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Abstract

Recently, neural network based sentence
modeling methods have achieved great
progress. Among these methods, the re-
cursive neural networks (RecNNs) can ef-
fectively model the combination of the
words in sentence. However, RecNNs
need a given external topological struc-
ture, like syntactic tree. In this paper,
we propose a gated recursive neural net-
work (GRNN) to model sentences, which
employs a full binary tree (FBT) struc-
ture to control the combinations in re-
cursive structure. By introducing two
kinds of gates, our model can better model
the complicated combinations of features.
Experiments on three text classification
datasets show the effectiveness of our
model.

1 Introduction

Recently, neural network based sentence modeling
approaches have been increasingly focused on for
their ability to minimize the efforts in feature en-
gineering, such as Neural Bag-of-Words (NBoW),
Recurrent Neural Network (RNN) (Mikolov et al.,
2010), Recursive Neural Network (RecNN) (Pol-
lack, 1990; Socher et al., 2013b; Socher et al.,
2012) and Convolutional Neural Network (CNN)
(Kalchbrenner et al., 2014; Hu et al., 2014).

Among these methods, recursive neural net-
works (RecNNs) have shown their excellent abil-
ities to model the word combinations in sentence.
However, RecNNs require a pre-defined topolog-
ical structure, like parse tree, to encode sentence,
which limits the scope of its application. Cho et al.
(2014) proposed the gated recursive convolutional
neural network (grConv) by utilizing the directed
acyclic graph (DAG) structure instead of parse tree
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Figure 1: Example of Gated Recursive Neural
Networks (GRNNs). Left is a GRNN using a di-
rected acyclic graph (DAG) structure. Right is a
GRNN using a full binary tree (FBT) structure.
(The green nodes, gray nodes and white nodes
illustrate the positive, negative and neutral senti-
ments respectively.)

to model sentences. However, DAG structure is
relatively complicated. The number of the hidden
neurons quadraticly increases with the length of
sentences so that grConv cannot effectively deal
with long sentences.

Inspired by grConv, we propose a gated recur-
sive neural network (GRNN) for sentence model-
ing. Different with grConv, we use the full binary
tree (FBT) as the topological structure to recur-
sively model the word combinations, as shown in
Figure 1. The number of the hidden neurons lin-
early increases with the length of sentences. An-
other difference is that we introduce two kinds of
gates, reset and update gates (Chung et al., 2014),
to control the combinations in recursive structure.
With these two gating mechanisms, our model can
better model the complicated combinations of fea-
tures and capture the long dependency interac-
tions.

In our previous works, we have investigated
several different topological structures (tree and
directed acyclic graph) to recursively model the
semantic composition from the bottom layer to the
top layer, and applied them on Chinese word seg-
mentation (Chen et al., 2015a) and dependency
parsing (Chen et al., 2015b) tasks. However, these
structures are not suitable for modeling sentences.
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Figure 2: Architecture of Gated Recursive Neural
Network (GRNN).

In this paper, we adopt the full binary tree as the
topological structure to reduce the model com-
plexity.

Experiments on the Stanford Sentiment Tree-
bank dataset (Socher et al., 2013b) and the TREC
questions dataset (Li and Roth, 2002) show the ef-
fectiveness of our approach.

2 Gated Recursive Neural Network

2.1 Architecture

The recursive neural network (RecNN) need a
topological structure to model a sentence, such as
a syntactic tree. In this paper, we use a full binary
tree (FBT), as showing in Figure 2, to model the
combinations of features for a given sentence.

In fact, the FBT structure can model the com-
binations of features by continuously mixing the
information from the bottom layer to the top layer.
Each neuron can be regarded as a complicated
feature composition of its governed sub-sentence.
When the children nodes combine into their parent
node, the combination information of two children
nodes is also merged and preserved by their par-
ent node. As shown in Figure 2, we put all-zero
padding vectors after the last word of the sentence
until the length of 2⌈logn

2 ⌉, where n is the length of
the given sentence.

Inspired by the success of the gate mechanism
of Chung et al. (2014), we further propose a gated
recursive neural network (GRNN) by introducing
two kinds of gates, namely “reset gate” and “up-
date gate”. Specifically, there are two reset gates,
rL and rR, partially reading the information from

Gate z

Gate rL Gate rR

h2j
(l-1) h2j+1

(l-1)

hj
^(l)

hj
(l)

Figure 3: Our proposed gated recursive unit.

left child and right child respectively. And the up-
date gates zN , zL and zR decide what to preserve
when combining the children’s information. Intu-
itively, these gates seem to decide how to update
and exploit the combination information.

In the case of text classification, for each given
sentence xi = w

(i)
1:N(i) and the corresponding class

yi, we first represent each word w
(i)
j into its corre-

sponding embedding w
w

(i)
j

∈ Rd, where N(i) in-

dicates the length of i-th sentence and d is dimen-
sionality of word embeddings. Then, the embed-
dings are sent to the first layer of GRNN as inputs,
whose outputs are recursively applied to upper lay-
ers until it outputs a single fixed-length vector.
Next, we receive the class distribution P(·|xi; θ)
for the given sentence xi by a softmax transforma-
tion of ui, where ui is the top node of the network
(a fixed length vectorial representation):

P(·|xi; θ) = softmax(Ws × ui + bs), (1)

where bs ∈ R|T |, Ws ∈ R|T |×d. d is the dimen-
sionality of the top node ui, which is same with
the word embedding size and T represents the set
of possible classes. θ represents the parameter set.

2.2 Gated Recursive Unit

GRNN consists of the minimal structures, gated
recursive units, as showing in Figure 3.

By assuming that the length of sentence is n, we
will have recursion layer l ∈ [1, ⌈logn

2 ⌉+1], where
symbol ⌈q⌉ indicates the minimal integer q∗ ≥ q.
At each recursion layer l, the activation of the j-
th (j ∈ [0, 2⌈logn

2 ⌉−l)) hidden node h(l)
j ∈ Rd is

computed as

h(l)
j =

{
zN ⊙ ĥ

l

j + zL ⊙ hl−1
2j + zR ⊙ hl−1

2j+1, l > 1,

corresponding word embedding, l = 1,

(2)
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where zN , zL and zR ∈ Rd are update gates
for new activation ĥl

j , left child node hl−1
2j and

right child node hl−1
2j+1 respectively, and ⊙ indi-

cates element-wise multiplication.
The update gates can be formalized as:

z =

 zN

zL

zR

 =

 1/Z
1/Z
1/Z

⊙ exp(U

 ĥ
l

j

hl−1
2j

hl−1
2j+1

), (3)

where U ∈ R3d×3d is the coefficient of update
gates, and Z ∈ Rd is the vector of the normaliza-
tion coefficients,

Zk =
3∑

i=1

[exp(U

 ĥl
j

hl−1
2j

hl−1
2j+1

)]d×(i−1)+k, (4)

where 1 ≤ k ≤ d.
The new activation ĥl

j is computed as:

ĥl
j = tanh(Wĥ

[
rL ⊙ hl−1

2j

rR ⊙ hl−1
2j+1

]
), (5)

where Wĥ ∈ Rd×2d, rL ∈ Rd, rR ∈ Rd. rL and
rR are the reset gates for left child node hl−1

2j and
right child node hl−1

2j+1 respectively, which can be
formalized as:[

rL

rR

]
= σ(G

[
hl−1

2j

hl−1
2j+1

]
), (6)

where G ∈ R2d×2d is the coefficient of two reset
gates and σ indicates the sigmoid function.

Intuiativly, the reset gates control how to select
the output information of the left and right chil-
dren, which result to the current new activation ĥ.
By the update gates, the activation of a parent neu-
ron can be regarded as a choice among the the cur-
rent new activation ĥ, the left child, and the right
child. This choice allows the overall structure to
change adaptively with respect to the inputs.

This gate mechanism is effective to model the
combinations of features.

2.3 Training
We use the Maximum Likelihood (ML) criterion
to train our model. Given training set (xi, yi) and
the parameter set of our model θ, the goal is to
minimize the loss function:

J(θ) = − 1
m

m∑
i=1

log P(yi|xi; θ) +
λ

2m
∥θ∥2

2, (7)

Initial learning rate α = 0.3
Regularization λ = 10−4

Dropout rate on input layer p = 20%

Table 1: Hyper-parameter settings.

where m is number of training sentences.
Following (Socher et al., 2013a), we use the di-

agonal variant of AdaGrad (Duchi et al., 2011)
with minibatchs to minimize the objective.

For parameter initialization, we use random ini-
tialization within (-0.01, 0.01) for all parameters
except the word embeddings. We adopt the pre-
trained English word embeddings from (Collobert
et al., 2011) and fine-tune them during training.

3 Experiments

3.1 Datasets

To evaluate our approach, we test our model on
three datasets:

• SST-1 The movie reviews with five classes
in the Stanford Sentiment Treebank1 (Socher
et al., 2013b): negative, somewhat negative,
neutral, somewhat positive, positive.

• SST-2 The movie reviews with binary classes
in the Stanford Sentiment Treebank1 (Socher
et al., 2013b): negative, positive.

• QC The TREC questions dataset2 (Li and
Roth, 2002) involves six different question
types.

3.2 Hyper-parameters

Table 1 lists the hyper-parameters of our model. In
this paper, we also exploit dropout strategy (Sri-
vastava et al., 2014) to avoid overfitting. In ad-
dition, we set the batch size to 20. We set word
embedding size d = 50 on the TREC dataset
and d = 100 on the Stanford Sentiment Treebank
dataset.

3.3 Experiment Results

Table 2 shows the performance of our GRNN on
three datasets.

1http://nlp.stanford.edu/sentiment
2http://cogcomp.cs.illinois.edu/Data/

QA/QC/
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Methods SST-1 SST-2 QC
NBoW (Kalchbrenner et al., 2014) 42.4 80.5 88.2
PV (Le and Mikolov, 2014) 44.6∗ 82.7∗ 91.8∗

CNN-non-static (Kim, 2014) 48.0 87.2 93.6
CNN-multichannel (Kim, 2014) 47.4 88.1 92.2
MaxTDNN (Collobert and Weston, 2008) 37.4 77.1 84.4
DCNN (Kalchbrenner et al., 2014) 48.5 86.8 93.0
RecNTN (Socher et al., 2013b) 45.7 85.4 -
RAE (Socher et al., 2011) 43.2 82.4 -
MV-RecNN (Socher et al., 2012) 44.4 82.9 -
AdaSent (Zhao et al., 2015) - - 92.4
GRNN (our approach) 47.5 85.5 93.8

Table 2: Performances of the different models. The result of PV is from our own implementation based
on Gensim.

Competitor Models Neural Bag-of-Words
(NBOW) model is a simple and intuitive method
which ignores the word order. Paragraph Vector
(PV) (Le and Mikolov, 2014) learns continuous
distributed vector representations for pieces of
texts, which can be regarded as a long term
memory of sentences as opposed to short memory
in recurrent neural network. Here, we use the
popular open source implementation of PV in
Gensim1. Methods in the third block are CNN
based models. Kim (2014) reports 4 different
CNN models using max-over-time pooling, where
CNN-non-static and CNN-multichannel are more
sophisticated. MaxTDNN sentence model is
based on the architecture of the Time-Delay
Neural Network (TDNN) (Waibel et al., 1989;
Collobert and Weston, 2008). Dynamic convo-
lutional neural network (DCNN) (Kalchbrenner
et al., 2014) uses the dynamic k-max pooling
operator as a non-linear sub-sampling function, in
which the choice of k depends on the length of
given sentence. Methods in the fourth block are
RecNN based models. Recursive Neural Tensor
Network (RecNTN) (Socher et al., 2013b) is an
extension of plain RecNN, which also depends
on a external syntactic structure. Recursive
Autoencoder (RAE) (Socher et al., 2011) learns
the representations of sentences by minimizing
the reconstruction error. Matrix-Vector Recursive
Neural Network (MV-RecNN) (Socher et al.,
2012) is a extension of RecNN by assigning a
vector and a matrix to every node in the parse
tree. AdaSent (Zhao et al., 2015) adopts recursive
neural network using DAG structure.

1https://github.com/piskvorky/gensim/

Moreover, the plain GRNN which does not in-
corporate the gate mechanism cannot outperform
the GRNN model. Theoretically, the plain GRNN
can be regarded as a special case of GRNN, whose
parameters are constrained or truncated. As a re-
sult, GRNN is a more powerful model which out-
performs the plain GRNN. Thus, we mainly focus
on the GRNN model in this paper.

Result Discussion Generally, our model is bet-
ter than the previous recursive neural network
based models (RecNTN, RAE, MV-RecNN and
AdaSent), which indicates our model can better
model the combinations of features with the FBT
and our gating mechanism, even without an exter-
nal syntactic tree.

Although we just use the top layer outputs as
the feature for classification, our model still out-
performs AdaSent.

Compared with the CNN based methods
(MaxTDNN, DCNN and CNNs), our model
achieves the comparable performances with much
fewer parameters. Although CNN based methods
outperform our model on SST-1 and SST-2, the
number of parameters2 of GRNN ranges from 40K
to 160K while the number of parameters is about
400K in CNN.

4 Related Work

Cho et al. (2014) proposed grConv to model sen-
tences for machine translation. Unlike our model,
grConv uses the DAG structure as the topological
structure to model sentences. The number of the

2We only take parameters of network into account, leav-
ing out word embeddings.
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internal nodes is n2/2, where n is the length of the
sentence. Zhao et al. (2015) uses the same struc-
ture to model sentences (called AdaSent), and uti-
lizes the information of internal nodes to model
sentences for text classification. Unlike grConv
and AdaSent, our model uses full binary tree as
the topological structure. The number of the in-
ternal nodes is 2n in our model. Therefore, our
model is more efficient for long sentences. In ad-
dition, we just use the top layer neurons for text
classification.

Moreover, grConv and AdaSent only exploit
one gating mechanism (update gate), which cannot
sufficiently model the complicated feature com-
binations. Unlike them, our model incorporates
two kind of gates and can better model the feature
combinations.

Hu et al. (2014) also proposed a similar archi-
tecture for matching problems, but they employed
the convolutional neural network which might be
coarse in modeling the feature combinations.

5 Conclusion

In this paper, we propose a gated recursive neu-
ral network (GRNN) to recursively summarize the
meaning of sentence. GRNN uses full binary tree
as the recursive topological structure instead of an
external syntactic tree. In addition, we introduce
two kinds of gates to model the complicated com-
binations of features. In future work, we would
like to investigate the other gating mechanisms for
better modeling the feature combinations.
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