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Abstract

Logic grid puzzle is a genre of logic puz-
zles in which we are given (in a natural
language) a scenario, the object to be de-
duced and certain clues. The reader has
to figure out the solution using the clues
provided and some generic domain con-
straints. In this paper, we present a sys-
tem, LOGICIA, that takes a logic grid puz-
zle and the set of elements in the puz-
zle and tries to solve it by translating it
to the knowledge representation and rea-
soning language of Answer Set Program-
ming (ASP) and then using an ASP solver.
The translation to ASP involves extrac-
tion of entities and their relations from
the clues. For that we use a novel learn-
ing based approach which uses varied su-
pervision, including the entities present
in a clue and the expected representa-
tion of a clue in ASP. Our system, LO-
GICIA, learns to automatically translate a
clue with 81.11% accuracy and is able to
solve 71% of the problems of a corpus.
This is the first learning system that can
solve logic grid puzzles described in natu-
ral language in a fully automated manner.
The code and the data will be made pub-
licly available at http://bioai.lab.
asu.edu/logicgridpuzzles.

1 Introduction

Understanding natural language to solve problems
be it algebraic word problems (Kushman et al.,
2014; Hosseini et al., 2014) or questions from bi-
ology texts (Berant et al., 2014; Kim et al., 2011),
has attracted a lot of research interest over the past
few decades. For NLP, these problems are of par-
ticular interest as they are concise, yet rich in in-
formation. In this paper, we attempt to solve an-
other problem of this kind, known as Logic Grid

Puzzle. Problem.1 shows an example of the same.
Puzzle problems in the same spirit as the previ-
ously mentioned science problems, do not restrict
the vocabulary; they use everyday language and
have diverse background stories. The puzzle prob-
lems, however, are unique in their requirement of
high precision understanding of the text. For a
puzzle problem, the solution is never in the text
and requires involved reasoning. Moreover, one
needs to correctly understand each of the given
clues to successfully solve a problem. Another in-
teresting property is that only a small core of the
world knowledge, noticeably spatial, temporal and
knowledge related to numbers, is crucial to solve
these problems.

PROBLEM .1 A LOGIC GRID PUZZLE

Waterford Spa had a full appoint-
ment calendar booked today. Help
Janice figure out the schedule by
matching each masseuse to her
client, and determine the total price
for each.

1. Hannah paid more than Teri’s client.
2. Freda paid 20 dollars more than

Lynda’s client.
3. Hannah paid 10 dollars less than

Nancy’s client.
4. Nancy’s client, Hannah and Ginger

were all different clients.
5. Hannah was either the person who

paid $180 or Lynda’s client.

Clients: Aimee, Ginger, Freda, Hannah.
Prices: $150, $160, $170, $180.
Masseuses: Lynda, Nancy, Tery, Whitney.

A logic grid puzzle contains a set of categories
and an equal number of elements in each category.
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And the goal is to find out which elements are
linked together based on a series of given clues.
Each element is used only once. Each puzzle has
a unique solution and can be solved using logical
reasoning. A logic grid puzzle is called a (n,m)-
puzzle if it contains n categories and each category
has m elements. For the example in Problem.1,
there are three categories, namely clients, prices,
masseuses and each category has four elements
which are shown in the respective columns. A to-
tal of five clues are given in free text and the goal
is to find the members of the four tuples, where
each tuple shall contain exactly one element from
each category such that all the members in a tuple
are linked together.

To solve such a puzzle problem, it is crucial to
understand the clues (for example, “Hannah paid
more than Teri’s client.”). Each clue talks about
a set of entities (for example, “Hannah”, “client”,
“Terry”) and their relations (“a greater-than rela-
tion between Hannah and the client of Terry on
the basis of payment”). Our system, LOGICIA,
learns to discover these entities and the underly-
ing semantics of the relations that exist between
them. Once the relations are discovered, a pair
of Answer Set Programming (ASP) (Baral, 2003)
rules are created. The reasoning module takes
these ASP rules as input and finds a group con-
figuration that satisfies all the clues. LOGICIA has
“knowledge” about a fixed set of predicates which
models different relations that hold between enti-
ties in a puzzle world. Clues in the puzzle text
that are converted into ASP rules, use these predi-
cates as building blocks. In this research, our goal
is to build a system which can automatically do
this conversion and then reason over it to find the
solution. The set of predicates that the reasoning
model is aware of is not sufficient to represent all
logic grid puzzles. The family of logic grid puz-
zles is broad and contains variety of clues. Our
future work involves dealing with such a diverse
set of relations. In this work we assume that the
relations in Table 1 are sufficient to represent the
clues. Following are some examples of clues that
cannot be modeled using the predicates in Table 1.

• Esther’s brother’s seat is at one end of the
block of seven.

• The writer of Lifetime Ambition has a first
name with more letters than that of the ten-
nis star.

• Edward was two places behind Salim in one
of the lines, both being in odd-numbered po-
sitions.

• Performers who finished in the top three
places, in no particular order, are Tanya , the
person who performed the fox trot, and the
one who performed the waltz.

The rest of the paper is organized as follows:
in section 2, we describe the representation of a
puzzle problem in ASP and delineate how it helps
in reasoning; in section 3, we present our novel
method for learning to automatically translate a
logic problem described in natural language to its
ASP counterpart. In section 4, we describe the re-
lated works. In section 5, we discuss the detailed
experimental evaluation of our system. Finally,
section 6 concludes our paper.

2 Puzzle Representation

Answer Set Programming (ASP) (Baral, 2003;
Lifschitz, 1999; Gelfond and Lifschitz, 1991) has
been used to represent a puzzle and reason over
it. This choice is facilitated by the two important
reasons: 1) non-monotonic reasoning may occur
in a puzzle (Nagy and Allwein, 2004) and 2) ASP
constructs greatly simplify the reasoning module,
as we will see in this section. We now briefly de-
scribe a part of ASP. Our discussion is informal.
For a detailed account of the language, readers are
referred to (Baral, 2003).

2.1 Answer Set Programming
An answer set program is a collection of rules of
the form,

L0 | ... | Lk :- Lk+1, ..., Lm,not Lm+1, ...,not Ln

where each of the Li’s is a literal in the sense
of a classical logic. Intuitively, the above rule
means that if Lk+1, ..., Lm are to be true and if
Lm+1, ..., Ln can be safely assumed to be false
then at least one of L0, ..., Lk must be true. The
left-hand side of an ASP rule is called the head
and the right-hand side is called the body. A rule
with no head is often referred to as a constraint.
A rule with empty body is referred to as a fact and
written as,

L0 | L1 | ... | Lk.
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Example
fly(X) :- bird(X), not ab(X).

The above program represents the knowledge that
“Most birds fly”. If we add the following rule
(fact) to the program,

bird(penguin).
the answer set of the program will contain the
belief that penguins can fly, {bird(penguin),
f ly(penguin)}. However, adding one more fact,
‘ab(penguin).’, to convey that the penguin is an
abnormal bird, will change the belief that the pen-
guin can fly and correspondingly the answer set,
{bird(penguin), ab(penguin)}, will not contain
the fact, fly(penguin).

Choice Rule

m {p(X) : q(X)} n : −L1, ..., Lk, ...,not Ln.

Rules of this type allow inclusion in the program’s
answer sets of arbitrary collections S of atoms of
the form p(t) such that,m ≤| S |≤ n and if p(t) ∈
S then q(t) belongs to the corresponding answer
set.

2.2 Representing Puzzle Entities
A (m,n)-puzzle problem contains m categories
and n elements in each category. The term ‘puz-
zle entity’ is used to refer to any of them. Each
category is assigned an unique index, denoted by
the predicate cindex/1 (the number after the ‘/’
denotes the arity of the predicate). The predicate
etype/2 captures this association. Each element
is represented, by the element/2 predicate which
connects a category index to its element. The pred-
icate eindex/1, denotes the tuple indices. The fol-
lowing blocks of code shows the representation of
the entities for the puzzle in Problem.1.

cindex(1...3).
eindex(1...4).

etype(1,clients).
etype(2,prices).
etype(3,masseuses).

element(1,aimee;;1,ginger).
element(1,freda;;1,hannah).
element(2,150;;2,160).
element(2,170;;2,180).
element(3,lynda;;3,nancy).
element(3,teri;;3,whitney).

2.3 Representing Solution

Solution to a logic grid puzzle is a set of tu-
ples containing related elements. The tuple/3
predicate captures this tuple membership infor-
mation of the elements. For example, the fact,
tuple(2, 1, aimee), states that the element aimee
from the category with index 1 is in the tuple 2.
The rel/m predicate captures all the elements in a
tuple for a (m,n)-puzzle and is defined using the
tuple/3 predicate.

2.4 Domain Constraints

In the proposed approach, the logic grid puzzle
problem is solved as a constraint satisfaction prob-
lem. Given a puzzle problem the goal is to enu-
merate over all possible configurations of tuple/3,
and select the one which does not violate the con-
straints specified in the clues. However, 1) each
tuple in a logic grid puzzle will contain exactly
one element from each category and 2) an element
will belong to exactly one tuple. These constraints
come from the specification of a puzzle problem
and will hold irrespective of the problem instance.
Following blocks of code show an elegant repre-
sentation of these domain constraints in ASP along
with the enumeration.

%enumerate over the tuple
%assignments with constraint#1
1 {

tuple(G,Cat,Elem):
element(Cat,Elem)

} 1 :- cindex(Cat),
eindex(G).

%domain constraint#2
:-tuple(G1,Cat,Elem),

tuple(G2,Cat,Elem),
G1!=G2.

2.5 Representing clues

Each clue describes some entities and the relations
that hold between them. In its simplest form, the
relations will suggest if the entities are linked to-
gether or not. However, the underlying semantics
of such relations can be deep such as the one in
clue 5 of Problem.1. There are different ways to
express the same relation that holds between en-
tities. For example, in Problem.1, the possessive
relation has been used to express the linking be-
tween clients and masseuses; and the word paid
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expresses the linking between the clients and the
prices. Depending on the puzzles the phrases that
are used to express the relations will vary and it
is crucial to identify their underlying semantics to
solve the problems in systematic way.

In the current version, the reasoning module has
knowledge of a selected set of relations and the
translation module tries to represent the clue as a
conjunction of these relations. All these relations
and their underlying meanings are described in ta-
ble 1. In this subsection, we describe the represen-
tation of a clue in terms of these relations in ASP
and show how it is used by the reasoning module.
In the next section, we present our approach to au-
tomate this translation.

Let us consider the clues and their representa-
tion from Problem.1:

[1] Hannah paid more than Teri’s client.

clue1 :-
greaterThan(hannah,1,X,1,2),
sameTuple(X,1,teri,3).

:- not clue1.

The first rule clue1 evaluates to true (will be in the
answer set) if the element from category 1 with
value hannah is linked to some element from cat-
egory 2 which has a higher value than the element
from its own category which is linked to an ele-
ment from category 1 which is linked to teri from
category 3. Since the desired solution must sat-
isfy the relations described in the clue, the second
ASP rule is added. A rule of this form that does
not have a head is known as a constraint and the
program must satisfy it to have an answer set. As
the reasoning module enumerates over all possi-
ble configurations, in some cases the clue1 will
not hold and subsequently those branches will be
pruned. Similar constraints will be added for all
clues. In the below, we show some more exam-
ples. A configuration which satisfies all the clue
constraints and the domain constraints described
in the previous section, will be accepted as the so-
lution to the puzzle.

[2] Nancy’s client, Hannah and Ginger were all
different clients.

clue4 :-
diffTuple(hannah,1,ginger,1),
diffTuple(hannah,1,X,1),
diffTuple(X,1,ginger,1),
sameTuple(X,1,nancy,3).

:- not clue4.

[3] Hannah was either the person who paid $180
or Lynda’s client.

clue5 :-
eitherOr(hannah,1,X,1,Y,1),
sameTuple(X,1,180,2).
sameTuple(Y,1,lynda,3).

:- clue5.

3 Learning Translation

To automate the translation of a clue to the pair
of ASP rules, the translation module needs to
identify the entities that are present in the clue,
their category and their value; and the underly-
ing interpretations of all the relations that hold
between them. Once all the relation instances
{R1(arg1, ..., argp1),..., Rq(arg1, ..., argpq)} , in
the clue are identified, the ASP representation of
the clue is generated in the following way:

clue : −R1(arg1..., argp1), ..., Rq(arg1..., argpq)

The entity classification problem for logic grid
puzzles poses several challenges. First, the exis-
tence of a wide variety in the set of entities. Enti-
ties can be names of objects, time related to some
event, numbers, dates, currency, some form of ID
etc. And it is not necessary that the entities in puz-
zles are nouns. It can be verbs, adjectives etc. Sec-
ond and of paramount important, the “category”
of a puzzle “element” is specific to a puzzle prob-
lem. Same element may have different category
in different problems. Also, a constituent in a
clue which refers to an entity in a particular prob-
lem may not refer to an entity in another problem.
We formalize this problem in this section and pro-
pose one approach to solve the problem. Next,
we discuss the method that is used to extract re-
lations from clues. To the best of our knowledge,
this type of entity classification problem has never
been studied before.
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Relation Interpretation
sameTuple(E1, C1, E2, C2) States that two elements, (C1,E1) and (C2,E2) are in

the same tuple. The dictionary also contains the nega-
tion of it, diffTuple(E1, C1, E2, C2).

referrent(E1, C1, E2, C2) States that the elements are identical.
posDiff (E1, C1, E2, C2, N1, NC1) If (C1,E1) is related to (NC1,X1) and (E2,C2) is re-

lated to (NC1,X2), then difference(X1,X2)=N1. Sim-
ilarly the dictionary contains the predicate negDiff.

greaterThan(E1, C1, E2, C2, NC1) Similar to posDiff however the difference(X1,X2) >
0. The dictionary also contains its opposite predicate
lessThan.

members(E1, C1, E2, C2,..., EN, CN) All the elements are distinct and do not share a tuple.
eitherOr(E1, C1, E2, C2,..., EN, CN) The first element is related to one of the last N − 1

elements. The last N − 1 elements are assumed to be
different unless contradicts with other beliefs.

referrent22(E1, C1, E2, C2, E3, C3, E4, C4) The first two elements are different and referring to
the last two elements.

Table 1: Describes the various relations that are part of the reasoning module.

3.1 Entity Classification

The entity classification problem is defined as fol-
lows:

Problem description Given m categories C1,
..., Cm and a text T , each category Ci, 1 ≤ i ≤ m,
contains a collection of elements Ei and an op-
tional textual description di. The goal is to find the
class information of all the constituents in the text
T . Each category contributes two classes, where
one of them represents the category itself and the
other represents an instance of that category. Also,
a constituent may not refer to any category or any
instance of it, in that case the class of that con-
stituent is null. So, there are a total 2m+1 classes
and a constituent will take one value from them.

Example In the puzzle of Problem.1, there are
3 categories with, C1 = {Aimee, Freda, Ginger,
Hannah}, C2 = {$150, $160, $170, $180}, C3

= {Lynda, Nancy, Terry, Whiteney} and d1 =
“clients”, d2 = “prices”, d3 = “masseuses”. The
text T , is the concatenation of all clues. In the
last clue, there are a total 5 entities, namely “Han-
nah”, “person”, “$180”, “Lydia”,“client” and the
corresponding classes are “Instance of C1”, “In-
stance of C1”, “Instance of C2”, “Instance of C3”
and “Instance of C1” respectively. The remaining
constituents in that clue have the class value null.
The constituent “clients” in the fourth clue refers
to the category C1.

Our approach We model the Entity Classifi-
cation problem as a decoding query on Pairwise
Markov Network (Koller and Friedman, 2009;
Kindermann et al., 1980; Zhang et al., 2001). A
pairwise Markov network over a graphH, is asso-
ciated with a set of node potentials {φ(Xi) : i =
1, ..., n} and a set of edge potentials {φ(Xi, Xj) :
(Xi, Xj) ∈ H}. Each node Xi ∈ H, represents
a random variable. Here, each Xi can take value
from the set {1...2m + 1}, denoting the class of
the corresponding constituent in the text T .

In our implementation, the node potential cap-
tures the chances of that node to be classified as
one of the possible categories without being af-
fected by the given text T . And the edge poten-
tials captures hints from the context in T for clas-
sification. After constructing the pairwise Markov
network, a decoding query is issued to obtain the
configuration that maximizes the joint probabil-
ity distribution of the pairwise Markov network in
consideration. The proposed approach is inspired
by the following two observations: 1) to find the
class of a constituent one needs some background
knowledge; 2) however, background knowledge is
not sufficient on its own, one also needs to under-
stand the text to properly identify the class of each
constituent. For example, let us consider the word
“person” in clue 5 of Problem.1. Just skimming
through the categories, one can discover that the
word “person” is very unlikely to be a instance of
the category “prices”, which is from her knowl-
edge about those constituents. However a proper
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disambiguation may face an issue here as there are
two different categories of human beings. To prop-
erly classify the word “person” it is necessary to
go through the text.

The following paragraphs describe the con-
struction of the grah H, and the algorithm that is
used in the computation of associated set of node
potentials and edge potentials.

Construction of the graph While constructing
the graph, we assign a label, L, to each edge in H
which will be used in the edge potential compu-
tation. Let DG denotes the dependency graph of
the text T obtained from the Stanford dependency
parser (Chen and Manning, 2014) and dep(v1, v2)
denotes the grammatical relation between (v1, v2)
∈ DG . Then the graph, H, is constructed as fol-
lows:

1. Create a node inH for each constituent wj in
T if wj ∈ DG .

2. Add an edge (Xi, Xj) toH if the correspond-
ing edge (wp, wq) ∈ DG . L(Xi, Xj) :=
dep(wp, wq).

3. Add an edge between a pair of nodes
(Xi, Xj) if the corresponding words are syn-
onyms. L(Xi, Xj) := synonymy.

4. Create a node for each element and category
specified in the puzzle and add an edge from
them to others if the corresponding string de-
scriptions are ‘same’. In this case, the edges
are labeled as exact match.

5. If (Xi, Xj) ∈ H and L(Xi, Xj) =
exact match and both of them are refer-
ring to a verb, then add more edges (X ′i, X

′
j)

to H with label spatial symmetry, where
L(Xi, X

′
i) = L(Xj , X

′
j).

Determining Node potentials For each element
in them category, a set of naive regular-expression
based taggers are used to detect it’s type (For ex-
ample, “am-pm time”). Each element type maps
to a WordNet (Miller, 1995) representative (For
example, “time unit#n”). For each constituent w
a similarity score, sim(w,c), is calculated to each
class c ∈ {1...2m+ 1}, in the following way:

•Class c is denoting instance of some category Ci
Similarity scores are computed between the tex-
tual description of the constituent to both the
WordNet representative of Ei and the textual

description di using the HSO WordNet similar-
ity algorithm (Hirst and St-Onge, 1998). The
similarity score, sim(w,c), is chosen to be the
maximum of them.

•Class c is denoting a category Ci : sim(w,c)
is assigned the value of HSO Similarity between
the textual description and di.

•Class c is null : In this case similarity is calcu-
lated using the following formula:

sim(w, null) = MAXHSO − max
c 6=null

sim(w, c)

where MAXHSO denotes the maximum similar-
ity score returned by HSO algorithm, which is 16.

Node potential for each node Xi ∈ H, corre-
sponding to the constituent wj , are then calculated
by,

φ(Xi = c) = 1 + sim(wj , c),∀c

Determining Edge potentials For each edge in
the graph H , the edge potential, φ(Xi, Xj) is cal-
culated using the following formula,

φ(Xi = c1, Xj = c2) =

1 +

{
P (Xi = Xj |L(Xi, Xj)), if c1 = c2

P (Xi 6= Xj |L(Xi, Xj)), otherwise

In the training phase, each entity in a clue is
tagged with its respective class. The probability
values are then calculated from the training dataset
using simple count.

3.2 Learning To Extract Relations
The goal here is to identify all the relations
R(arg1, ..., argp) that are present in a clue, where
each relation belongs to the logical vocabulary
described in Table 1 . This problem is known
as Complex relation extraction (McDonald et al.,
2005; Bach and Badaskar, 2007; Fundel et al.,
2007; Zhou et al., 2014). The common approach
for solving the Complex relation extraction prob-
lem is to first find the relation between each pair
of entities and then discover the complex relations
from binary ones using the definition of each rela-
tion.

Figure 1 depicts the scenario. The goal is to
identify the relation possDiff(E1, E2, E3),
where E1, E2, E3 are constituents having a non-
null class value. However instead of identifying
posDiff(E1, E2, E3) directly, first the relation
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Figure 1: Binary representation of the relation
possDiff

between each pair of entities will be identified.
If the relations {posDiffarg1−arg2(E1, E2),
posDiffarg2−arg3(E2, E3), posDiffarg1−arg3
(E1,E3) } are identified, the extraction module
will infer that posDiff(E1, E2, E3) holds. In a
similar manner, a set of total 39 binary relations
are created for all the relations described in Table
1.

In the training phase, all the relations and
their respective arguments in each clue are given.
Using this supervision, we have built a Maxi-
mum Entropy based model (Berger et al., 1996;
Della Pietra et al., 1997) to classify the relation
between a pair of entities present in a clue. Max-
imum entropy classifier has been successfully ap-
plied in many natural language processing appli-
cations (Charniak, 2000; Chieu and Ng, 2002;
Ratnaparkhi and others, 1996) and allows the in-
clusion of various sources of information without
necessarily assuming any independence between
the features. In this model, the conditional proba-
bility distribution is given by:

P (c|d) =

∏
j=1...K e

λifi(d,c)∑
c′∈C

∏
j=1...K e

λifi(d,c′)
(1)

where the denominator is the normalization
term and the parameter λi correspond to the
weight for the feature fi. Features in Maximum
Entropy model are functions from context and
classes to the set of real numbers. A detailed
description of the model or parameter estimation
method used - Generalized Iterative Scaling, can
be found at (Darroch and Ratcliff, 1972).

Table 2 describes the features that are used in
the classification task. Here, path(E1, E2) de-
notes all the words that occur in the path(s) con-

necting E1 and E2 in the dependency graph of the
clue.

Feature Set
Class of E1 and E2

All the grammatical relations between the
words in path(E1, E2)
All the adjectives and adverbs in path(E1, E2).
POS tags of all the words in path(E1, E2)
TypeMatched = [[class of E1 = class of E2 ]]
IsE1Numeric = [[class of E1 is Numeric ]]
IsE2Numeric = [[class of E2 is Numeric ]]
All the words that appears in the following
grammatical relations advmod, amod, cop,
det with the words in path(E1, E2).
hasNegativeWord = [[ ∃w ∈ path(E1, E2) s.t.
w has a neg relation starting with it.]]

Table 2: Features used in the classification task

The relation between each pair of entities in a
clue is the one which maximizes the conditional
probability in equation (1).

3.2.1 Missing Entity
In the case of comparative relations in Table 1,
such as greaterThan, the basis of the compar-
ison can be hidden. For example, in clue 1 of
the example problem, the two entities, “Hannah”
and “client” have been compared on the basis of
“price”, however there is no constituent in the clue
which refers to an element from that category. The
basis of comparison is hidden in this case and is
implied by the word “paid”. In the current imple-
mentation, the translation module does not handle
this case. For puzzles that contain only one cate-
gory consisting of numeric elements, the transla-
tion module goes with the obvious choice. This is
part of our future work.

4 Related Work

There has been a significant amount of work on the
representation of puzzle problems in a formal lan-
guage (Gelfond and Kahl, 2014; Baral, 2003; Ce-
lik et al., 2009). However, there has not been any
work that can automatically solve a logic grid puz-
zle. The latest work (Baral and Dzifcak, 2012) on
this problem, assumes that the entities in a clue are
given and the authors manually simplify the sen-
tences for translation. Furthermore their represen-
tation of logic grid puzzles does not consider the
category of a variable in the formal representation
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i.e. uses element/1 and tuple/2 predicates and
thus cannot solve puzzles containing more than
one numeric categories.

In the same work (Baral and Dzifcak, 2012), the
authors propose to use a semantic parser to do the
translation. This method works well for simple
sentences such as “Donna dale does not have green
fleece” however it faces several challenges while
dealing with real world puzzle sentences. The
difficulty arises due to the restrictions enforced
in the translation models used by the existing se-
mantic parsers. Traditional semantic parsers (Vo
et al., 2015; Zettlemoyer and Collins, 2005) as-
sign meanings to each word in a dictionary and
combine the meaning of the words to character-
ize the complete sentence. A phrase structure
grammar formalism such as Combinatory Cate-
gorial Grammar (Steedman and Baldridge, 2011;
Vo et al., 2015; Zettlemoyer and Collins, 2005),
Context Free Grammar (Aho and Ullman, 1972;
Wong and Mooney, 2006), is normally used to ob-
tain the way words combine with each other. In
the training phase, the semantic parser learns the
meanings of words given a corpus of <sentence,
meaning> pairs and stores them in a dictionary.
During translation, the semantic parser uses those
learned meanings to obtain the meaning of the sen-
tence. Firstly, for the puzzle problems the mean-
ing of the words changes drastically depending on
the puzzle. A word may be an entity in one puz-
zle, but, in a different problem it might not be an
entity or might belong to a different category alto-
gether. Thus a learned dictionary may not be use-
ful while translating clues in a new puzzle. Sec-
ondly, in puzzles relations are normally expressed
by phrases. For example, in the clue “The per-
son who played at Eden Gardens played for In-
dia”, the phrases “played at” and “played for” are
used to express two different relations. Thus, us-
ing a model that assigns meaning to each word
may not be suitable here. Finally, it is difficult to
identify the participants of a relation with a parse
tree generated following a phrase structure gram-
mar. For example, consider the parse tree of the
clue “The person who trekked for 8 miles started
at Bull Creek”. Even though, the relation “started
at” takes the word ‘person’ and ‘Bull Creek’ as its
input, it receives the entire phrase “the person who
trekked for 8 miles” as its argument along with the
other input ‘Bull Creek’.

The entity classification problem studied in this

Figure 2: Parse tree of an example sentence in
Combinatory categorial grammar

research shares many similarity with Named En-
tity Recognition (Nadeau and Sekine, 2007; Zhou
and Su, 2002) and the Word Sense disambiguation
(Stevenson and Wilks, 2003; Sanderson, 1994)
task. However, our work has a major difference;
in the entity classification problem, the class of an
entity varies with the problem and does not belong
to a known closed set, whereas for the other two
problems the possible classes are pre-specified.

5 Experimental Evaluation

Dataset To evaluate our method we have built
a dataset of logic grid puzzles along with their
correct solutions. A total of 150 problems are
collected from logic-puzzles.org. Out of
them 100 problems are fully annotated with the
entities and the relations information. The remain-
ing 50 puzzles do not have any annotation except
their solution. The set of annotated puzzles con-
tain a total of 467 clues, 5687 words, 1681 entities
and 862 relations. The set of 50 puzzles contain a
total of 222 clues with 2604 words.

Tasks We evaluate LOGICIA on three tasks: 1)
puzzle solving; 2) entity classification; and 3) re-
lation extraction. We use the percentage of correct
answers as the evaluation metric for all the three
tasks. In case of a logic grid puzzle solving, an
answer is considered correct if it exactly matches
the solution of that puzzle.

Training-Testing Out of the 100 annotated puz-
zle problems 50 are used as training samples and
remaining 50 puzzles are used in testing. The set
of 50 unannotated puzzles are used solely for the
task of testing puzzle solving.
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Entity classification
Binary relation classification Relation extraction

Solutionwith annotation with annotation
Yes No Yes No

Total 1766 960 450 50
Correct 1502 922 854 410 365 37
Percentage 85.05% 96.04% 88.95% 90.90% 81.11% 74%

Table 3: Accuracy on 50 annotated puzzle problems in the Test set.

Results Table 3 & 4 shows the efficacy of our
approach in solving logic grid puzzles with the se-
lected set of relations. LOGICIA is able to classify
the constituents with 85.05% accuracy and is able
to solve 71 problems out of the 100 test puzzles.
It should be noted that puzzle problems requires
precise understanding of the text and to obtain the
correct solution of a puzzle problem all the entities
and their relations in the puzzle need to be identi-
fied. Columns 2 and 3 in Table 3 compares the per-
formance on relation extraction when it is used in
conjunction with the entity classification and when
it directly uses the annotated entity.

Puzzle Solving
Total Correct Percentage
50 34 68%

Table 4: Accuracy on unannotated 50 test puzzle
problems.

Error Analysis The errors in entity classifica-
tion falls into two major categories. In the first
category, more knowledge of similarity is needed
than what is currently obtained from the WordNet.
Consider for example, the categories are “class
number” and “class size” and the constituent is
“20 students”. Even though the constituent is
closer to “class size”, standard WordNet based
similarity methods are unable to provide such in-
formation. In the second category, the WordNet
similarity of the constituent to one of the classes
is quite high due to their position in the WordNet
hierarchy; however with respect to the particular
problem the constituent is not an entity. The re-
lation extraction task performs fairly well, how-
ever the binary relation classification task does not
jointly consider the relation between all the enti-
ties and because of that if one of the necessary bi-
nary relation of a complex relation is misclassified,
the extraction of the entire relation gets affected.

6 Conclusion & Future Work

This paper presents a novel approach for solving
logic grid puzzle. To the best of our knowledge,
this is a novel work with respect to the fact that
that it can automatically solve a given logic grid
puzzle.

There are several advantages of our approach.
The inclusion of knowledge in terms of a vocab-
ulary of relations makes it scalable. For puzzles
which make use of a different set of constraints,
such as “Lynda sat on an even numbered position”,
can be easily integrated into the vocabulary and
the system can then be trained to identify those
relations for new puzzles. Also, the proposed ap-
proach separates the representation from reason-
ing. The translation module only identifies the re-
lation and their arguments; it is not aware of the
meaning of those relations. The reasoning mod-
ule, on the other hand, knows the definition of each
relation and subsequently prunes those possibili-
ties when relations appearing in a clue does not
hold. This separation of representation from rea-
soning allows the system to deal with the complex
relations that appear in a clue.

There are a few practical and theoretical issues
which need to be addressed. One of those is up-
dating the logical vocabulary in a scalable manner.
Logic grid puzzle is a wide family of puzzles and
it will require more knowledge of relations than
what is currently available. Another challenge that
needs to be addressed is the computation of simi-
larity between complex concepts such as “size of
class” and “20 students”. Also, the case of “miss-
ing entity” (3.2) needs to be modeled properly.
This work is the first step towards further under-
standing these important issues.
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