-
ilarity. The graph partitioning problem is solved
using task-specific adaptations of label propaga-
tion and agglomerative clustering. Titov and Kle-
mentiev (2012) propose a Bayesian clustering al-
gorithm based on the Chinese Restaurant Pro-
cess. Their model encourages similar verbs to
have similar linking preferences using a distance-
dependent Chinese Restaurant Process prior.

More recently, Titov and Khoddam (2015) pro-
pose a reconstruction-error minimization framer-
work for unsupervised semantic role induction.
Their model consists of two componenets: the
encoder (implemented as a log-linear model)
predicts roles given syntactic and lexical fea-
tures, whereas the reconstruction component (im-
plemented as a probabilistic tensor factorization
model) recovers argument fillers based on the role
predictions, the predicate and other arguments.
The two components are estimated jointly to min-
imize errors in argument reconstruction.

Our work follows the similarity-driven model-
ing paradigm. Rather than engineering relevant
features, we learn them using a neural network and
a task-appropriate training objective. We are thus
able to model complex interactions between argu-
ments and their predicates without making simpli-
fying assumptions (e.g., that arguments are condi-
tionally independent of each other given the pred-
icate). Our embeddings are largely independent of
the clustering algorithm used to induce the seman-
tic roles. We advocate the use of linear program-
ming, which supports the incorporation of linguis-
tic and structural constraints during cluster forma-
tion. ILP techniques have been previously applied
to several supervised NLP tasks, including seman-
tic role labeling (Punyakanok et al., 2008), how-
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START Yesterday Kristina hit Scott with a baseball END

a1 a2 a3 a4 a5 a6predicate Identification
argt−1 argt argt+1 Window 1

argt−1 argt argt+1 Window 2
argt−1 argt argt+1 Window 3

argt−1 argt argt+1 Window 4

Figure 1: Symmetric context window from the list of arguments

ever their application to unsupervised role induc-
tion is novel to our knowledge.

3 Model

Unsupervised role induction is commonly mod-
eled after supervised semantic role labeling
(Màrquez et al., 2008) and follows a two-stage ap-
proach. Given a sentence and a designated verb,
the goal is to identify the arguments of the verbal
predicate (argument identification) and label them
with semantic roles (role induction). The model
is first given a syntactically analyzed sentence
(e.g., in the form of a dependency parse) with the
aim of determining all constitutents that fill a se-
mantic role. Argument identification is performed
heuristically using a small number of rules which
take into account syntactic relations encountered
when traversing the dependency tree from predi-
cate to argument (Lang and Lapata, 2014; Titov
and Klementiev, 2012). An alternative which we
follow here is to use a supervised classifier trained
on a small amount of data using non-lexicalized
features.

As mentioned earlier, we treat role induction
as a type-level clustering problem: argument in-
stances are assigned to clusters such that these rep-
resent semantic roles. We induce a separate set of
clusters for each verb, and each cluster thus repre-
sents a verb-specific role. Clustering algorithms
commonly take a matrix of pairwise similarity
scores between instances as input and produce a
set of output clusters, often satisfying some op-
timality criterion. In our case, instances are type-
level arguments represented by embeddings whose
similarity is quantified using a distance measure
such as cosine (see Section 3.1) and clusters are
formed using a linear programming formulation of
hierarchical clustering (see Section 3.2).

3.1 Predicate and Argument Embeddings

Our approach for learning predicate and argu-
ment vectors is inspired by recent methods aimed
at learning high-quality vector representations of
words from large amounts of unstructured text
data (Mikolov et al., 2013a). In this framework,
vectors of the surrounding words within a fixed-
sized window (the context) are summed into a sin-
gle vector vc, which is useful in predicting the
output vector v0 representing the current or target
word. Longer-range context information can also
be captured (Le and Mikolov, 2014), specifically
words within the current paragraph but outside of
the target word context window.

In contrast to previous word-based approaches,
our model induces vector representations for each
predicate and its semantic arguments. As a learn-
ing objective, vectors are required to contribute
to a prediction task about the target argument in
the sentence, given the predicate and a small win-
dow of surrounding arguments. So despite the fact
that the argument vectors and weightings are ini-
tialized randomly, they can eventually capture se-
mantics as an indirect result of the prediction task.
Similarly, predicate vectors are learned from the
many contexts sampled from sentences involving
that predicate, and are required to contribute to the
prediction task of the next argument. One way to
consider the role of the predicate token is as an-
other argument. It acts as a memory (similar to
the paragraph memory of Le and Mikolov, 2014)
that remembers what is missing from the current
context, and so captures something of the core na-
ture of the predicate.

Figure 1 illustrates our approach for building
the context, for the example sentence Yesterday,
Kristina hit Scott with a baseball. As a prepro-
cessing step, (verbal) predicates and arguments are
identified based on a dependency parse, to give a
full list of arguments for the sentence. Boxes show

2484



the span of each argument. In our model, contexts
are symmetric and of fixed length (c = 1 in the
Figure), sampled from a sliding window over the
argument list. To enable the first and last argu-
ments within the sentence to be predicted from the
context, we augment the argument list with START
and END arguments. Meanwhile, the predicate
is associated with all contexts generated from the
sliding window approach.

More formally, given a training set compris-
ing a predicate b and a sequence of its semantic
arguments a1, a2, a3, . . . , aT , the objective of the
model is to maximize the average log probability:

1
T

T

∑
t=1

log p(at |b, at+ j,−c≤ j ≤ c, j 6= 0) (1)

where c is the size of the training context around
the center argument at . We define probability us-
ing the softmax function:

p(at |b, acontext) ∝ exp
(
vT

c v0
)
, (2)

where v0 is the target argument vector and vc the
context vector formed from predicate and con-
text arguments vectors. Vectors are trained using
stochastic gradient descent where the gradient is
obtained via back-propagation. After the training
converges, predicates and arguments with similar
meaning are mapped to a similar position in the
vector space.

Every predicate is mapped to a unique vec-
tor vpred, with the vocabulary of vectors shared
across the data set. For the arguments, we generate
feature vectors f−1 and f+1 from syntactic infor-
mation (dependency relations and POS-tags), con-
catenated with a distributional vector to represent
the head word token in each argument. The repre-
sentation vectors v−1 and v+1 are calculated from
the feature vectors using v j = Wcontext f j, where
the matrix Wcontext is also updated as part of the
learning process. Wcontext is common for all ar-
guments. In a similar manner, the representation
vector v0 for the target argument is calculated us-
ing v0 = Wargument f0. The predicate and argument
vectors are concatenated to predict the middle ar-
gument in a context. Other ways of dividing the
argument window between context and predicted
argument, and of combining context vectors, are
possible. As the full list of arguments in a sentence
is known, we use a symmetric window. The ad-
vantage of concatenating the vectors is that infor-
mation on the sequence of arguments is preserved.
An illustration of our model is given in Figure 2.

argt−1 argt argt+1 predicate

f−1 f+1

v−1 v+1 vpred

×Wcontext×Wcontext

vc

v0

f0

×Wargument

Context

features

Context

representation

Concatentation

Target

representation

Target

features

Figure 2: Distributional model for learning repre-
sentations of predicates and semantic arguments.

Through a context window of arguments rather
than neighboring tokens, our model captures a
semantic representation of each verbal predicate.
Furthermore, the arguments themselves are posi-
tioned in vector space as a result of the selectional
preferences of the predicates. In the next section,
we use the induced semantic space to cluster argu-
ments into semantic roles.

3.2 Argument Clustering

Hierarchical clustering is a method of clustering
which seeks to build a hierarchy of clusters, often
presented in a dendrogram. In such a represen-
tation, all possible pairs of clusters are merged at
some level. It is typically implemented as a greedy
heuristic algorithm with no explicit objective func-
tion. Instead, it requires a measure of dissimilar-
ity between sets of observations, typically through
a measure of distance between pairs of observa-
tions. An example is the agglomerative clustering
technique used in Lang and Lapata (2014). Their
algorithm starts from seed clusters based on shared
syntactic information, and then repeatedly merges
pairs of clusters “bottom up” to form a hierarchy.

It is possible to formalize hierarchical clustering
as an integer linear programming (ILP) problem
with the dendrogram properties enforced as linear
constraints (Gilpin et al., 2013). Although exact
solvers exists for ILP, their performance is highly
dependent on the number of variables involved,
and we found it necessary to develop a linear pro-
gramming (LP) relaxation to provide approximate
solutions faster. Dynamic programming is an al-
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ternative approximation technique that could be
explored; it has recently been used successfully
in the context of supervised semantic role labeling
(Täckström et al., 2015).

But first, we consider the exact formalization
of agglomerative clustering as an ILP. In order to
generate a legal dendrogram, it is necessary for the
model to enforce the following partition proper-
ties:

Reflexivity A seed cluster is always in the same
merged cluster as itself.

Symmetry If seed cluster a is merged into the
same cluster as seed cluster b, then b is also
in the same cluster as a.

Transitivity If a and b are merged at a certain
level, and b and c are also merged at the same
level, then a is in the same cluster as c at that
level.

To model hierarchical clustering as an ILP prob-
lem, we consider all pairs of clusters a and b,
and introduce variables Mab to represent the merge
level between clusters a and b. Reflexivity is en-
forced by the constraint:

Maa = 0, (3)

Meanwhile the symmetry requirement is captured
by the constraint:

Mab = Mba. (4)

The transitivity requirement and the objective to
find the hierarchy that minimizes pair-wise dis-
tances are modeled in the objective of the ILP
using auxiliary variables Oabc that represent the
merge order of pairs (a,b) and (a,c), and coeffi-
cients wabc that are set equal to the difference be-
tween distance metrics D between those pairs:

argmax
M ,O

∑
a,b,c∈Instances

wabcOabc

subject to:

Mab is a merge function

Oabc =

{
1 if Mab < Mac

0 otherwise

wabc = D(a,c)−D(a,b).

Although exact solutions can be found using ILP
solvers, for the problems we consider there are

typically over 100 seed clusters. This generates
in the order of 106 transitivity constraints, and it is
this in particular that results in combinatorial com-
plexity from off-the-shelf ILP solvers.

An LP relaxation provides approximate solu-
tions faster. A maximum merge level L is first de-
fined as a parameter, although as this is not an inte-
ger problem and fractional levels are possible, this
does not represent the number of levels. Auxiliary
variables Zab≥ac capture the merge hierarchy, and
Tabc rewards transitivity by a factor α:

arg max
M ,O,Z

∑
a,b,c∈Instances

wabcOabc +αTabc

subject to:

0≤ T ≤ 1

0≤ O≤ 1

0≤ Z ≤ 1

0≤M ≤ L

−L≤Mac−Mab− (L+1)Oabc ≤ 0

−L≤Mab−Mac− (L+1)Zab≥ac +1≤ 0

−L≤Mbc−Mac− (L+1)Zbc≥ac +1≤ 0

Zab≥ac +Zbc≥ac ≥ Tabc

(5)

To capture the linguistic principles involved in
semantic role labeling (Lang and Lapata, 2014),
our formulation includes additional constraints.
These are expressed explicitly through the con-
struction of the linear programme:

Role Uniqueness Semantic roles are unique
within a particular frame. This principle is cap-
tured by constraining the merge level of two seed
clusters a and b to be at the top level L of the hi-
erarchy, where a and b are roles that occur within
the same frame, with the constraint:

Mab = L ∀(a,b) in frame. (6)

Syntactic Position Arguments occurring in a
specific syntactic position within a specific link-
ing all bear the same semantic role. This is han-
dled by construction of the problem, where all ar-
guments of a particular predicate occurring in a
specific syntactic position are collected into a seed
cluster at the beginning of the merging problem.

Argument Head Distribution The distribution
over argument heads is the same for two clusters
that represent the same semantic role. The distri-
bution of arguments is captured in vector space by
the model described in Section 3.1. We calculate
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centroid vectors from the instances in each clus-
ter. To measure similarity between clusters a and
b, we use cosine similarity between centroids:

D(a,b) =
vT

a vb

‖va‖‖vb‖
(7)

Equations (3)–(7) comprise the LP model.

4 Experimental Setup

In this section we present our experimental setup
for assessing the performance of the model pre-
sented above. We explain how it was trained and
tested, and also briefly introduce the models used
for comparison with our approach.

4.1 Training
To obtain distributed representations, we used text
from a subset of the English Gigaword corpus
(Parker et al., 2011), comprising almost 64 mil-
lion tokens (2.7 million sentences). The training
corpus was pre-processed using MATE (Björkelund
et al., 2009) to lemmatize the words, provide
POS-tags and a dependency parse, identify verbal
predicates and the position of arguments.

The neural network model described in Sec-
tion 3.1 was trained using Matlab. We restricted
the predicate vocabulary to use the 5,000 most fre-
quent verbs in the training corpus, and the verbal
predicates found in the CoNLL-2008 shared task
data set (Surdeanu et al., 2008). Predicates were
represented as vectors of size 80, while vectors
of length 50 were used for arguments. We used
a symmetric context window of size c = 1. As
the mechanism to prevent all vectors from hav-
ing the same value, we used “negative-sampling”
(Mikolov et al., 2013b), where there are k = 5 ran-
domly sampled negative examples of (context, tar-
get) pairs for each data sample. This technique
has the advantage that we do not need to provide
numerical probabilities for the noise distribution.
Model parameters were updated during training
using stochastic gradient descent over 5 epochs,
decreasing the update step size at each epoch.

4.2 Argument clustering
Following common practice in unsupervised role
induction (Titov and Klementiev, 2012; Lang and
Lapata, 2014), we evaluated our model on the
complete CoNLL-2008 shared task data set. We
used the clustering metrics of purity, collocation
and their harmonic mean F1. In addition, we used

V-measure (Rosenberg and Hirschberg, 2007), an
entropy-based measure which explicitly evaluates
how successfully the criteria of homogeneity and
completeness have been satisfied.

In previous work on unsupervised role induc-
tion, the results for each predicate were weighted
in proportion to the number of times the predicate
appeared in the CoNLL-2008 test set. In addi-
tion to this measure, we evaluate clustering where
predicates are uniformly weighted. In a data set
where the top 10 predicates account for almost
20% of the samples, these metrics give a view
of performance on the other 3,000-plus predicates
where less predicate-specific data is available.

4.3 Comparison Models

We compared our model against a baseline that
assigns arguments to clusters based on their syn-
tactic functions (SYNTF; Lang and Lapata, 2014).
Specifically, the baseline forms clusters from the
syntactic position of an argument using four cues:
the verb’s voice, the argument’s position relative
to the predicate, its syntactic relation, and any re-
alizing preposition.1

To assess whether our argument-based model
has any advantages over other word-based dis-
tributed representations we compared the follow-
ing variants: (a) the arg2vec model presented in
Section 3.1 trained on the subset of Gigaword;
(b) the continuous bag-of-words model trained
using word2vec on the same Gigaword corpus;
and (c) 300–dimensional vectors pre-trained on
part of the Google News dataset2 (about 100
billion words), again using word2vec. In all
three instances, we performed argument cluster-
ing using the LP of Section 3.2. We also com-
pare against Agglomerative-cosine (AGGLOM),
the best performing model of Lang and Lapata
(2014).3 Where applicable, we also refer to the
models presented in Titov and Klementiev (2012).

5 Results

Our results on the semantic role induction task are
summarized in Tables 1 and 2. Table 1 presents
results using the gold standard parses and argu-

1Differences in the results compared to Lang and Lapata
(2014) are due to our re-implementation of the predicate la-
beling stage, to be consistent with the preprocessing we used
for the other comparison systems.

2http://code.google.com/p/word2vec/
3Differences from published results are again due to

changes at the predicate labeling stage.
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Weighted Unweighted Weighted Unweighted
PU CO F1 PU CO F1 HO CO V1 HO CO V1

SYNTF 81.6 78.1 79.8 90.0 86.8 87.8 71.7 66.2 68.8 85.5 81.7 82.1
AGGLOM 87.4 75.3 80.9 95.1 80.7 86.5 79.2 65.5 71.7 93.1 78.1 84.0
word2vec-GIGAWORD 82.8 77.9 80.3 91.4 86.3 88.2 78.8 63.7 70.4 90.2 81.1 84.4
word2vec-GOOGLENEWS 83.4 76.2 79.7 91.6 85.7 87.9 78.7 63.7 70.4 90.2 80.7 84.1
arg2vec-GIGAWORD 87.9 74.7 80.8 94.2 85.4 88.9 86.1 64.6 73.8 94.6 80.9 86.2

Table 1: Purity, collocation and F1 measures (left), and homogeneity, completeness and V1 measures
(right) for CoNLL-2008 data set, using gold syntax information.

Weighted Unweighted Weighted Unweighted
PU CO F1 PU CO F1 HO CO V1 HO CO V1

SYNTF 68.3 72.1 70.1 80.6 81.3 80.3 55.2 54.9 55.0 74.4 74.3 73.2
AGGLOM 75.5 69.5 72.4 89.3 77.9 82.4 64.9 55.7 60.0 86.1 74.6 78.8
DEPREL+MATE 81.4 77.7 79.5 88.7 84.8 86.2 71.5 65.7 68.5 83.7 79.2 80.3
word2vec-GIGAWORD 83.3 76.1 79.5 91.3 85.7 87.8 78.4 63.4 70.1 89.9 80.3 83.9
word2vec-GOOGLENEWS 82.9 77.4 80.1 91.3 86.0 88.0 78.3 63.6 70.2 89.9 80.9 84.2
arg2vec-GIGAWORD 87.7 74.6 80.6 93.9 85.3 88.8 85.7 64.4 73.5 94.4 80.8 86.1

Table 2: Purity, collocation and F1 measures, and homogeneity, completeness and V1 measures for
CoNLL-2008 data set using automatic parse syntax information.

ments available in the CoNLL 2008 data set. No-
tice that our embeddings are still learned using au-
tomatically identified arguments. Table 2 uses au-
tomatic parses with automatically identified argu-
ments which is a more realistic evaluation setting.

As can be seen in Table 1, when gold standard
information is used the syntactic function baseline
(SYNTF) is very effective. When considering F1
(weighted by the number of instances), arg2vec
performs on the same par with graph-based ag-
glomerative clustering (AGGLOM). Interestingly,
word2vec performs worse when trained either
on Gigaword or the Google News corpora. Ac-
cording to (weighted) V1, arg2vec outperforms
all other comparison models. When predicates
are weighted uniformly, arg2vec is the best per-
forming model using F1 or the more information-
centric V-measure. This suggests that our model
performs well on the the less-frequent predicates
and rarer semantic roles. The results also show
that our model captures semantic information use-
ful for this task more successfully than the word-
based distributional models. Both word2vec mod-
els have similar performance, despite significant
differences in the size of their training data.

Table 2 shows similar trends. The poorer per-
formance of SYNTF and AGGLOM can partly be
ascribed to the heuristics used for argument iden-
tification: DEPREL+MATE gives the baseline per-
formance of our dependency parser and argu-
ment identification. Nevertheless, when compar-
ing systems that have access to the same prepro-
cessing, our arg2vec model gives the best per-

formance particularly in the information-centric
V-measures. Also note, that it seems robust to
noise incurred by the automatic parsing and argu-
ment identification procedures.

Titov and Klementiev (2012) report a
(weighted) F1 of 83.0 on the gold standard
CoNLL-2008 dataset, using a coupled model
where parameters are shared across verbs and
a form of smoothing which replaces argument
fillers by lexical cluster ids stemming from
Brown et al.’s (1992) algorithm (trained on the
RCV1 corpus, about 63 millions words). Our
model would presumably benefit from a similar
coupling mechanism which we could enforce as
a constraint in the ILP. However, we leave this to
future work. When tested on automatic parses and
gold arguments, their model yields a weighted
F1 of 78.8. For comparison, arg2vec obtains an
F1 of 80.6 on automatic parses and arguments.
Figure 4 shows visualizations of the argument
semantic space as captured by the arg2vec-
GIGAWORD model, for the predicates eat and
win. Dimensionality reduction was performed by
the t-SNE library.4 The visualization suggests
that the model learns similarities beyond simple
word contexts.

The evaluation presented so far assesses the
quality of the argument representations learned
by our model. We also wanted to see whether
the predicate embeddings capture meaningful se-
mantic content. Figure 3 shows a visualization

4http://lvdmaaten.github.io/tsne/
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Figure 3: 2-D representation of the induced predi-
cate space for the 100 most frequent predicates in
CoNLL-2008.

of the predicate semantic space as captured by
arg2vec when it is trained on the Gigaword cor-
pus. It shows a projection of the 100 most frequent
verbs in CoNLL-2008, with dimensionality reduc-
tion again performed by t-SNE. The visualization
suggests that the model captures non-trivial predi-
cate similarities. Verbs relating to buying and sell-
ing lie close together (e.g., offer, buy, receive, pay,
sell). Verbs denoting growth or decrease are also
grouped together (drop, fall, increase, grow, re-
duce, cut). Interestingly, verbs with similar argu-
ment structure share regions of the space (e.g., say,
estimate, or believe, think or seem, appear). Use-
fully, verbs are represented in a continuous space
rather than discrete clusters (e.g., acquire is some-
where between buy and own).

In order to quantitatively evaluate the qual-
ity of the predicate representations induced by
our model, we compared the cosine distances
between vectors to the hierarchy of VerbNet
(Schuler, 2005). VerbNet is a hierarchical domain-
independent broad-coverage verb lexicon for En-
glish, organizing verbs into classes. The evalua-
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Figure 4: 2-D representation of the induced argu-
ment space for the predicates eat (top) and win
(bottom). In both representations, A0 arguments
are clustered bottom left, while A1 arguments are
found top right.

tion task was, for all pairs of predicates, to predict
whether they would be in the same cluster at the
top layer of the hierarchy of VerbNet. To form
the top layer of VerbNet, we took the first inte-
ger of each VerbNet class number. As an exam-
ple, the verbs believe (VN class conjecture-29.5),
think (consider-29.9), expect (conjecture-29.5-1),
and adopt (appoint-29.1) would all be in the same
class 29. According to this reduction of VerbNet,
there are 101 classes. The prediction was based
on whether the cosine distance between the pair
of vectors was above a threshold value. We mea-
sured area under the precision-recall curve (AUC)
which captures performance at all thresholds, and
F1-score at the best threshold. arg2vec does bet-
ter in both measures than a baseline of random
vectors of the same dimension, scoring 0.637 for
AUC compared to a baseline of 0.505, and 29.5
against 22.9 for F1.

6 Conclusion

In this paper we presented a new approach for
learning distributed representations for predicates
and their arguments which we show is useful for
unsupervised semantic role labeling. Rather than
creating a task-specific algorithm for role induc-
tion, we learn a task-specific representation. We
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thus decouple feature learning from clustering in-
ference, which results in a conceptually simpler
model. Through a formulation of the clustering
problem as a linear programme, we are able to per-
form clustering efficiently and incorporate task-
specific constraints. In the future, we would like
to investigate how our approach generalizes across
languages and tasks.
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