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Abstract

In this work, we build an entity/event-level
sentiment analysis system, which is able to
recognize and infer both explicit and im-
plicit sentiments toward entities and events
in the text. We design Probabilistic Soft
Logic models that integrate explicit senti-
ments, inference rules, and +/-effect event
information (events that positively or neg-
atively affect entities). The experiments
show that the method is able to greatly im-
prove over baseline accuracies in recog-
nizing entity/event-level sentiments.

1 Introduction

There are increasing numbers of opinions ex-
pressed in various genres, including reviews,
newswire, editorials, and forums. While much
early work was at the document or sentence
level, to fully understand and utilize opinions, re-
searchers are increasingly carrying out more fine-
grained sentiment analysis to extract components
of opinion frames: the source (whose sentiment
is it), the polarity, and the target (what is the senti-
ment toward). Much fine-grained analysis is span
or aspect based (Yang and Cardie, 2014; Pontiki
et al., 2014). In contrast, this work contributes
to entity/event-level sentiment analysis. A sys-
tem that could recognize sentiments toward enti-
ties and events would be valuable in an application
such as Automatic Question Answering, to sup-
port answering questions such as “Who is nega-
tive/positive toward X?” (Stoyanov et al., 2005),
where X could be any entity or event.

Let us consider an example from the MPQA
opinion annotated corpus (Wiebe et al., 2005a;
Wilson, 2007; Deng and Wiebe, 2015).

Ex(1) When the Imam
( may God be satisfied with him 1)

issued the fatwa against 2 Salman Rushdie for

insulting 3 the Prophet ( peace be upon him 4),

the countries that are so-called 5 supporters of
human rights protested against 6 the fatwa.

There are several sentiment expressions anno-
tated in MPQA. In the first clause, the writer is
positive toward Imam and Prophet as expressed
by may God be satisfied with him (1) and peace
be upon him (4), respectively. Imam is negative
toward Salman Rushdie and the insulting event,
as revealed by the expression issued the fatwa
against (2). And Salman Rushdie is negative to-
ward Prophet, as revealed by the expression insult-
ing (3). In the second clause, the writer is negative
toward the countries, as expressed by so-called
(5). And the countries are negative toward fatwa,
as revealed by the expression protested against
(6). Using the source and the target, we summa-
rize the positive opinions above in a set P , and the
negative opinions above in another setN . Thus, P
contains {(writer, Imam), (writer, Prophet)}, and
N contains {(Imam, Rushdie), (Imam, insulting),
(Rushdie, Prophet), (writer, countries), (countries,
fatwa)}.1

An (ideal) explicit sentiment analysis system is
expected to extract the above sentiments expressed
by (1)-(6). However, there are many more sen-
timents communicated by the writer but not ex-
pressed via explicit expressions. First, Imam is
positive toward the Prophet, because Rushdie in-
sults the Prophet and Imam is angry that he does

1Sources in MPQA are nested, having the form 〈writer〉
or 〈writer, S1, . . . , Sn〉. This work only deals with the right-
most source, writer or Sn. Also, actions like issuing a fatwa
are treated the same as private states. Please see (Wiebe et
al., 2005a).
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Figure 1: Explicit and implicit sentiments in
Ex(1).

so. Second, the writer is negative toward Rushdie,
because the writer is positive toward the Prophet
but Rushdie insults him! Also, the writer is prob-
ably positive toward the fatwa since it is against
Rushdie. Third, the countries are probably nega-
tive toward Imam, because the countries are neg-
ative toward fatwa and it is Imam who issued
the fatwa. Thus, the set P should also contain
{(Imam, Prophet), (writer, fatwa)}, and the set
N should also contain {(writer, Rushdie), (coun-
tries, Imam)}. These opinions are not directly ex-
pressed, but are inferred by a human reader.2 The
explicit and implicit sentiments are summarized in
Figure 1, where each green line represents a posi-
tive sentiment and each red line represents a neg-
ative sentiment. The solid lines are explicit senti-
ments and the dashed lines are implicit sentiments.

In this work, we detect sentiments such as those
in P and N , where the sources are entities (or the
writer) and the targets are entities and events.

Previous work in sentiment analysis mainly fo-
cuses on detecting explicit opinions. Recently
there is emerging focus on sentiment inference,
which recognizes implicit sentiments by inferring
them from explicit sentiments via inference rules.
Current works in sentiment inference differ on
how the sentiment inference rules are defined and
how they are expressed. For example, Zhang
and Liu (2011) define linguistic templates to rec-
ognize phrases that express implicit sentiments,
while previously we (Deng et al., 2014) represent
a few simple rules as (in)equality constraints in In-
teger Linear Programming. In contrast to previous

2Note that the inferences are conversational implicatures;
they are defeasible and may not go through in context (Deng
et al., 2014; Wiebe and Deng, 2014).

work, we propose a more general set of inference
rules and encode them in a probabilistic soft logic
(PSL) framework (Bach et al., 2015). We chose
PSL because it is designed to have efficient infer-
ence and, as similar methods in Statistical Rela-
tional Learning do, it allows probabilistic models
to be specified in first-order logic, an expressive
and natural way to represent if-then rules, and it
supports joint prediction. Joint prediction is criti-
cal for our task because it involves multiple, mutu-
ally constraining ambiguities (the source, polarity,
and target).

Thus, this work aims at detecting both implicit
and explicit sentiments expressed by an entity to-
ward another entity/event (i.e., an eTarget) within
the sentence. The contributions of this work are:
(1) defining a method for entity/event-level senti-
ment analysis to provide a deeper understanding
of the text; (2) exploiting first-order logic rules to
infer such sentiments, where the source is not lim-
ited to the writer, and the target may be any entity,
event, or even another sentiment; and (3) devel-
oping a PSL model to jointly resolve explicit and
implicit sentiment ambiguities by integrating in-
ference rules.

2 Related Work

Fined-grained sentiment analysis. Most fine-
grained sentiment analysis is span or aspect based.
Previous work differs from the entity/event-level
sentiment analysis task we address in terms of tar-
gets and sources. In terms of targets, in a span-
based sentiment analysis system, the target is a
span instead of the exact head of the phrase re-
ferring to the target. The target in a span-based
system is evaluated by measuring the overlapping
proportion of an extracted span against the gold
standard phrase (Yang and Cardie, 2013), while
the eTarget in an entity/event-level system is eval-
uated against the exact word (i.e., head of NP/VP)
in the gold standard. It is a stricter evaluation.
While the targets in aspect-based sentiment analy-
sis are often entity targets, they are mainly product
aspects, which are a predefined set.3 In contrast,
the target in the entity/event-level task may be any
noun or verb. In terms of sources, previous work in
sentiment analysis trained on review data assumes
that the source is the writer of the review (Hu and
Liu, 2004; Titov and McDonald, 2008).

3As stated in SemEval-2014: “we annotate only aspect
terms naming particular aspects”.
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Our work is rare in that it allows sources other
than the writer and finds sentiments toward eTar-
gets which may be any entity or event.

Sentiment Inference. There is some recent
work investigating features that directly indicate
implicit sentiments (Zhang and Liu, 2011; Feng
et al., 2013). That work assumes the source is
only the writer. Further, as it uses features to di-
rectly extract implicit sentiments, it does not per-
form general sentiment inference.

Previously, we (Deng et al., 2013; Deng and
Wiebe, 2014; Deng et al., 2014) develop rules
and models to infer sentiments related to +/-effect
events, events that positively or negatively affect
entities. That work assumes that the source is only
the writer, and the targets are limited to entities
that participate in +/-effect events. Further, our
previous models all require certain manual (ora-
cle) annotations to be input. In this work we use
an expanded set of more general rules. We al-
low sources other than the writer, and targets that
may be any entity or event. In fact, under our new
rules, the targets of sentiments may be other sen-
timents; we model such novel “sentiment toward
sentiment” structures in Section 4.3. Finally, our
method requiring no manual annotations as input
when the inference is conducted.

Previously, we also propose a set of sentiment
inference rules and develop a rule-based system to
infer sentiments (Wiebe and Deng, 2014). How-
ever, the rule-based system requires all informa-
tion regarding explicit sentiments and +/-effect
events to be provided as oracle information by
manual annotations.

Probabilistic Soft Logic. Probabilistic Soft
Logic (PSL) is a variation of Markov Logic Net-
works, which is a framework for probabilistic
logic that employs weighted formulas in first-
order logic to compactly encode complex undi-
rected probabilistic graphical models (i.e., Markov
networks) (Bach et al., 2015; Beltagy et al., 2014).
PSL is a new statistical relational learning method
that has been applied to many NLP and other ma-
chine learning tasks in recent years (Beltagy et al.,
2014; London et al., 2013; Pujara et al., 2013;
Bach et al., 2013; Huang et al., 2013; Memory et
al., 2012). Previously, PSL has not been applied
to entity/event-level sentiment analysis.

3 Task Definition

In this section, we introduce the definition of
the entity/event-level sentiment analysis task, fol-
lowed by a description of the gold standard corpus.

For each sentence s, we define a set E consist-
ing of entities, events, and the writer of s, and sets
P and N consisting of positive and negative senti-
ments, respectively. Each element in P is a tuple,
representing a positive pair of two entities, (e1,
e2) where e1, e2 ∈ E, and e1 is positive toward
e2. A positive pair (e1,e2) aggregates all the posi-
tive sentiments from e1 to e2 in the sentence. N is
the corresponding set for negative pairs.

The goal of this work is to automatically rec-
ognize a set of positive pairs (Pauto) and a set of
negative pairs (Nauto). We compare the system
output (Pauto ∪ Nauto) against the gold standard
(Pgold ∪Ngold) for each sentence.

3.1 Gold Standard Corpus: MPQA 3.0
MPQA 3.0 is a recently developed corpus with
entity/event-level sentiment annotations (Deng
and Wiebe, 2015).4 It is built on the basis of
MPQA 2.0 (Wiebe et al., 2005b; Wilson, 2007),
which includes editorials, reviews, news reports,
and scripts of interviews from different news agen-
cies, and covers a wide range of topics.

In both MPQA 2.0 and 3.0, the top-level an-
notations include direct subjectives (DS). Each
DS has a nested-source annotation. Each DS has
one or more attitude links, meaning that all of the
attitudes share the same nested source. The at-
titudes differ from one another in their attitude
types, polarities, and/or targets. Moreover, both
corpora contain expressive subjective element
(ESE) annotations, which pinpoint specific ex-
pressions used to express subjectivity. We ignore
neutral ESEs and only consider ESEs whose po-
larity is positive or negative.

MPQA 2.0 and 3.0 differ in their target annota-
tions. In 2.0, each target is a span. A target annota-
tion of an opinion captures the most important tar-
get this opinion is expressed toward. Since the ex-
act boundaries of the spans are hard to define even
for human annotators (Wiebe et al., 2005a; Yang
and Cardie, 2013), the target span in MPQA 2.0
could be a single word, an NP or VP, or a text span
covering more than one constituent. In contrast, in
MPQA 3.0, each target is anchored to the head of
an NP or VP, which is a single word. It is called an

4Available at http://mpqa.cs.pitt.edu/corpora/
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eTarget since it is an entity or an event. In MPQA
2.0, only attitudes have target-span annotations. In
MPQA 3.0, both attitudes and ESEs have eTarget
annotations. Importantly, the eTargets include the
targets of both explicit and implicit sentiments.

Recall Ex(1) in Section 1. Pgold = {(writer,
Imam), (writer, Prophet), (Imam, Prophet),
(writer, fatwa)}, and Ngold = {(Imam, Rushdie),
(Imam, insulting), (Rushdie, Prophet), (writer,
countries), (countries, fatwa), (writer, Rushdie),
(countries, Imam)}.

4 PSL for Sentiment Analysis

We need to resolve three components for an opin-
ion frame: the source, the polarity, and the eTarget.
Each of these ambiguities has several candidates.
For example in Ex(1), the eTarget of the opinion
expression insulting is an ambiguity. The candi-
dates include Prophet, countries, and so on.

In this work, we use Probabilistic Soft Logic
(PSL). A PSL model is defined using a set of
atoms to be grounded, and a set of weighted if-
then rules expressed in first-order logic. For ex-
ample, we define the atom ETARGET(y,t) to rep-
resent an opinion y having eTarget t. If y and
t are constants, then ETARGET(y,t) is a ground
atom (e.g., ETARGET(insulting, Prophet)). Each
ground atom is assigned a score by a local system.
PSL takes as input all the local scores as well as
the constraints defined by the rules among atoms,
so that it is able to jointly resolve all the ambigu-
ities. In the final output, for example, the score
ETARGET(insulting, Prophet)> 0 means that PSL
considers Prophet to be an eTarget of insulting,
while ETARGET(insulting, countries) = 0 means
that PSL does not consider countries to be an eTar-
get of insulting.

In this section, we first introduce PSL in Section
4.1. We then present three PSL models in turn.
PSL1 (Section 4.2) aggregates span-based opin-
ions into Pauto and Nauto. PSL2 (Section 4.3) adds
sentiment inference rules to PSL1. For PSL3 (Sec-
tion 4.4), rules involving +/-effect events are added
to PSL2, resulting in the richest overall model.

4.1 Probabilistic Soft Logic

PSL (Bach et al., 2015) uses logical representa-
tions to compactly define large graphical models
with continuous variables, and includes methods
for performing efficient probabilistic inference for
the resulting models (Beltagy et al., 2014). As

mentioned above, a PSL model is defined using a
set of atoms to be grounded, and a set of weighted
if-then rules in first-order logic. For example,

friend(x,y) ∧ votesFor(y,z)⇒ votesFor(x,z)
means that a person may vote for the same per-
son as his/her friend. Each predicate in the rule is
an atom (e.g., friend(x,y)). A ground atom is pro-
duced by replacing variables with constants (e.g.,
friend(Tom, Mary)). Each rule is associated with
a weight, indicating the importance of this rule in
the whole rule set.

A key distinguishing feature of PSL is that each
ground atom a has a soft, continuous truth value
in the interval [0, 1], denoted as I(a), rather than
a binary truth value as in Markov Logic Net-
works and most other probabilistic logic frame-
works (Beltagy et al., 2014). To compute soft
truth values for logical formulas, Lukasiewicz re-
laxations are used:
l1 ∧ l2 = max{0, I(l1) + I(l2)− 1}
l1 ∨ l2 = min{I(l1) + I(l2), 1}
¬l1 = 1− I(l1)
A rule r ≡ rbody → rhead, is satisfied (i.e.

I(r) = 1) iff I(rbody) ≤ I(rhead). Other-
wise, a distance to satisfaction d(r) is calculated,
which defines how far a rule r is from being satis-
fied: d(r) = max {0, I(rbody)− I(rhead)}. Us-
ing d(r), PSL defines a probability distribution
over all possible interpretations I of all ground
atoms:

p(I) =
1
Z

exp {−1 ∗
∑
r∈R

λr(d(r))p}

where Z is the normalization constant, λr is the
weight of rule r, R is the set of all rules, and p de-
fines loss functions. PSL seeks the interpretation
with the minimum distance d(r) and which satis-
fies all rules to the extent possible.

4.2 PSL for Sentiment Aggregation (PSL1)

The first PSL model, PSL1, aggregates span-based
opinions into Pauto and Nauto. We call this senti-
ment aggregation because, instead of building an
entity/event-level sentiment system from scratch,
we choose to fully utilize previous work on span-
based sentiment analysis. PSL1 aggregates span-
based opinions into entity/event-level opinions.

Consistent with the task definition in Section 3,
we define two atoms in PSL:
(1) POSPAIR(s,t): a positive pair from s toward t
(2) NEGPAIR(s,t): a negative pair from s toward t
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Both s and t are chosen from the setE. The val-
ues of ground atoms (1) and (2) are not observed
and are inferred by PSL.

Then, we define atoms to model an entity/event-
level opinion:
(3) POS(y): y is a positive sentiment
(4) NEG(y): y is a negative sentiment
(5) SOURCE(y,s): the source of y is s
(6) ETARGET(y,t): the eTarget of y is t

Two rules are defined to aggregate various opin-
ions extracted by span-based systems into positive
pairs and negative pairs, shown in Part 1 of Table
1 as Rules 1.1 and 1.2. Thus, under our repre-
sentation, the PSL model not only finds a set of
eTargets of an opinion (ETARGET(y,t)), but also
represents the aggregated sentiments among enti-
ties and events (POSPAIR(s,t) and NEGPAIR(s,t))
in the sentence.

Next, we turn to assigning local scores to
ground atoms (3)-(6).

POS(y) and NEG(y): We build upon three span-
based sentiment analysis systems. The first, S1
(Yang and Cardie, 2013), and the second, S2
(Yang and Cardie, 2014), are both trained on
MPQA 2.0, which does not contain any eTarget
annotations. S1 extracts triples of 〈source span,
opinion span, target span〉, but does not extract
opinion polarities. S2 extracts opinion spans and
opinion polarities, but it does not extract sources
or targets. The third system, S3 (Socher et al.,
2013), is trained on movie review data. It extracts
opinion spans and polarities. The source is always
assumed to be the writer.

We take the union set of opinions extracted by
S1, S2 and S3. For each opinion y, a ground atom
is created, depending on the polarity (POS(y) if y
is positive and NEG(y) is y is negative). The po-
larity is determined as follows. If S2 assigns a po-
larity to y, then that polarity is used. If S3 but
not S2 assigns a polarity to y, then S3’s polarity
is used. In both cases, the score assigned to the
ground atom is 1.0. If neither S2 nor S3 assigns a
polarity to y, we use the MPQA subjectivity lex-
icon to determine its polarity. The score assigned
to the ground atom is the proportion of the words
in the opinion span that are included in the subjec-
tivity lexicon.

SOURCE(y,s): S1 extracts the source of each
opinion, S2 does not extract the source, and S3 as-
sumes the source is always the writer. Thus, for
an opinion y, if the source s is assigned by S1, a

ground atom SOURCE(y,s) is created with score
1.0. Otherwise, if S3 extracts opinion y, a ground
atom SOURCE(y,writer) is created with score 1.0
(since S3 assumes the source is always the writer).
Otherwise, we run the Stanford named entity rec-
ognizer (Manning et al., 2014; Finkel et al., 2005)
to extract named entities in the sentence. The near-
est named entity to the opinion span on the depen-
dency parse graph will be treated as the source.
The score is the reciprocal of the length of the path
between the opinion span and the source span in
the dependency parse.

ETARGET(y,t): Though each eTarget is an en-
tity or event, it is difficult to determine which
nouns and verbs should be considered. Taking
into consideration the trade-off between precision
and recall, we experimented with three methods
to select eTarget candidates. For each opinion y,
a ground atom ETARGET(y,t) is created for each
eTarget candidate t.

ET1 considers all the nouns and verbs in the
sentence, to provide a full recall of eTargets.

ET2 considers all the nouns and verbs in the tar-
get spans and opinion spans that are automatically
extracted by systems S1, S2 and S3. We hypoth-
esized that ET2 would be useful because most of
the eTargets in MPQA 3.0 appear within the opin-
ion or the target spans of MPQA 2.0.

ET3 considers the heads of the target and opin-
ion spans that are automatically extracted by sys-
tems S1, S2 and S3.5 ET3 also considers the heads
of siblings of target spans and opinion spans.
Among the three methods, ET3 has the lowest re-
call but the highest precision.

In addition, for the eTarget candidate set ex-
tracted by ET2, or ET3, we run the Stanford co-
reference system (Manning et al., 2014; Recasens
et al., 2013; Lee et al., 2013) to expand the set
in two ways. First, for each eTarget candidate t,
the co-reference system extracts the entities that
co-refer with t. We add the referring entities into
the candidate set. Second, the co-reference system
extracts words which the Stanford system judges
to be entities, regardless of whether they have any
referent or not. We add this set of entities to the
candidate set as well.

We train an SVM classifier (Cortes and Vap-
nik, 1995) to assign a score to the ground atom
ETARGET(y,t). Syntactic features describing the

5The head of a phrase is extracted by the Collins head
finder in the Stanford parser (Manning et al., 2014).
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Part 1. Aggregation Rules.
1.1 SOURCE(y,s) ∧ ETARGET(y,t) ∧ POS(y) ⇒ POSPAIR(s,t)
1.2 SOURCE(y,s) ∧ ETARGET(y,t) ∧ NEG(y) ⇒ NEGPAIR(s,t)

Part 2. Inference Rules.
2.1 POSPAIR(s1,y2) ∧ SOURCE(y2,s2) ⇒ POSPAIR(s1,s2)
2.2 POSPAIR(s1,y2) ∧ ETARGET(y2,t2) ∧ POS(y2) ⇒ POSPAIR(s1,t2)
2.3 POSPAIR(s1,y2) ∧ ETARGET(y2,t2) ∧ NEG(y2) ⇒ NEGPAIR(s1,t2)
2.4 NEGPAIR(s1,y2) ∧ SOURCE(y2,s2) ⇒ NEGPAIR(s1,s2)
2.5 NEGPAIR(s1,y2) ∧ ETARGET(y2,t2) ∧ POS(y2) ⇒ NEGPAIR(s1,t2)
2.6 NEGPAIR(s1,y2) ∧ ETARGET(y2,t2) ∧ NEG(y2) ⇒ POSPAIR(s1,t2)

Part 3. Inference Rules w.r.t +/-Effect Event Information.
3.1 POSPAIR(s,x) ∧ AGENT(x,a) ⇒ POSPAIR(s,a)
3.2 POSPAIR(s,x) ∧ THEME(x,h) ∧ +EFFECT(x) ⇒ POSPAIR(s,h)
3.3 POSPAIR(s,x) ∧ THEME(x,h) ∧ -EFFECT(x) ⇒ NEGPAIR(s,h)
3.4 NEGPAIR(s,x) ∧ AGENT(x,a) ⇒ NEGPAIR(s,a)
3.5 NEGPAIR(s,x) ∧ THEME(x,h) ∧ +EFFECT(x) ⇒ NEGPAIR(s,h)
3.6 NEGPAIR(s,x) ∧ THEME(x,h) ∧ -EFFECT(x) ⇒ POSPAIR(s,h)
3.7 POSPAIR(s,a) ∧ AGENT(x,a) ⇒ POSPAIR(s,x)
3.8 POSPAIR(s,h) ∧ THEME(x,h) ∧ +EFFECT(x) ⇒ POSPAIR(s,x)
3.9 POSPAIR(s,h) ∧ THEME(x,h) ∧ -EFFECT(x) ⇒ NEGPAIR(s,x)

3.10 NEGPAIR(s,a) ∧ AGENT(x,a) ⇒ NEGPAIR(s,x)
3.11 NEGPAIR(s,h) ∧ THEME(x,h) ∧ +EFFECT(x) ⇒ NEGPAIR(s,x)
3.12 NEGPAIR(s,h) ∧ THEME(x,h) ∧ -EFFECT(x) ⇒ POSPAIR(s,x)

Table 1: Rules in First-Order Logic.

relations between an eTarget and the extracted
opinion span and target span are considered, in-
cluding: (1) whether the eTarget is in the opin-
ion/target span; (2) the unigrams and bigrams on
the path from the eTarget to the opinion/target
span in the constituency parse tree; and (3) the
unigrams and bigrams on the path from the eTar-
get to the opinion/target word in the dependency
parse graph. We normalize the SVM scores into
the range of a ground atom score, [0,1].

4.3 PSL for Sentiment Inference (PSL2)

The two rules defined in Section 4.2 aggregate
various opinions into positive pairs and negative
pairs, but inferences have not yet been introduced.
PSL2 is defined using the atoms and rules in
PSL1. But it also includes some rules defined
in (Wiebe and Deng, 2014), represented here in
first-order logic in Part 2 of Table 1. Let us go
through an example inference for Ex(1), in partic-
ular, the inference that Imam is positive toward the
Prophet. Rule 2.6 supports this inference. Recall
the two explicit sentiments: Imam is negative to-
ward the insulting sentiment (revealed by issued
the fatwa against), and Rushdie is negative to-

ward the Prophet (revealed by insulting). Thus,
we can instantiate Rule 2.6, where s1 is Imam, y2

is the negative sentiment (insulting), and t2 is the
Prophet. The inference is: since Imam is negative
that there is any negative opinion expressed toward
the Prophet, we infer that Imam is positive toward
the Prophet.

NEGPAIR(Imam, insulting)
∧ ETARGET(insulting, Prophet)
∧ NEG(insulting)

⇒ POSPAIR(Imam, Prophet).

The inference rules in Part 2 of Table 1 are novel
in that eTargets may be sentiments (e.g., NEG-
PAIR(Imam,insulting) means that Imam is nega-
tive toward the negative sentiment revealed by in-
sulting). The inference rules link sentiments to
sentiments and, transitively, link entities to entities
(e.g., from Imam to Rushdie to the Prophet).

To support such rules, more groundings of
ETARGET(y,t) are created in PSL2 than in PSL1.
For two opinions y1 and y2, if the target span of
y1 overlaps with the opinion span of y2, we cre-
ate ETARGET(y1,y2) as a ground atom represent-
ing that y2 is an eTarget of y1.
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4.4 PSL Augmented with +/-Effect Events
(PSL3)

Finally, for PSL3, +/-effect event atoms and rules
are added to PSL2 for the inference of additional
sentiments.

According to (Deng et al., 2013), a +effect event
has positive effect on the theme (examples are
help, increase, and save), and a -effect event has
negative effect on the theme (examples are ob-
struct, decrease, and kill).6 We define the follow-
ing atoms to represent such events:
(7) +EFFECT(x): x is a +effect event
(8) -EFFECT(x): x is a -effect event
(9) AGENT(x,a): the agent of x is a
(10) THEME(x,h): the theme of x is h

Next we assign scores to these ground atoms.
+EFFECT(x) and -EFFECT(x): We use the

+/-effect sense-level lexicon (Choi and Wiebe,
2014)7 to extract the +/-effect events in each sen-
tence. The score of +EFFECT(x) is the fraction of
that word’s senses that are +effect senses accord-
ing to the lexicon, and the score of -EFFECT(x) is
the fraction of that word’s senses that are -effect
senses according to the lexicon. If a word does
not appear in the lexicon, we do not treat it as a +/-
effect event, and thus assign 0 to both +EFFECT(x)
and -EFFECT(x).

AGENT(x,a) and THEME(x,h): We consider all
nouns in the same or in sibling constituents of
a +/-effect event as potential agents or themes.
An SVM classifier is run to assign scores to
AGENT(x,a), and another SVM classifier is run to
assign scores to THEME(x,h). Both SVM clas-
sifiers are trained on a separate corpus, the +/-
effect corpus (Deng et al., 2013) used in (Deng et
al., 2014), which is annotated with +/-effect event,
agent, and theme spans. The features we use to
train the agent and theme classifier include uni-
gram, bigram and syntax information.

Generalizations of the inference rules used in
(Deng et al., 2014) are expressed in first-order
logic, shown in Part 3 of Table 1. Let us go
through an example inference for Ex(1), in partic-
ular, the inference that the countries are negative
toward Imam. Recall that we infer this because
the countries are negative toward the fatwa and it
is Imam who issued the fatwa. The rules support-
ing this inference are Rules 3.11 and 3.4 in Table

6In (Deng et al., 2013), such events are called good-
For/badFor events; they are later renamed as +/-effect events.

7Available at: http://mpqa.cs.pitt.edu/lexicons/effect lexicon/

1, where s is the countries, h is the fatwa, x is the
issue event, and a is Imam.

The application of Rule 3.11 can be explained
as follows. The countries are negative toward
the fatwa, and the issue event is a +effect event
with theme fatwa (the issue event is +effect for
the fatwa because it creates the fatwa; creation is
one type of +effect event identified in (Deng et al.,
2013)); thus, the countries are negative toward the
issue event.

NEGPAIR(countries, fatwa)
∧ THEME(issue, fatwa)
∧ +EFFECT(issue)

⇒ NEGPAIR(countries, issue) .

The application of Rule 3.4 can be explained as
follows. The countries are negative toward the is-
sue event, and it is Imam who conducted the event;
thus, the countries are negative toward Imam.

NEGPAIR(countries, issue)
∧ AGENT(issue, Imam)

⇒ NEGPAIR(countries, Imam) .

Finally, to support the new inferences, more
groundings of ETARGET(y,t) are defined in PSL3.
For a +/-effect event x whose agent is a, if one of
x and a is an eTarget candidate of y, the other will
be added to the eTarget candidate set for y (senti-
ments toward both +effect and -effect events and
their agents have the same polarity according to
the rules (Deng et al., 2014)). For +effect event
x whose theme is h, if one of x and h is an eTar-
get candidate of y, the other is added to the eTar-
get candidate set for y (sentiments toward +effect
events and their themes have the same polarity).

5 Experiments

We carry out experiments on the MPQA 3.0 cor-
pus. Currently, there are 70 documents, 1,634 sen-
tences, and 1,921 DS and ESEs in total. The to-
tal number of POSPAIR(s,t) and NEGPAIR(s,t) are
867 and 1,975, respectively. Though the PSL in-
ference does not need supervision and the SVM
classifier for agents and themes in Section 4.4 is
trained on a separate corpus, we still have to train
the eTarget SVM classifier to assign local scores
as described in Section 4.2. Thus, the experiments
are carried out using 5-fold cross validation. For
each fold test set, the eTarget classifier is trained
on the other folds. The trained classifier is then
run on the test set, and PSL inference is carried
out on the test set.
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In total, we have three methods for eTarget can-
didate selection (ET1, ET2, ET3) and three mod-
els for sentiment analysis (PSL1, PSL2, PSL3).

Baselines. Since each noun and verb may be an
eTarget, the first baseline (All NP/VP) regards all
the nouns and verbs as eTargets. The first baseline
estimates the difficulty of this task.

The second baseline (SVM) uses the SVM lo-
cal classification results from Section 4.2. The
score of ETARGET(y,t) is assigned by the SVM
classifier. Then it is normalized as input into PSL.
Before normalization, if the score assigned by the
SVM classifier is above 0, the SVM baseline con-
siders it as a correct eTarget.

5.1 Evaluations
First, we examine the performance of the PSL
models on correctly recognizing eTargets of a par-
ticular opinion. This evaluation is carried out
on a subset of the corpus: we only examine the
opinions which are automatically extracted by the
span-based systems (S1, S2 and S3). If an opinion
expression in the gold standard is not extracted by
any span-based system, it is not input into PSL, so
PSL cannot possibly find its eTargets.

The second and third evaluations assess perfor-
mance of the PSL models on correctly extracting
positive and negative pairs. Note that our senti-
ment analysis system has the capability, through
inference, to recognize positive and negative pairs
even if corresponding opinion expressions are not
extracted. Thus, the second and third evaluations
are carried out on the entire corpus. The second
evaluation uses ET3, and compares PSL1, PSL2
and PSL3. The third evaluation uses PSL3 and
compares performance using ET1, ET2 and ET3.
The results for the other combinations follow the
same trends.

ETargets of An Opinion. According to the gold
standard in Section 3.1, each opinion has a set of
eTargets. But not all eTargets are equally impor-
tant. Thus, our first evaluation assesses the perfor-
mance of extracting the most important eTarget.
As introduced in Section 3.1, a span-based target
annotation of an opinion in MPQA 2.0 captures
the most important target this opinion is expressed
toward. Thus, the head of the target span can be
considered to be the most important eTarget of an
opinion. We model this as a ranking problem to
compare models. For an opinion y automatically
extracted by a span-based system, both the SVM

baseline and PSL assign scores to ETARGET(y,t).
We rank the eTargets according to the scores. Be-
cause the ALL NP/VP baseline does not assign
scores to the nouns and verbs, we do not compare
with that baseline in this ranking experiment. We
use the Precision@N evaluation metric. If the top
N eTargets of an opinion contain the head of tar-
get span, we consider it as a correct hit. The results
are in Table 2.

Prec@1 Prec@3 Prec@5
SVM 0.0370 0.0556 0.0820
PSL1 0.5105 0.6905 0.7831
PSL2 0.5317 0.7486 0.7883
PSL3 0.5503 0.7434 0.8148

Table 2: Precision@N of Most Important ETarget.

Table 2 shows that SVM is poor at ranking
the most important eTarget. The PSL models are
much better, even PSL1, which does not include
any inference rules. This shows that SVM, which
only uses local features, cannot distinguish the
most important eTarget from the others. But the
PSL models consider all the opinions, and can rec-
ognize a true negative even if it ranks high in the
local results. The ability of PSL to rule out true
negative candidates will be repeatedly shown in
the later evaluations.

We not only evaluate the ability to recognize the
most important eTarget of a particular opinion, we
also evaluate the ability to extract all the eTargets
of that opinion. The F-measure of SVM is 0.2043,
while the F-measures of PSL1, PSL2 and PSL3
are 0.3135, 0.3239, and 0.3275, respectively. Cor-
rectly recognizing all the eTargets is difficult, but
all the PSL models are better than the baseline.

Positive Pairs and Negative Pairs. Now we
evaluate the performance in a stricter way. We
compare automatically extracted sets of sentiment
pairs: Pauto = {POSPAIR(s, t) > 0} and Nauto =
{NEGPAIR(s, t) > 0}, against the gold standard
sets Pgold and Ngold. Table 3 shows the accura-
cies using ET3. Note that higher accuracies can
be achieved, as shown later. Here we use ET3 just
to show the trend of results.

As shown in Table 3, the low accuracy of base-
line All NP/VP shows that entity/event-level sen-
timent analysis is a difficult task. Even the SVM
baseline does not have good accuracy. Note that
the SVM baseline in Table 3 uses ET3. The base-
line classifies the heads of target spans and opin-
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POSPAIR NEGPAIR

All NP/VP 0.1280 0.1654
SVM 0.0765 0.0670
PSL1 0.3356 0.3754
PSL2 0.3705 0.3705
PSL3 0.4315 0.3892

Table 3: Accuracy comparing PSL models (ET3
used for all)

ion spans, which are extracted by state-of-the-
art span-based sentiment analysis systems. This
shows the results from span-based sentiment anal-
ysis systems do not provide enough accurate in-
formation for the more fine-grained entity/event-
level sentiment analysis task. In contrast, PSL1
achieves much higher accuracy than the baselines.
PSL2 and PSL3, which add sentiment toward sen-
timent and +/-effect event inferences, give fur-
ther improvements. A reason is that SVM uses a
hard constraint to cut off many eTarget candidates,
while the PSL models take the scores as soft con-
straints.

A more critical reason is due to the definition
of accuracy: (TruePositive+TrueNegative)/All. A
significant benefit of using PSL is correctly recog-
nizing true negative eTarget candidates and elim-
inating them from the set. Interestingly, even
though both PSL2 and PSL3 introduce more eTar-
get candidates, both are able to recognize more
true negatives and improve the accuracy.

Note that F-measure does not count true nega-
tives. Precision is TP

TP+FP , and recall is TP
TP+FN ;

neither considers true negatives (TN). As shown
in Table 4, the increment of PSL model over base-
lines on F-measure is not as large as the increase
in accuracy. Comparing PSL2 and PSL3 to PSL1,
the inference rules largely increase recall but lower
precision. However, the accuracy in Table 3 keeps
growing. Thus, the biggest advantage of PSL
models is to correctly rule out true negative eTar-
gets. For the baselines, though the SVM baseline
has higher precision, it eliminates so many eTarget
candidates that the F-measure is not high.

ETarget Selection. To assess the methods for
eTarget selection, we run PSL3 (the fullest PSL
model) using each method in turn. The F-
measures and accuracies are listed in Table 5. The
F-measure of ET1 is slightly lower than the F-
measures of ET2 and ET3, while the accuracy of

Precision Recall F-measure
POSPAIR

All NP/VP 0.1481 0.4857 0.2270
SVM 0.3791 0.0870 0.1415
PSL1 0.2234 0.2687 0.2440
PSL2 0.1666 0.2738 0.2072
PSL3 0.1659 0.3523 0.2256

NEGPAIR

All NP/VP 0.1824 0.6408 0.2840
SVM 0.3568 0.0761 0.1254
PSL1 0.2857 0.3872 0.3288
PSL2 0.2772 0.3883 0.3235
PSL3 0.2586 0.4529 0.3292

Table 4: F-measure comparing PSL models (ET3
used for all)

ET1 is much better than the accuracies of ET2
and ET3. Again, this is because PSL recognizes
true negatives in the eTarget candidates. Since
ET1 considers more eTarget candidates, ET1 gives
PSL a greater opportunity to remove true nega-
tives, leading to an overall increase in accuracy.

POSPAIR NEGPAIR

F Acc. F Acc.
ET1 0.2192 0.4963 0.3157 0.4461
ET2 0.2374 0.4433 0.3261 0.3969
ET3 0.2256 0.4315 0.3295 0.3892

Table 5: Comparison of eTarget selection methods
(PSL3 used for all)

6 Conclusion

This work builds upon state-of-the-art span-
based sentiment analysis systems to perform
entity/event-level sentiment analysis covering
both explicit and implicit sentiments expressed
among entities and events in text. Probabilis-
tic Soft Logic models incorporating explicit senti-
ments, inference rules and +/-effect event informa-
tion are able to jointly disambiguate the ambigui-
ties in the opinion frames and improve over base-
line accuracies in recognizing entity/event-level
sentiments.
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