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Abstract

Predicting the success of referring expres-
sions (RE) is vital for real-world applica-
tions such as navigation systems. Tradi-
tionally, research has focused on studying
Referring Expression Generation (REG)
in virtual, controlled environments. In this
paper, we describe a novel study of spa-
tial references from real scenes rather than
virtual. First, we investigate how humans
describe objects in open, uncontrolled sce-
narios and compare our findings to those
reported in virtual environments. We show
that REs in real-world scenarios differ sig-
nificantly to those in virtual worlds. Sec-
ond, we propose a novel approach to quan-
tifying image complexity when complete
annotations are not present (e.g. due to
poor object recognition capabitlities), and
third, we present a model for success pre-
diction of REs for objects in real scenes.
Finally, we discuss implications for Nat-
ural Language Generation (NLG) systems
and future directions.

1 Introduction

REG has attracted considerable interest in the
NLG community over the past 20 years (Krahmer
and van Deemter, 2011; Gatt et al., 2014). While
initially, the standard evaluation metric for REG
was human-likeness, as compared to human cor-
pora similarity as in TUNA (Gatt et al., 2009),
the field has moved on to evaluating REG effec-
tiveness by measuring task success in virtual in-
teractive environments (Byron et al., 2009; Gar-
gett et al., 2010; Janarthanam et al., 2012). Vir-
tual environments however eliminate real-world
uncertainty, such object recognition errors or clut-
tered scenes. In this paper, we investigate whether
the lessons learnt in virtual environments can be

transferred to real-world scenes. We consider the
case where we are uncertain about the scene itself,
i.e. we assume that the complexity of the scene
is hidden and we are interested in identifying a
specific object, and thus our work differs from
approaches that generate descriptions for images
such as (Mitchell et al., 2012; Feng and Lapata,
2013; Yang et al., 2011; Yatskar et al., 2014).

Related work has focused on computer gener-
ated objects (van Deemter et al., 2006; Viethen
and Dale, 2008), crafts (Mitchell et al., 2010), or
small objects in a simple background (Mitchell et
al., 2013a; FitzGerald et al., 2013). One notable
exception is the recent work by Kazemzadeh et
al. (2014), who investigate referring expressions
of objects in “complex photographs of real-world
cluttered scenes”. They report that REs are heavily
influenced by the object type. Here, we are inter-
ested in studying REs for visual objects in urban
scenes. As the success of a RE is heavily depen-
dent on the complexity of the scene as well as its
linguistic features, we are interested in modelling
and thus predicting the success of a RE.

Initially, this paper presents and analyses a
novel, real-world corpus REAL (to be released) –
“Referring Expression Anchored Language” (Sec-
tion 2), and compares the findings to those re-
ported in virtual worlds (Gargett et al., 2010). We
then provide a detailed analysis of how syntactic
and semantic features contribute to the success of
REs (Sections 4.1, 4.2, 4.3), accounting for unob-
servable latent variables, such as the complexity
of the visual scene (as described in Section 3). Fi-
nally, we summarise our work and discuss the im-
plications of our work for NLG systems (Section
5). The dataset and models will be released.

2 The REAL Corpus

The REAL corpus contains a collection of images
of real-world urban scenes (Fig. 1) together with
verbal descriptions of target objects (see Fig. 2)
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Figure 1: Original picture. Figure 2: Target object in yellow
box.

Figure 3: The identified object by
the validators.

generated by humans, paired with data on how
successful other people were able to identify the
same object based on these descriptions (Fig. 3).
The data was collected through a web-based inter-
face. The images were taken in Edinburgh (Scot-
land, UK), very early one summer morning. This
was necessary to reduce the occlusion of city ob-
jects from buses and crowds, and to minimise
lighting and weather variations between images.

2.1 Experimental Setup

There were 190 participants recruited (age be-
tween 16 to 71). Each participant was presented
with an urban image (Fig. 1), where the target ob-
ject was outlined by a yellow box (Fig. 2), and was
asked to describe the target using free text. After
completing a (self-specified) number of tasks, par-
ticipants were then asked to validate descriptions
provided by other participants by clicking on the
object using previously unseen images (Fig. 3).

# participants 190
# images/ stimuli 32
# descriptions 868
# verifications 2618
− ambiguous 201
− not found 75
− correct 1994
− incorrect 251
− NA 7

Table 1: The REAL corpus

Overall, 868 descriptions across 32 images were
collected, averaging around 27 descriptions per
image. The balance of generation and validations
was adjusted to ensure that all descriptions were
identified by at least 3 other participants, generat-
ing 2618 image tag verifications. All cases were
manually checked to determine if the ‘correct’
(green) or ‘incorrect’ (red) target had been identi-

fied Fig. 3. Overall, 76.2% of human descriptions
provided were successfully identified. For the ex-
periments reported in following sections, we sum-
marised answers categorised as ‘incorrect’, ‘ambi-
tious’ and ‘not found’ as unsuccessful.

2.2 Comparison to GIVE-2 Corpus

We now compare this data with human data gen-
erated for the GIVE-2 challenge (Gargett et al.,
2010). In GIVE-2, the target objects have dis-
tinct attributes, such as colour and position. For
instance, an effective RE in GIVE-2 could be “the
third button from the second row”. In real-world
situations though, object properties are less well
defined, making a finite set of pre-defined quali-
ties unfeasible. Consider, for instance, the build-
ing highlighted in Figure 2, for which the follow-
ing descriptions were collected:

1. The Austrian looking white house with the dark
wooden beams at the water side.

2. The white building with the x-shape balconies. It
seems it’s new.

3. The white building with the balconies by the river.
4. Apartments with balconies.
5. The nearest house on right side. It’s black and white.
6. The white and black building on the far right, it has

lots of triangles in its design.
7. The rightmost house with white walls and wood fin-

ishings.

It is evident that the REAL users refer to a va-
riety of object qualities. We observe that all par-
ticipants refer to the colour of the building (white,
black and white, greyish-whitish) and some men-
tion location (by the river, at the water side).

Experimental Factors influencing Task Per-
formance: In REAL, task success is defined as
the ability to correctly identify an object, whereas
in GIVE-2, task success refers to the successful
completion of the navigation task. In contrast to
GIVE-2, not all REAL participants were able to
correctly identify the referred objects (76.2% task
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GIVE-2 REAL
German English

Overall task success 100% 100% 76.2%
Task success (female) 100% 100% 78.8%
Task success (male) 100% 100% 69.6%
Length of descriptions
(no. words)

5.2 4.7 16.01

Length of descriptions
(female)

NA NA 97.36

Length of descriptions
(male)

NA NA 91.38

Table 2: Descriptive statistics for GIVE-2 and
REAL

success). We assume that this is because GIVE-
2 was an interactive setup, where the participants
were able to engage in a clarification dialogue.
Gender: In REAL, gender was not a significant
factor with respect to task success (Mann-Whitney
U test, p = 0.2). Length of REs (no. words): In
REAL, females tend to provide lengthier REs than
males, however the difference is not statistically
significant (Mann-Whitney U test, p = 0.58). In
GIVE-2, only German females produced signifi-
cantly longer descriptions than their male counter-
parts. Relation between length (no. words) and
task success: The REAL data shows a positive
relationship between length and success rate, i.e.
for a one word increase in length, the odds of cor-
rect object identification is significantly increased
(p < 0.05, Logit), i.e. longer and more complex
sentences lead to more successful REs.

3 Quantifying the Image Complexity

We assume that the complexity of the urban scene
represented in the image is hidden due to the lack
of semantic annotations. Our dataset does not in-
clude any quantifiable image descriptions, such as
computer vision output as in (Mitchell et al., 2012)
or manual annotations as in (Yatskar et al., 2014).
In addition, the same RE might not always re-
sult in successful identification of an object due
to scene complexity. In order to marginalise the
effect of the scene complexity, we exploit the mul-
tiple available data points per image. This allows
us to estimate the average success rate of each re-
ferring expression SRRE (the proportion of suc-
cessful validations) and the average success rate
of each image SRi (the proportion of the correctly
identified objects in the image). We use SRi to
marginalise over the (hidden) image complexity,
where we assume that some pictures are inher-
ently more complex than others and thus achieve

lower success rates. Similar normalisation meth-
ods are used for user ratings to account for the fact
that some users are more “tolerant” and in general
give higher ratings (Jin and Si, 2004). We employ
Gaussian normalisation (Resnick et al., 1994) to
normalise image success rates by considering the
following factors:
1. Shift of average success rate per image: some
images are inherently easier than others and gain
higher success rates, independently of the REs
used. This factor can be accounted by subtract-
ing average success rates of all images from the
average rating of a specific image x.
2. Different ratings: there are 27 REs per image on
average, some of which are harder to understand
than others, thus they gain lower success rates. To
account for this, the success rates of each image
are divided by the overall SR variance.

The normalised image success rate (NSRi) per
image x is defined by the following equation:

NSRi(x) =
SRi(x)− SRi√∑
n (SRi(x)− SRi)2

(1)

Using the (NSRi), we now investigate the
REs in terms of their linguistic properties, includ-
ing automatically annotated syntactic features and
manually annotated semantic features.

4 Modelling REG Success

Unlike previous work, we use both successful and
unsuccessful REs in order to build a model that is
able to predict the success or the failure of a RE.

4.1 Syntactic Analysis of REG Success
We use the Stanford CoreNLP tool (Manning et
al., 2014) to syntactically annotate the REs and we
investigate which linguistic features contribute to
the RE success in relation to the image complexity.
Note that these analyses are based on normalised
values, as discussed in Section 3).

Predicting RE Success Rate (SRRE): Initially,
we compare successful and unsuccessful REs by
taking the upper and lower quartiles and extract-
ing their syntactic features., i.e. the top and bottom
25% of REs with respect to their average success
rate, and group them into two groups. We then
extract syntactic features of these two groups and
compare their frequencies (occurrence per RE),
means, and standard deviations (Table 3), and
compare them using a t-test (p < 0.05). The dif-
ference between successful and unsuccessful ex-
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Successful REs Successful REs
Mean SD Freq. Mean SD Freq.

NP* 7.35 3.958 100 6.7 3.8 100
VP 1.45 1.673 41.8 1.46 1.923 58
PRN .02 .181 2.1 .03 .193 2.4
NNP* .57 1.131 27 .38 .918 19.3
NN* 4.2 2.284 98.8 3.79 2.441 98.1
DT 2.59 1.791 86.7 2.63 1.813 85.4
JJ* 1.92 1.61 80.9 1.66 1.288 81.1
CC .4 .645 32.8 .31 .588 25
PP 2.52 1.754 92.3 2.54 1.778 85.8
ADJP .2 .536 16.2 .041 .597 19.3
ADVP .27 .538 22.8 .25 .539 19.8
RB .34 .639 26.6 .34 .859 21.2
VBN* .22 .465 20.3 .31 .445 10.8
NNS .61 .902 40.7 .72 .782 53.3
CD .27 .552 22 .25 .478 23.6

Table 3: Statistics regarding the linguistic fea-
tures in successful vs unsuccessful referring ex-
pressions. (* denotes significant difference at p <
0.05).

pressions lies in the use of NP (Noun phrases),
NNP (Proper noun, singular), NN (Noun, singu-
lar or mass), JJ (Adjective) and VBN (Verb, past
participle) (Table 3). Successful REs include more
NPs, including NNPs and NNs, which indicates
that more than one reference is used to describe
and distinguish a target object. This could mean
that distractors are explicitly mentioned and elim-
inated or that the object of interest has a complex
appearance, as opposed to simply structured ob-
jects, such as buttons, in GIVE-2. For example,
the following description refers to a complex ob-
ject:

The large American-style wooden building with bal-
cony painted cream and red/brown. Ground floor is a
cafe with tables and parasols outside.

In addition, successful REs contain significantly
more adjectives and verbs in past participle1,
which indicates that the object was further de-
scribed and distinguished using its attributes, as
for instance the following description:

Large modern glass fronted building, butted up
against traditional Victorian terrace, slightly set back
from road and with facing bowed frontage.

The main difference between successful and un-
successful REs is the amount of detail provided to
describe and distinguish the target object. This is
also in-line with our previous results that success
is positively correlated to the number of words

1A participle is a form of a verb that is used in a sentence
as modifier, and thus plays a role similar to that of an adjec-
tive or adverb, such as built or worn.

Models R2

Syntactic: NP+PP+ADVP+CD+length .15
Semantic model: taxonomic + absolute .338
Joint model: PP + taxonomic + absolute .407

Table 4: Models and their fit.

used (Section 2.2) and it might explain why hu-
mans overspecify.

To further verify this hypothesis, we build a pre-
dictive model of average success rate, using multi-
ple step-wise linear regression with syntactic fea-
tures as predictors. We find a significant (p <
0.05) positive relationship between success rate
and NP, PP (Prepositional phrase), ADVP (Adver-
bial phrase), CD (Cardinal number), and length
(Table 4). NPs are used to distinguish and de-
scribe the target object. ADVPs and PPs serve a
similar function to adjectives in this case, i.e. to
describe further attributes, especially spatial ones,
like “the one near the river”, “next to the yellow
building”. Cardinal numbers are used to refer to
complex structured features of the target object,
e.g. two-story building or two large double doors.

Predicting Image Success Rate (NSRimage):
We repeat a similar analysis for estimating how
syntactic features relate to image success rate, i.e.
how the image complexity, as estimated from the
success rate of an image, influences how humans
describe the target object, i.e. how human gener-
ated descriptions change with respect to the im-
age complexity as estimated from the (normalised)
success rate of an image. We find that humans
use significantly more PPs and number of words
(p < 0.05) when describing complex images.

In sum, syntactical features, which further de-
scribe and distinguish the target object (such as
NPs, ADJ, and ADVPs and PPs) indicate success-
ful REs. However, they cannot fully answer the
question of “what makes a RE successful”, there-
fore we enrich our feature set using manually an-
notated semantic features.

4.2 Semantic Analysis of REG
We extract semantic features by annotating spa-
tial frames of reference as described in (Gargett
et al., 2010). We annotate a sample of the corpus
(100 instances), which allows us to perform a di-
rect comparison between the two corpora.

Comparison to GIVE-2 Corpus: We observe
that in the REAL corpus, the taxonomic property,
the relative property and the macro-level landmark
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Spatial Frame REAL GIVE-2
Ger-
man

En-
glish

Taxonomic Property 92* 53.66 58.51
Absolute Property 57* 85.37 92.53
Relative Property 15* 6.83 4.56
Viewer-centred 15 15.61 12.45
Micro-level landmark
intrinsic

9* 13.17 17.84

Distractor Intrinsic 5* 10.73 14.11
Macro-level landmark
intrinsic

43* 6.83 4.15

Deduction by elimina-
tion

1 0.98 3.32

Table 5: Frequency of semantic frames in REAL
vs. GIVE-2 (* denotes significant differences at
p < 0.05, χ2 test).

intrinsic property of the object in question are used
significantly more often than in the GIVE-2 corpus
(Table 5)2.

In contrast, in GIVE-2 the absolute property of
the object, such as the colour, and references to
distractors are used significantly more often than
in REAL. These results reflect the fact that scenes
in REAL were more complex, and as such, rel-
ative properties to other objects and landmarks
were used more often. In GIVE-2, target objects
were mostly buttons, therefore, absolute descrip-
tions (“the blue button”) or referring to an intrin-
sic distractor (“the red button next to the green”)
are more frequent. In addition, real-world en-
vironments are dynamic. Humans choose to re-
fer to immovable objects (macro-level landmarks)
more often than in closed-world environments. In
GIVE-2, immovable objects are limited to walls,
ceilings or floors, whereas in REAL there is a wide
range of immovable objects /landmarks that a user
can refer to, e.g. another building, rivers, parks,
shops, etc. Landmark descriptions will play an im-
portant role in future navigation systems (Kandan-
gath and Tu, 2015).

Predicting RE Success Rate (SRRE): Next,
we analyse which spatial frames significantly con-
tribute to task success, using multiple step-wise
linear regression.We find that taxonomic and ab-
solute properties significantly (p < 0.05) con-
tribute to the success of a referring expression (Ta-
ble 4). Semantic features explain more of the vari-
ance observed in SRRE , than syntactic features.

2Note that for GIVE-2 we consider both, the German and
the English data.

4.3 Joint Model of REG Success

Both syntactic and semantic features contribute to
the success of a RE. Therefore, we construct a
joint model for predicting SRRE using step-wise
linear regression over the joint feature space. We
find that both syntactic and semantic features sig-
nificantly (p < 0.05) contribute to the success of a
RE, see Table 4. This model explains almost half
of the variation observed in SRRE (R2 = .407).
Clarke et al. (2013) reports an influence of visual
salience on REG, therefore, in future, we will in-
vestigate the influence of visual features.

5 Discussion and Conclusions

From the results presented, the following conclu-
sions can be drawn for real-world NLG systems.
Firstly, semantic features have a bigger impact on
the success rate of REs than syntactic features,
i.e. content selection is more important than sur-
face realisation for REG. Secondly, semantic fea-
tures such as taxonomic and absolute properties
can significantly contribute to RE success. Tax-
onomic properties refer to the type of target ob-
ject, and in general depend on the local knowledge
of the information giver. Similarly, the success of
the RE will depend on the expertise of the infor-
mation follower. As such, modelling the user’s
level of knowledge (Janarthenam et al., 2011) and
stylistic differences (Di Fabbrizio et al., 2008) is
crucial. Absolute properties refer to object at-
tributes, such as colour. Attribute selection for
REG has attracted a considerable amount of at-
tention, therefore it would be interesting to inves-
tigate how these automatic attribute selection al-
gorithms perform in real-world, interactive envi-
ronments. Finally, the more complex scenes seem
to justify longer and more complex descriptions.
As such, there is an underlying trade-off which
needs to be optimised, e.g. following the gener-
ation framework described in (Rieser et al., 2014).

In future, we will compare existing REG algo-
rithms on our dataset, in a similar experiment to
Mitchell et al. (2013b). Then, we will extend ex-
isting algorithms to take into account other prop-
erties such as material (e.g. “wooden”), compo-
nents of the referred object (e.g. “balconies”) etc.
Finally, we will incorparate such an algorithm in
interactive settings to investigate the influence of
user dialogue behaviour and the influence of visual
features, such as salience (Clarke et al., 2013), in
order to improve the fit of our predictive model.
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