
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 107–117,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

System Combination for Multi-document Summarization

Kai Hong Mitchell Marcus Ani Nenkova
University of Pennsylvania

Philadelphia, PA, 19104
{hongkai1,mitch,nenkova}@seas.upenn.edu

Abstract

We present a novel framework of
system combination for multi-document
summarization. For each input set
(input), we generate candidate summaries
by combining whole sentences from
the summaries generated by different
systems. We show that the oracle among
these candidates is much better than
the summaries that we have combined.
We then present a supervised model
to select among the candidates. The
model relies on a rich set of features that
capture content importance from different
perspectives. Our model performs better
than the systems that we combined based
on manual and automatic evaluations. We
also achieve very competitive performance
on six DUC/TAC datasets, comparable to
the state-of-the-art on most datasets.

1 Introduction

Recent work shows that state-of-the-art
summarization systems generate very different
summaries, despite the fact that they have similar
performance (Hong et al., 2014). This suggests
that combining summaries from different systems
might be helpful in improving content quality.

A handful of papers have studied system
combination for summarization. Based on the
ranks of the input sentences assigned by different
systems (i.e., basic systems), methods have been
proposed to re-rank these sentences (Wang and Li,
2012; Pei et al., 2012). However, these methods
require the basic systems to assign importance
scores to all input sentences. Thapar et al.
(2006) combine the summaries from different
systems, based on a graph-based measure that
computes summary-input or summary-summary
similarity. However, their method does not show

an advantage over the basic systems. In summary,
few prior papers have successfully generating
better summaries by combining the summaries
from different systems (i.e., basic summaries).

This paper focuses on practical system
combination, where we combine the summaries
generated by four portable unsupervised
systems. We choose these systems, because:
First, these systems are either off-the-shelf or
easy-to-implement. Second, even though many
systems have been proposed for multi-document
summarization, the output of them are often
available only on one dataset or even unavailable.
Third, compared to more sophisticated supervised
methods (Kulesza and Taskar, 2012; Cao et al.,
2015a), simple unsupervised methods perform
unexpectedly well. Many of them achieved the
state-of-the-art performance when they were
proposed (Erkan and Radev, 2004; Gillick et al.,
2009) and still serve as competitive baselines
(Hong et al., 2014).

After the summarizers have been chosen, we
present a two-step pipeline that combines the
basic summaries. In the first step, we generate
combined candidate summaries (Section 4). We
investigate two methods to do this: one uses entire
basic summaries directly, the other combines these
summaries on the sentence level. We show
that the latter method has a much higher oracle
performance. The second step includes a new
supervised model that selects among the candidate
summaries (Section 5).

Our contributions are:

• We show that by combining summaries on
the sentence level, the best possible (oracle)
performance is very high.

• In the second step of our pipeline, we
propose a supervised model that includes a
rich set of new features. These features
capture content importance from different

107

perspectives, based on different sources. We
verify the effectiveness of these features.

• Our method outperforms the basic systems
and several competitive baselines. Our model
achieves competitive performance on six
DUC/TAC datasets, which is on par with the
state-of-the-art on most of these datasets.

• Our method can be used to combine
summaries generated by any systems.

2 Related Work

System combination has enjoyed great success
in many domains, such as automatic speech
recognition (Fiscus, 1997; Mangu et al., 2000),
machine translation (Frederking and Nirenburg,
1994; Bangalore et al., 2001) and parsing
(Henderson and Brill, 1999; Sagae and Lavie,
2006). However, only a handful of papers have
leveraged this idea for summarization. Mohamed
and Rajasekaran (2005) present a method that
relies on a document graph (DG), which includes
concepts connected by relations. This method
selects among the outputs of the basic systems,
based on their overlaps with the input in terms of
DG. Thapar et al. (2006) propose to iteratively
include sentences, based on the overlap of DG
between the current sentence and (1) the original
input, or (2) the basic summaries. However,
in both papers, the machine summaries are not
compared against human references. Rather, their
evaluations compare the summaries to the input
based on the overlap of DG. Moreover, even when
evaluated in this way, the combined system does
not show an advantage over the best basic system.

System combination in summarization has also
been regarded as rank aggregation, where the
combined system re-ranks the input sentences
based on the ranks of those sentences assigned by
the basic systems. Wang and Li (2012) propose an
unsupervised method to minimize the distance of
the final ranking compared to the initial rankings.
Pei et al. (2012) propose a supervised method
which handles an issue in Wang and Li (2012)
that all basic systems are regarded as equally
important. Even though both methods show
advantages over the basic systems, they have two
limitations. Most importantly, only summarizers
that assign importance scores to each sentence
can be used as the input summarizers. Second,
only the sentence scores (ranks) from the basic

systems and system identity information is utilized
during the re-ranking process. The signal from
the original input is ignored. Our method handles
these limitations.

Our method derives an overall informativeness
score for each candidate summary, then selects the
one with the highest score. This is related to the
growing body of research in global optimization,
which selects the most informative subset of
sentences towards a global objective (McDonald,
2007; Gillick et al., 2009; Aker et al., 2010). Some
work uses integer linear programming to find the
exact solution (Gillick et al., 2009; Li et al.,
2015), other work employs supervised methods to
optimize the ROUGE scores of a summary (Lin
and Bilmes, 2011; Kulesza and Taskar, 2012).
Here we use the ROUGE scores of the candidate
summaries as labels while training our model.

In our work, we propose novel features that
encode the content quality of the entire summary.
Though prior work has extensively investigated
features that are indicative of important words
(Yih et al., 2007; Hong and Nenkova, 2014) or
sentences (Litvak et al., 2010; Ouyang et al.,
2011), little work has focused on designing global
features defined over the summary. Indeed, even
for the papers that employ supervised methods
to conduct global inference, the features are
defined on the sentence level (Aker et al., 2010;
Kulesza and Taskar, 2012). The most closely
related papers are the ones that investigated
automatic evaluation of summarization without
human references (Louis and Nenkova, 2009;
Saggion et al., 2010), where the effectiveness
of several summary-input similarity metrics are
examined. In our work, we propose a wide range
of features. These features are derived not only
based on the input, but also based on the basic
summaries and the summary-input pairs from the
New York Times (NYT) corpus (Sandhaus, 2008).

3 Data and Evaluation

We conduct a large scale experiment on six
datasets from the Document Understanding
Conference (DUC) and the Text Analysis
Conference (TAC). The tasks include generic
(DUC 2001–2004) and query-focused (TAC
2008, 2009) multi-document summarization.
We evaluate on the task of generating 100-word
summaries.

We use ROUGE (Lin, 2004) for automatic

108

evaluation, which compares the machine
summaries to the human references. We
report ROUGE-1 (unigram recall) and ROUGE-2
(bigram recall), with stemming and stopwords
included.1 Among automatic evaluation metrics,
ROUGE-1 (R-1) can predict that one system
performs significantly better than the other
with the highest recall (Rankel et al., 2013).
ROUGE-2 (R-2) provides the best agreement
with manual evaluations (Owczarzak et al., 2012).
R-1 and R-2 are the most widely used metrics in
summarization literature.

4 Generating Candidate Summaries

We first introduce the four basic unsupervised
systems, then describe our approach of generating
candidate summaries. The four systems all
perform extractive summarization, which directly
selects sentences from the input. Among
these systems, ICSISumm achieves the highest
ROUGE-2 in the TAC 2008, 2009 workshops.2

The other systems are often used as competitive
baselines; we implement these ourselves. Table
1 shows their performances. The word overlap
between summaries generated by these systems is
low, which indicates high diversity.

The basic systems are used for both generic and
query-focused summarization. For the latter task,
we filter out the sentences that have no overlap
with the query in terms of content words for the
systems that we implemented.

4.1 Four Basic Unsupervised Systems

ICSISumm: This system (Gillick et al., 2009)
optimizes the coverage of bigrams weighted by
their document frequency within the input using
Integer Linear Programming (ILP). Even though
this problem is NP-hard, a standard ILP solver can
find the exact solution fairly quickly in this case.
Greedy-KL: This system aims to minimize the
Kullback-Leibler (KL) divergence between the
word probability distribution of the summary and
that of the input. Because finding the summary
with the smallest KL divergence is intractable, we
employ a greedy method that iteratively selects
an additional sentence that minimizes the KL
divergence (Haghighi and Vanderwende, 2009).

1ROUGE version 1.5.5 with arguments: -c 95 -r 1000 -n
2 -2 4 -u -m -a -l 100 -x

2We use the toolkit provided via this link directly:
https://code.google.com/p/icsisumm/

ProbSum: This system (Nenkova et al., 2006)
scores a sentence by taking the average of word
probabilities over the words in the sentence, with
stopwords assigned zero weights. Compared to
Nenkova et al. (2006), we slightly change the way
of handling redundancy: we iteratively include a
sentence into the summary if its cosine similarity
with any sentence in the summary does not exceed
0.5.3

LLRSum: This system (Conroy et al., 2006)
employs a log-likelihood ratio (LLR) test to select
topic words of an input (Lin and Hovy, 2000).
The LLR test compares the distribution of words
in the input to a large background corpus. Similar
to Conroy et al. (2006), we consider words as
topic words if their χ-square statistic derived by
LLR exceeds 10. The sentence importance score
is equal to the number of topic words divided by
the number of words in the sentence. Redundancy
is handled in the same way as in ProbSum.

4.2 Generating Candidate Summaries

4.2.1 Selecting a Full Summary

There does not exist a system that always
outperforms the others for all problems. Based on
this fact, we directly use the summary outputs (i.e.,
basic summaries) as the candidate summaries.

4.2.2 Sentence Level Combination

Different systems provide different pieces of the
correct answer. Based on this fact, the combined
summary should include sentences that appear
in the summaries produced by different systems.
Here we exhaustively enumerate sentences so that
to form the candidate summaries. A similar
approach has been used to generate candidate
summaries for single-document summarization
(Ceylan et al., 2010).

Let D = s1, . . . , sn denote the sequence
of unique sentences that appear in the basic
summaries. We enumerate all subsequences Ai =
si1 , . . . , sik of D in lexicographical order. Ai can
be used as a candidate summary iff

∑k
j=1 l(sij) ≥

L and
∑k−1

j=1 l(sij) < L, where l(s) is the
number of words in s and L is the predefined
summary length. Table 2 shows the average
number of (unique) sentences and summaries that
are generated per input.

3The threshold is determined on the development set.

109

DUC 01 DUC 02 DUC 03 DUC 04 TAC 08 TAC 09
R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2

ICSISumm 0.342 0.079 0.373 0.095 0.381 0.103 0.384 0.098 0.388 0.119 0.393 0.121
Greedy-KL 0.331 0.067 0.358 0.075 0.383 0.086 0.383 0.090 0.372 0.094 0.384 0.099
ProbSum 0.303 0.056 0.326 0.071 0.360 0.088 0.354 0.082 0.350 0.087 0.357 0.094
LLRSum 0.318 0.067 0.329 0.068 0.354 0.085 0.359 0.081 0.372 0.096 0.364 0.097

SumOracle R-1 0.361 0.084 0.391 0.103 0.407 0.106 0.403 0.103 0.408 0.124 0.417 0.130
SumOracle R-2 0.349 0.090 0.385 0.106 0.398 0.113 0.394 0.108 0.403 0.129 0.411 0.136
SentOracle R-1 0.400 0.097 0.439 0.121 0.442 0.123 0.437 0.119 0.448 0.139 0.453 0.146
SentOracle R-2 0.368 0.109 0.416 0.134 0.422 0.136 0.420 0.131 0.430 0.152 0.437 0.158

Table 1: The performance of the basic systems and the performance of the oracle systems based on the
methods described in Section 4.2.1 and Section 4.2.2. The evaluation metric that each oracle optimizes
is shown in Bold.

Dataset # sents # unique # summaries # total
DUC 01 20.8 17.7 7498 224940
DUC 02 21.1 17.6 12048 710832
DUC 03 19.3 15.4 3448 103440
DUC 04 19.5 15.6 3270 163500
TAC 08 18.5 14.8 2436 107184
TAC 09 18.0 13.7 1328 63744

Table 2: Average number of sentences (# sents),
unique sentences (# unique), candidate summaries
per input (# summaries) and the total number of
candidate summaries for each dataset (# total).

Note that we consider the order of sentences in
Ai (generated from D) as a relatively unimportant
factor. Though two summaries with the same set
of sentences can have different ROUGE scores due
to the truncation of the last sentence, because the
majority of content covered is still the same, the
difference in ROUGE score is relatively small. In
order to generate other possible summaries, one
needs to swap the last sentence. However, the
total number of summaries per dataset is already
huge (see Table 2). Therefore, we do not generate
other candidate summaries, because it would cost
much more additional space, while the difference
in content is relatively small.

4.2.3 Comparison of the Oracle Systems

We examine the upper bounds of the two methods
described in Section 4.2.1 and Section 4.2.2. For
the first method, we design two oracle systems
that pick the basic summary with the highest
ROUGE-1 (R-1) and ROUGE-2 (R-2) (denoted
as SumOracle R-1 and SumOracle R-2). For the
second method, we design two oracle systems
that pick the best summary in terms of R-1 and
R-2 among the summary candidates (denoted as
SentOracle R-1 and SentOracle R-2). As shown in

Table 1, the advantage of the first two oracles over
ICSISumm is limited: on average 0.021/0.006 and
0.013/0.011 (R-1/R-2). However, the advantage
of the latter oracles over ICSISumm is much
larger: on average 0.060/0.022 and 0.039/0.034
(R-1/R-2). Clearly, system combination is more
promising if we combine the basic summaries at
the sentence level. Therefore, we adopt the latter
method to generate candidate summaries.

5 Features

We introduce the features used in our model
that selects among the candidate summaries.
Traditionally in summarization, features are
derived based on the input (denoted as I). In
our work, we propose a class of novel features
that compares the candidate summary to the set
of the basic summaries (denoted as H), where
H can be regarded as a hyper-summary of I .
This excels in the way that it takes advantage of
the consensus between systems. Moreover, we
propose system identity features, which capture
the fact that content from a better system should
have a higher chance to be selected.

Our model includes classical indicators of
content importance (e.g., frequency, locations) and
novel features that have been recently proposed for
other tasks. For example, we design features that
estimate the intrinsic importance of words from
a large corpus (Hong and Nenkova, 2014). We
also include features that compute the information
density of the first sentence that each word appears
in (Yang and Nenkova, 2014). These features are
specifically tailored for our task (see Section 5.2).

We classify our features into summary level,
word level and system identity features. Note that
we do not consider stopwords and do not perform
stemming. There are 360 features in our model.

110

5.1 Summary Level Features
Summary level features directly encode the
informativeness of the entire summary. Some of
them are initially proposed in Louis and Nenkova
(2013) that evaluates the summary content without
human models. Different from them, the features
in our work use not only I , but also H as
the “input” (except for the redundancy features).
“Input” refers to I or H in the rest of Section 5.
Distributional Similarity: These features
compute the distributional similarity (divergence)
between the n-gram (n = 1, 2) probability
distribution of the summary and that of the input
(I or H). Good summaries tend to have high
similarity and low divergence. We use three
measures: Kullback-Leibler (KL) divergence,
Jenson-Shannon (JS) divergence and cosine
similarity.

Let P and Q denote the n-gram distribution of
the summary and that of the input respectively.
Let pλ(w) be the probability of n-gram w in
distribution λ. The KL divergence KL(P ‖ Q)
and the JS divergence JS(P ‖ Q) are defined as:

KL(P ‖ Q) =
∑
w

pP (w) · log
pP (w)

pQ(w)
(1)

JS(P ‖ Q) =
1

2
KL(P ‖ A) +

1

2
KL(Q ‖ A) (2)

where A is the average of P and Q. Noticing
that KL divergence is not symmetric, both
KL(P ‖ Q) and KL(Q ‖ P) are computed.
In particular, smoothing is performed while
computing KL(Q ‖ P), where we use the same
setting as in Louis and Nenkova (2013).
Topic words: Good summaries tend to include
more topic words (TWs). We derive TWs using
the method described in the LLRSum system in
Section 4.1. For each summary S, we compute:
(1) the ratio of the words that are TWs to all words
in S; (2) the recall of TWs in S.
Sentence location: Sentences that appear at the
beginning of an article are likely to be more
critical. Greedy-based summarizers (ProbSum,
LLRSum, GreedyKL) also select important
sentences first. To capture these intuitions, we
set features over the sentences in a summary (S)
based on their locations. There are features that
indicate whether a sentence in S has appeared as
the first sentence in the input. We also set features
to indicate the normalized position of a sentence
in the documents of an input: by assigning 1 to
the first sentence, 0 to the last sentence. When

one sentence appears multiple times, the earliest
position is used. Features are then set on the
summary level, which equal to the mean of their
corresponding features on the sentence level over
all sentences in the summary S.
Redundancy: Redundancy correlates negatively
with content quality (Pitler et al., 2010). To
indicate redundancy, we compute the maximum
and average cosine similarity of all pairs of
sentences in the summaries. Summaries with
higher redundancy are expected to score higher.

5.2 Word Level Features

Better summaries should include words or phrases
that are of higher importance. Hence, we design
features to encode the overall importance of
unigrams and bigrams in a summary. We first
generate features for the n-grams (n = 1, 2) in a
summary S, then generate the feature vector vS

for S. The procedure is as follows:
Let t denote the unigram or bigram in a

summary. For each t that includes content words,
we form vt, where each component of vt is an
importance indicator of t. If t does not include
any content words, we set vt = 0. Let S′ denote
the unique n-grams in S and let L denote the
summary length. We compute two feature vectors:
vS1 = (

∑
t∈S vt)/L and vS2 = (

∑
t∈S′ vt)/L,

which are the coverage of n-grams by word token
and word type, normalized by summary length.
Finally, vS is formed by concatenating vS1 and
vS2 for unigrams and bigrams.

Below we describe the features in vt. Similar
to Section 5.1, the features are computed based on
both I and H . We also derive features based on
summary-article pairs from the NYT corpus.
Frequency related features: For each n-gram t,
we compute its probability, TF*IDF4, document
frequency (DF) and χ-square statistic from LLR
test. Another feature is set to be equal to DF
normalized by the number of input documents.
A binary feature is set to determine whether DF
is at least three, inspired by the observation that
document specific words should not be regarded
as informative (Mason and Charniak, 2011).

It has been shown that unimportant words of
an input should not be considered while scoring
the summary (Gupta et al., 2007; Mason and
Charniak, 2011). The features below are designed

4IDF is computed using the news articles between year
2004 and 2007 of the New York Times corpus.

111

capture this. Let the binary function b(t) denote
whether or not t includes topic words (which
approximate whether or not t is important),
features are set to be equal to the product of the
DF related features and b(t).
Word locations: The words that appear close to
the beginning of I or H are likely to be important.
Here for each n-gram token, we compute its
normalized locations in the documents. Then
for each n-gram type t, we compute its first,
average, last and average first location across its
occurrences in all documents of an input. Features
are also set to determine whether t has appeared
in the first sentence and the number of times t
appears in the first sentences of an input.
Information density of the first sentence:
The first sentence of an article can be either
informative or entertaining. Clearly, the words
that appear in an informative first sentence should
be assigned higher importance scores. To capture
this, we compute the importance score (called
information density in Yang and Nenkova (2014))
of the first sentence, that is defined as the number
of TWs divided by the number of words in the
sentence. For each t, we compute the maximal
and average of importance scores over all first
sentences that t appears in.
Global word importance: Some words are
globally important (e.g., “war”, “death”) or
unimportant (e.g., “Mr.”, “a.m.”) to humans,
independent of a particular input. Hong and
Nenkova (2014) proposed a class of methods to
estimate the global importance of words, based
on the change of word probabilities between the
summary-article pairs from the NYT corpus. The
importance are used as features for identifying
words that are used in human summaries. Here we
replicate the features used in that work, except that
we perform more careful pre-processings. This
class of features are set only for unigrams.

5.3 System Identity Features

For each basic system Ai, we compute the
sentence and n-gram overlap between S and the
summary from Ai (SAi). We hypothesize that
the quality (i.e., ROUGE score) of a summary is
positively (negatively) correlated to the overlap
between this summary and a good (bad) basic
summary of the same input. We design six
sentence and two word overlap features for each
system, which leads to a total of 32 features.

Sentence overlap: Let D0, DAi denote the set of
sentences in S and SAi , respectively. For each
system Ai, we set a feature |D0

⋂
DAi |/|D0|.

We further consider sentence lengths. Let l(D)
denote the total length of sentences in set D, we
set a feature l(D0

⋂
DAi)/l(D0) for each system

Ai. Lastly, we compute the binary version of
|D0

⋂
DAi |/|D0|.

Furthermore, we exclude the sentences that
appear in multiple basic summaries from D0, then
compute the three features above for the new D0.
System identity features might be more helpful in
selecting among the sentences that are generated
by only one of the systems.
N-gram overlap: We compute the fraction of
n-gram (n = 1, 2) tokens in S that appears in SAi .
The n-grams consisting of solely stopwords are
removed before computation.

6 Baseline Approaches

We present three summary combination methods
that are used as baselines:
Voting: We select sentences according to the total
number of times that they appear in all basic
summaries, from large to small. When there are
ties, we randomly pick an unselected sentence.
The procedure is repeated 100 times and the mean
ROUGE score is reported.
Summarization from Summaries: We
directly run ICSISumm and Greedy-KL over
the summaries from the basic systems.
Jensen-Shannon (JS) Divergence: We select
among the pool of candidate summaries. The
summary with the smallest JS divergence between
the summary and (1) the input (JS-I), or
(2) the hyper-summaries (JS-H) is selected.
Summary-input JS divergence is the best metric
to identify a better summarizer without human
references (Louis and Nenkova, 2009).

7 Experiments and Results

7.1 Experiment Settings
We use the DUC 03, 04 datasets as training and
development sets. The candidate summaries of
these two sets are used as training instances. There
are 80 input sets; each input includes an average of
3336 candidate summaries. During development,
we perform four-fold cross-validation. The DUC
01, 02 and TAC 08, 09 datasets are used as the
held-out test sets. We use two-sided Wilcoxon test
to compare the performance between two systems.

112

(a) ROUGE-1 of the proposed and the basic systems (b) ROUGE-2 of the proposed and the basic systems

(c) ROUGE-1 of the proposed and baseline approaches (d) ROUGE-2 of the proposed and baseline approaches

Figure 1: ROUGE scores of different systems on the DUC 2001–2004 and TAC 2008, 2009 datasets

We choose ROUGE-1 (R-1) as training labels,
as it outperforms using ROUGE-2 (R-2) as labels
(see Table 3). We suspect that the advantage of
R-1 is because it has higher sensitivity in capturing
the differences in content between summaries.5

In order to find a better learning method, we
have experimented with support vector regression
(SVR) (Drucker et al., 1997)6 and SVM-Rank
(Joachims, 1999).7 SVR has been used for
estimating sentence (Ouyang et al., 2011) or
document (Aker et al., 2010) importance in
summarization. SVM-Rank has been used for
ranking summaries according to their linguistic
qualities (Pitler et al., 2010). In SVM-Rank, only
the relative ranks between training instances of
an input are considered while learning the model.
Our experiment shows that SVR outperforms
SVM-Rank (see Table 3). This means that it is
useful to compare the summaries across different

5Recent methods that performs global optimization for
summarization mostly use R-1 while training (Lin and
Bilmes, 2011; Kulesza and Taskar, 2012; Sipos et al., 2012).

6We use the SVR model in SVMLight (Joachims, 1999)
with linear kernel and default parameter settings when trained
on R-1. When trained on R-2, we tune ε in loss function on
the developmenet set, because the default setting assigns the
same value to all data points.

7We use the SVM-Rank toolkit (Joachims, 2006) with
default parameter settings.

input sets and leverage the actual ROUGE scores.

Settings R-1 R-2
SVR + R-1 0.3986 0.1040
SVR + R-2 0.3890 0.1023
SVMRank + R-1 0.3932 0.0996
SVMRank + R-2 0.3854 0.0982

Table 3: Performance on the development set with
different models and training labels.

7.2 Comparing with the Basic Systems and
the Baseline Methods

We evaluate our model on the development set and
the test sets. As shown in Figure 1 (a) and Table
4, our model performs consistently better than
all basic systems on R-1. It performs similar to
ICSISumm and better than the other basic systems
on R-2 (see Figure 1 (b) and Table 4).

Apart from automatic evaluation, we also
manually evaluate the summaries using the
Pyramid method (Nenkova et al., 2007). This
method solicits annotators to score a summary
based on its coverage of summary content units,
which are identified from human references. Here
we evaluate the Pyramid scores of four systems:
our system, two best basic systems and the oracle

113

Dataset System R-1 R-2
DUC 03 ICSISumm 0.3813 0.1028

SumCombine 0.3959 0.1018
DUC 04 ICSISumm 0.3841 0.0978

SumCombine 0.3995 0.1048
DPP 0.3979 0.0962

RegSum 0.3857 0.0975
DUC 01 ICSISumm 0.3421 0.0785

SumCombine 0.3526† 0.0788
R2N2 ILP 0.3691 0.0787
PriorSum 0.3598 0.0789

DUC 02 ICSISumm 0.3733 0.0954
SumCombine 0.3823 0.0946

R2N2 ILP 0.3796 0.0888
PriorSum 0.3663 0.0897

ClusterCMRW 0.3855 0.0865
TAC 08 ICSISumm 0.3880 0.1186

SumCombine 0.3978 0.1208
Li et al. (2013) n/a 0.1235
A & M (2013) n/a 0.1230
Li et al. (2015) n/a 0.1184

TAC 09 ICSISumm 0.3931 0.1211
SumCombine 0.4009† 0.1200

Li et al. (2015) n/a 0.1277

Table 4: Performance comparison on six DUC
and TAC datasets. Bold indicates statistical
significant compared to ICSISumm (p < 0.05).
† indicates the difference is close to significant
compared to ICSISumm (0.05 ≤ p < 0.1).

on the TAC 08 dataset. Our model (Combine)
outperforms ICSISumm and Greedy-KL by 0.019
and 0.090, respectively (see Table 5).

Oracle Combine ICSISumm KL
Pyr. score 0.626 0.549 0.530 0.459

Table 5: The Pyramid score on the TAC 08 data.

Figure 1 (c), (d) compare our model with
the baseline approaches proposed in Section 6.
The baselines that only consider the consensus
between different systems perform poorly (voting,
summarization on summaries, JS-H). JS-I has the
best ROUGE-1 among baselines, while it is still
much inferior to our model. Therefore, effective
system combination appears to be difficult using
methods based on a single indicator.

7.3 Comparing with the State-of-the-art

Table 4 compares our model (SumCombine) with
the state-of-the-art systems. On the DUC 03
and 04 data, ICSISumm is among one of the
best systems. SumCombine performs significantly
better compared to it on R-1. We also achieve
a better performance compared to the other top

performing extractive systems (DPP (Kulesza and
Taskar, 2012), RegSum (Hong and Nenkova,
2014)) on the DUC 04 data.

On the DUC 01 and 02 data, the top performing
systems we find are R2N2 ILP (Cao et al., 2015a)
and PriorSum (Cao et al., 2015b); both of them
utilize neural networks. Comparing to these two,
SumCombine achieves a lower performance on
the DUC 01 data and a higher performance on
the DUC 02 data. It also has a slightly lower
R-1 and a higher R-2 compared to ClusterCMRW
(Wan and Yang, 2008), a graph-based system
that achieves the highest R-1 on the DUC 02
data. On the TAC 08 data, the top performing
systems (Li et al., 2013; Almeida and Martins,
2013) achieve the state-of-the-art performance
by sentence compression. Our model performs
extractive summarization, but still has similar R-2
compared to theirs.8 On the TAC 09 data, the
best system uses a supervised method that weighs
bigrams in the ILP framework by leveraging
external resources (Li et al., 2015). This system is
better than ours on the TAC 09 data and is inferior
to ours on the TAC 08 data.

Overall, our combination model achieves very
competitive performance, comparable to the
state-of-the-art on multiple benchmarks.

At last, we compare SumCombine to SSA (Pei
et al., 2012) and WCS (Wang and Li, 2012), the
models that perform system combination by rank
aggregation. The systems are evaluated on the
DUC 04 data. In order to compare with these two
papers, we truncate our summaries to 665 bytes
and report F1-score. Pei et al. (2012) report the
performance on 10 randomly selected input sets.
In order to have the same size of training data with
them, we conduct five-fold cross-validation.

System R-1 R-2 R-SU4
SumCombine 0.3943 0.1015 0.1411

SSA (Pei et al., 2012) 0.3977 0.0953 0.1394
WCS (Wang and Li, 2012) 0.3987 0.0961 0.1353

Table 6: Comparison with other combination
methods on the DUC 04 dataset.

As shown in Table 6, SumCombine performs
better than SSA and WCS on R-2 and R-SU4, but
not on R-1. It is worth noting that these three

8These papers report ROUGE-SU4 (R-SU4) (measures
skip bigram with maximum gap of 4) instead of R-1.
Our model has very similar R-SU4 (−0.0002/+0.0007)
compared to them.

114

Dev. Set DUC 01 DUC 02 TUC 08 TAC 09 Average
R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2 R-1 R-2

All features .3986 .1040 .3526 .0788 .3823 .0946 .3978 .1208 .4009 .1200 .3864 .1036
-summary .3946 .1014 .3469 .0779 .3760 .0872 .3950 .1185 .3988 .1191 .3823 .1008
-word .3946 .1002† .3429 .0733 .3787 .0919 .3939 .1172 .3988 .1232 .3829 .1012
-system .3964 .1022 .3483 .0776 .3772 .0895 .4009 .1193 .3936 .1110 .3833 .0999
-input .3822 .0956 .3433 .0764 .3786 .0912 .3858 .1148 .3960 .1159 .3772 .0988
-hyper-sum .3978 .1022 .3512 .0777 .3806 .0918 .3968 .1193 .3994 .1177 .3852 .1017
-global .3948 .1021 .3457 .0760 .3821 .0954 .3959 .1136 .4010 .1215 .3839 .1017

summary .3960 .1018 .3344 .0701 .3748 .0910 .3957 .1166 .4009 .1170 .3804 .0993
word .3919 .1006 .3492 .0765 .3784 .0905 .3956 .1166 .3956 .1146 .3821 .0998
system .3881 .0958 .3430 .0746 .3689 .0868 .3898 .1096 .3926 .1145 .3765 .0963
input .3979 .1009 .3410 .0729† .3764 .0904 .3907 .1129 .4015 .1189 .3815 .0992
hyper-sum .3852 .0952 .3447 .0725 .3665 .0823 .3871† .1080 .3906† .1140 .3748 .0944

Table 7: Performance after ablating features (row 2–7) or using a single class of features (row 8–12).
Bold and † represent statistical significant (p < 0.05) and close to significant (0.05 ≤ p < 0.1) compared
to using all features (two-sided Wilcoxon test).

systems cannot be directly compared, because
different basic systems are used. In fact, compared
to SumCombine, SSA and WCS achieve larger
improvements over the basic systems that are
used. This might be because ranker aggregation
is a better strategy, or because combining weaker
systems is easier to result in large improvements.

7.4 Effects of Features

We conduct two experiments to examine the
effectiveness of features (see Table 7). First, we
remove one class of feature at a time from the full
feature set. Second, we show the performance
of a single feature class. Apart from reporting
the performance on the development and the test
sets, we also show the macro average performance
across the five sets.9 This helps to understand the
contribution of different features in general.

Summary level, word level and system identity
features are all useful, with ablating them leads
to an average of 0.0031 to 0.0041 decrease on
R-1. Ablating summary and word level features
can lead to a significant decrease in performance
on some sets. If we use a single set of features,
then the summary and word level features turn out
to be more useful than the system identity features.

The word and summary level features compute
the content importance based on three sources:
the input, the basic summaries (hyper-sum) and
the New York Times corpus (global). We ablate
the features derived from these three sources
respectively. The input-based features are the most
important; removing them leads to a very large

9We do not compute the statistical significance for the
average score.

decrease in performance, especially on R-1. The
features derived from the basic summaries are also
effective; even though removing them only lead to
a small decrease in performance, we can observe
the decrease on all five sets. Ablating global
indicators leads to an average decrease of about
0.002 on R-1 and R-2.

Interestingly, for the same feature class, the
effectiveness vary to a great extent across different
datasets. For example, ablating word level features
decreases the R-2 significantly on the DUC 01
data, but increases the R-2 on the TAC 09 data.
However, by looking at the average performance,
it becomes clear that it is necessary to use all
features. The features computed based on the
input are identified as the most important.

8 Conclusion

In this paper, we present a pipeline that combines
the summaries from four portable unsupervised
summarizers. We show that system combination
is very promising in improving content quality.
We propose a supervised model to select among
the candidate summaries. Experiments show
that our model performs better than the systems
that are combined, which is comparable to the
state-of-the-art on multiple benchmarks.

Acknowledgements

We thank the reviewers for their insightful and
constructive comments. Kai Hong would like
to thank Yumeng Ou, Mukund Raghothaman
and Chen Sun for providing feedback on earlier
version of this paper. This work was funded by
NSF CAREER award IIS 0953445.

115

References
Ahmet Aker, Trevor Cohn, and Robert Gaizauskas.

2010. Multi-document summarization using A*
search and discriminative learning. In Proceedings
of EMNLP, pages 482–491.

Miguel Almeida and André F.T. Martins. 2013.
Fast and robust compressive summarization with
dual decomposition and multi-task learning. In
Proceedings of ACL, pages 196–206.

Srinivas Bangalore, German Bordel, and Giuseppe
Riccardi. 2001. Computing consensus translation
from multiple machine translation systems. In
Proceedings of ASRU, pages 351–354.

Ziqiang Cao, Furu Wei, Li Dong, Sujian Li, and
Ming Zhou. 2015a. Ranking with recursive neural
networks and its application to multi-document
summarization. In Proceedings of AAAI, pages
2153–2159.

Ziqiang Cao, Furu Wei, Sujian Li, Wenjie Li, Ming
Zhou, and Houfeng Wang. 2015b. Learning
summary prior representation for extractive
summarization. In Proceedings of ACL: Short
Papers, pages 829–833.

Hakan Ceylan, Rada Mihalcea, Umut Özertem, Elena
Lloret, and Manuel Palomar. 2010. Quantifying
the limits and success of extractive summarization
systems across domains. In Proceedings of ACL,
pages 903–911.

John M. Conroy, Judith D. Schlesinger, and Dianne P.
O’Leary. 2006. Topic-focused multi-document
summarization using an approximate oracle score.
In Proceedings of COLING/ACL, pages 152–159.

Harris Drucker, Chris J.C. Burges, Linda Kaufman,
Alex Smola, Vladimir Vapnik, et al. 1997. Support
vector regression machines. In Proceedings of
NIPS, volume 9, pages 155–161.

Gunes Erkan and Dragomir R. Radev. 2004. Lexrank:
graph-based lexical centrality as salience in text
summarization. Journal of Artificial Intelligence
Research, 22(1):457–479.

Jonathan G. Fiscus. 1997. A post-processing system
to yield reduced word error rates: Recognizer output
voting error reduction (ROVER). In Proceedings of
ASRU, pages 347–354.

Robert Frederking and Sergei Nirenburg. 1994. Three
heads are better than one. In Proceedings of ANLP,
pages 95–100.

Dan Gillick, Benoit Favre, Dilek Hakkani-Tur, Berndt
Bohnet, Yang Liu, and Shasha Xie. 2009. The
ICSI/UTD Summarization System at TAC 2009. In
Proceedings of TAC.

Surabhi Gupta, Ani Nenkova, and Dan Jurafsky.
2007. Measuring importance and query relevance
in topic-focused multi-document summarization. In
Proceedings of ACL, pages 193–196.

Aria Haghighi and Lucy Vanderwende. 2009.
Exploring content models for multi-document
summarization. In Proceedings of HLT-NAACL,
pages 362–370.

John C. Henderson and Eric Brill. 1999. Exploiting
diversity for natural language processing:
Combining parsers. In Proceedings of EMNLP,
pages 187–194.

Kai Hong and Ani Nenkova. 2014. Improving
the estimation of word importance for news
multi-document summarization. In Proceedings of
EACL, pages 712–721.

Kai Hong, John M. Conroy, Benoit Favre, Alex
Kulesza, Hui Lin, and Ani Nenkova. 2014. A
repositary of state of the art and competitive baseline
summaries for generic news summarization. In
Proceedings of LREC, pages 1608–1616.

Thorsten Joachims. 1999. Making large-scale SVM
learning practical. In B. Schölkopf, C. Burges,
and A. Smola, editors, Advances in Kernel Methods
- Support Vector Learning, chapter 11, pages
169–184. MIT Press, Cambridge, MA.

Thorsten Joachims. 2006. Training linear svms in
linear time. In Proceedings of KDD, pages 217–226.

Alex Kulesza and Ben Taskar. 2012. Determinantal
point processes for machine learning. Foundations
and Trends in Machine Learning, 5(2–3).

Chen Li, Fei Liu, Fuliang Weng, and Yang Liu.
2013. Document summarization via guided
sentence compression. In Proceedings of EMNLP,
pages 490–500.

Chen Li, Yang Liu, and Lin Zhao. 2015.
Using external resources and joint learning for
bigram weighting in ilp-based multi-document
summarization. In Proceedings of NAACL-HLT,
pages 778–787.

Hui Lin and Jeff Bilmes. 2011. A class of
submodular functions for document summarization.
In Proceedings of ACL, pages 510–520.

Chin-Yew Lin and Eduard Hovy. 2000. The
automated acquisition of topic signatures for text
summarization. In Proceedings of COLING, pages
495–501.

Chin-Yew Lin. 2004. Rouge: A package for
automatic evaluation of summaries. In Text
Summarization Branches Out: Proceedings of the
ACL-04 Workshop, pages 74–81.

Marina Litvak, Mark Last, and Menahem Friedman.
2010. A new approach to improving multilingual
summarization using a genetic algorithm. In
Proceedings of ACL, pages 927–936.

116

Annie Louis and Ani Nenkova. 2009. Automatically
evaluating content selection in summarization
without human models. In Proceedings of EMNLP,
pages 306–314.

Annie Louis and Ani Nenkova. 2013. Automatically
assessing machine summary content without
a gold standard. Computational Linguistics,
39(2):267–300.

Lidia Mangu, Eric Brill, and Andreas Stolcke.
2000. Finding consensus in speech recognition:
word error minimization and other applications of
confusion networks. Computer Speech & Language,
14(4):373–400.

Rebecca Mason and Eugene Charniak. 2011.
Extractive multi-document summaries should
explicitly not contain document-specific content.
In Proceedings of the Workshop on Automatic
Summarization for Different Genres, Media, and
Languages, pages 49–54.

Ryan McDonald. 2007. A study of global inference
algorithms in multi-document summarization. In
Proceedings of ECIR, pages 557–564.

Ahmed A Mohamed and Sanguthevar Rajasekaran.
2005. A text summarizer based on meta-search. In
Proceedings of ISSPIT, pages 670–674.

Ani Nenkova, Lucy Vanderwende, and Kathleen
McKeown. 2006. A compositional context sensitive
multi-document summarizer: exploring the factors
that influence summarization. In Proceedings of
SIGIR, pages 573–580.

Ani Nenkova, Rebecca Passonneau, and Kathleen
McKeown. 2007. The pyramid method:
Incorporating human content selection variation in
summarization evaluation. ACM Transactions on
Speech and Language Processing (TSLP), 4(2):4.

You Ouyang, Wenjie Li, Sujian Li, and Qin Lu.
2011. Applying regression models to query-focused
multi-document summarization. Inf. Process.
Manage., 47(2):227–237, March.

Karolina Owczarzak, John M. Conroy, Hoa Trang
Dang, and Ani Nenkova. 2012. An assessment
of the accuracy of automatic evaluation in
summarization. In Proceedings of NAACL-HLT
2012: Workshop on Evaluation Metrics and System
Comparison for Automatic Summarization, pages
1–9.

Yulong Pei, Wenpeng Yin, Qifeng Fan, and Lian’en
Huang. 2012. A supervised aggregation framework
for multi-document summarization. In Proceedings
of COLING, pages 2225–2242.

Emily Pitler, Annie Louis, and Ani Nenkova.
2010. Automatic evaluation of linguistic quality in
multi-document summarization. In Proceedings of
ACL, pages 544–554.

Peter A. Rankel, John M. Conroy, Hoa Trang Dang,
and Ani Nenkova. 2013. A decade of automatic
content evaluation of news summaries: Reassessing
the state of the art. In Proceedings of ACL, pages
131–136.

Kenji Sagae and Alon Lavie. 2006. Parser
combination by reparsing. In Proceedings of
NAACL: Short Papers, pages 129–132.

Horacio Saggion, Juan-Manuel Torres-Moreno, Iria da
Cunha, and Eric SanJuan. 2010. Multilingual
summarization evaluation without human models.
In Proceedings of COLING, pages 1059–1067.

Evan Sandhaus. 2008. The new york times annotated
corpus. Linguistic Data Consortium, Philadelphia,
PA.

Ruben Sipos, Pannaga Shivaswamy, and Thorsten
Joachims. 2012. Large-margin learning of
submodular summarization models. In Proceedings
of EACL, pages 224–233.

Vishal Thapar, Ahmed A Mohamed, and Sanguthevar
Rajasekaran. 2006. Consensus text summarizer
based on meta-search algorithms. In Proceedings
of ISSPIT, pages 403–407.

Xiaojun Wan and Jianwu Yang. 2008. Multi-document
summarization using cluster-based link analysis. In
Proceedings of SIGIR, pages 299–306.

Dingding Wang and Tao Li. 2012. Weighted
consensus multi-document summarization.
Information Processing & Management,
48(3):513–523.

Yinfei Yang and Ani Nenkova. 2014. Detecting
information-dense texts in multiple news domains.
In Proceedings of AAAI, pages 1650–1656.

Wen-tau Yih, Joshua Goodman, Lucy Vanderwende,
and Hisami Suzuki. 2007. Multi-document
summarization by maximizing informative
content-words. In Proceedings of IJCAI, pages
1776–1782.

117

