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Abstract

Recurrent neural networks (RNNs) are con-
nectionist models of sequential data that are
naturally applicable to the analysis of natural
language. Recently, “depth in space” — as
an orthogonal notion to “depth in time” — in
RNNs has been investigated by stacking mul-
tiple layers of RNNs and shown empirically
to bring a temporal hierarchy to the architec-
ture. In this work we apply these deep RNNs
to the task of opinion expression extraction
formulated as a token-level sequence-labeling
task. Experimental results show that deep,
narrow RNNs outperform traditional shallow,
wide RNNs with the same number of parame-
ters. Furthermore, our approach outperforms
previous CRF-based baselines, including the
state-of-the-art semi-Markov CRF model, and
does so without access to the powerful opinion
lexicons and syntactic features relied upon by
the semi-CRF, as well as without the standard
layer-by-layer pre-training typically required
of RNN architectures.

1 Introduction

Fine-grained opinion analysis aims to detect the sub-
jective expressions in a text (e.g. “hate”) and to char-
acterize their intensity (e.g. strong) and sentiment (e.g.
negative) as well as to identify the opinion holder (the
entity expressing the opinion) and the target, or topic,
of the opinion (i.e. what the opinion is about) (Wiebe et
al., 2005). Fine-grained opinion analysis is important
for a variety of NLP tasks including opinion-oriented
question answering and opinion summarization. As a
result, it has been studied extensively in recent years.

In this work, we focus on the detection of opinion ex-
pressions — both direct subjective expressions (DSEs)
and expressive subjective expressions (ESEs) as de-
fined in Wiebe et al. (2005). DSEs consist of explicit
mentions of private states or speech events expressing
private states; and ESEs consist of expressions that in-
dicate sentiment, emotion, etc., without explicitly con-
veying them. An example sentence shown in Table 1 in
which the DSE “has refused to make any statements”
explicitly expresses an opinion holder’s attitude and the

The committee , as usual , has
O O O B ESE I ESE O B DSE

refused to make any statements .
I DSE I DSE I DSE I DSE I DSE O

Table 1: An example sentence with labels

ESE “as usual” indirectly expresses the attitude of the
writer.

Opinion extraction has often been tackled as a se-
quence labeling problem in previous work (e.g. Choi
et al. (2005)). This approach views a sentence as
a sequence of tokens labeled using the conventional
BIO tagging scheme: B indicates the beginning of an
opinion-related expression, I is used for tokens inside
the opinion-related expression, and O indicates tokens
outside any opinion-related class. The example sen-
tence in Table 1 shows the appropriate tags in the BIO
scheme. For instance, the ESE “as usual” results in the
tags B ESE for “as” and I ESE for “usual”.

Variants of conditional random field (CRF) ap-
proaches have been successfully applied to opinion ex-
pression extraction using this token-based view (Choi
et al., 2005; Breck et al., 2007): the state-of-the-art
approach is the semiCRF, which relaxes the Marko-
vian assumption inherent to CRFs and operates at the
phrase level rather than the token level, allowing the in-
corporation of phrase-level features (Yang and Cardie,
2012). The success of the CRF- and semiCRF-based
approaches, however, hinges critically on access to an
appropriate feature set, typically based on constituent
and dependency parse trees, manually crafted opinion
lexicons, named entity taggers and other preprocessing
components (see Yang and Cardie (2012) for an up-to-
date list).

Distributed representation learners provide a differ-
ent approach to learning in which latent features are
modeled as distributed dense vectors of hidden lay-
ers. A recurrent neural network (RNN) is one such
learner that can operate on sequential data of variable
length, which means it can also be applied as a se-
quence labeler. Moreover, bidirectional RNNs incor-
porate information from preceding as well as follow-
ing tokens (Schuster and Paliwal, 1997) while recent
advances in word embedding induction (Collobert and
Weston, 2008; Mnih and Hinton, 2007; Mikolov et
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al., 2013; Turian et al., 2010) have enabled more ef-
fective training of RNNs by allowing a lower dimen-
sional dense input representation and hence, more com-
pact networks (Mikolov et al., 2010; Mesnil et al.,
2013). Finally, deep recurrent networks, a type of
RNN with multiple stacked hidden layers, are shown
to naturally employ a temporal hierarchy with multi-
ple layers operating at different time scales (Hermans
and Schrauwen, 2013): lower levels capture short term
interactions among words; higher layers reflect inter-
pretations aggregated over longer spans of text. When
applied to natural language sentences, such hierarchies
might better model the multi-scale language effects that
are emblematic of natural languages, as suggested by
previous results (Hermans and Schrauwen, 2013).

Motivated by the recent success of deep architectures
in general and deep recurrent networks in particular, we
explore an application of deep bidirectional RNNs —
henceforth deep RNNs — to the task of opinion ex-
pression extraction. For both DSE and ESE detection,
we show that such models outperform conventional,
shallow (uni- and bidirectional) RNNs as well as previ-
ous CRF-based state-of-the-art baselines, including the
semiCRF model.

In the rest of the paper we discuss related work
(Section 2) and describe the architecture and training
methods for recurrent neural networks (RNNs), bidi-
rectional RNNs, and deep (bidirectional) RNNs (Sec-
tion 3). We present experiments using a standard cor-
pus for fine-grained opinion extraction in Section 4.

2 Related Work

Opinion extraction. Early work on fine-grained
opinion extraction focused on recognizing subjective
phrases (Wilson et al., 2005; Munson et al., 2005).
Breck et al. (2007), for example, formulated the prob-
lem as a token-level sequence-labeling problem and ap-
ply a CRF-based approach, which significantly outper-
formed previous baselines. Choi et al. (2005) extended
the sequential prediction approach to jointly identify
opinion holders; Choi and Cardie (2010) jointly de-
tected polarity and intensity along with the opinion ex-
pression. Reranking approaches have also been ex-
plored to improve the performance of a single sequence
labeler (Johansson and Moschitti, 2010; Johansson and
Moschitti, 2011). More recent work relaxes the Marko-
vian assumption of CRFs to capture phrase-level inter-
actions, significantly improving upon the token-level
labeling approach (Yang and Cardie, 2012). In par-
ticular, Yang and Cardie (2013) propose a joint infer-
ence model to jointly detect opinion expressions, opin-
ion holders and targets, as well as the relations among
them, outperforming previous pipelined approaches.

Deep learning. Recurrent neural networks (Elman,
1990) constitute one important class of naturally deep
architecture that has been applied to many sequential
prediction tasks. In the context of NLP, recurrent neu-

ral networks view a sentence as a sequence of tokens
and have been successfully applied to tasks such as lan-
guage modeling (Mikolov et al., 2011) and spoken lan-
guage understanding (Mesnil et al., 2013). Since clas-
sical recurrent neural networks only incorporate infor-
mation from the past (i.e. preceding tokens), bidirec-
tional variants have been proposed to incorporate in-
formation from both the past and the future (i.e. sub-
sequent tokens) (Schuster and Paliwal, 1997). Bidirec-
tionality is especially useful for NLP tasks, since infor-
mation provided by the following tokens is generally
helpful (and sometimes essential) when making a deci-
sion on the current token.

Stacked recurrent neural networks have been pro-
posed as a way of constructing deep RNNs (Schmidhu-
ber, 1992; El Hihi and Bengio, 1995). Careful empir-
ical investigation of this architecture showed that mul-
tiple layers in the stack can operate at different time
scales (Hermans and Schrauwen, 2013). Pascanu et al.
(2013) explore other ways of constructing deep RNNs
that are orthogonal to the concept of stacking layers on
top of each other. In this work, we focus on the stacking
notion of depth.

3 Methodology
This section describes the architecture and training
methods for the deep bidirectional recurrent networks
that we propose for the task of opinion expression min-
ing. Recurrent neural networks are presented in 3.1,
bidirectionality is introduced in 3.2, and deep bidirec-
tional RNNs, in 3.3.

3.1 Recurrent Neural Networks
A recurrent neural network (Elman, 1990) is a class of
neural network that has recurrent connections, which
allow a form of memory. This makes them applica-
ble for sequential prediction tasks with arbitrary spatio-
temporal dimensions. Thus, their structure fits many
NLP tasks, when the interpretation of a single sentence
is viewed as analyzing a sequence of tokens. In this
work, we focus our attention on only Elman-type net-
works (Elman, 1990).

In an Elman-type network, the hidden layer ht at
time step t is computed from a nonlinear transforma-
tion of the current input layer xt and the previous hid-
den layer ht−1. Then, the final output yt is computed
using the hidden layer ht. One can interpret ht as an in-
termediate representation summarizing the past, which
is used to make a final decision on the current input.

More formally, given a sequence of vectors
{xt}t=1..T , an Elman-type RNN operates by comput-
ing the following memory and output sequences:

ht = f(Wxt + V ht−1 + b) (1)
yt = g(Uht + c) (2)

where f is a nonlinear function, such as the sigmoid
function and g is the output nonlinearity, such as the
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Figure 1: Recurrent neural networks. Each black, orange and red node denotes an input, hidden or output layer,
respectively. Solid and dotted lines denote the connections of forward and backward layers, respectively. Top:
Shallow unidirectional (left) and bidirectional (right) RNN. Bottom: 3-layer deep unidirectional (left) and bidirec-
tional (right) RNN.

softmax function. W and V are weight matrices be-
tween the input and hidden layer, and among the hidden
units themselves (connecting the previous intermediate
representation to the current one), respectively, while
U is the output weight matrix. b and c are bias vec-
tors connected to hidden and output units, respectively.
As a base case for the recursion in Equation 1, h0 is
assumed to be 0.

Training an RNN can be done by optimizing a dis-
criminative objective (e.g. the cross entropy for classifi-
cation tasks) with a gradient-based method. Backprop-
agation through time can be used to efficiently com-
pute the gradients (Werbos, 1990). This method is es-
sentially equivalent to unfolding the network in time
and using backpropagation as in feedforward neural
networks, while sharing the connection weights across
different time steps. The Elman-style RNN is shown in
Figure 1, top left.

3.2 Bidirectionality

Observe that with the above definition of RNNs, we
have information only about the past, when making a
decision on xt. This is limiting for most NLP tasks.
As a simple example, consider the two sentences: “I
did not accept his suggestion” and “I did not go to
the rodeo”. The first has a DSE phrase (“did not ac-
cept”) and the second does not. However, any such
RNN will assign the same labels for the words “did”
and “not” in both sentences, since the preceding se-
quences (past) are the same: the Elman-style unidirec-

tional RNNs lack the representational power to model
this task. A simple way to work around this problem
is to include a fixed-size future context around a single
input vector (token). However, this approach requires
tuning the context size, and ignores future information
from outside of the context window. Another way to
incorporate information about the future is to add bidi-
rectionality to the architecture, referred as the bidirec-
tional RNN (Schuster and Paliwal, 1997):

−→
h t = f(

−→
Wxt +

−→
V
−→
h t−1 +

−→
b ) (3)

←−
h t = f(

←−
Wxt +

←−
V
←−
h t+1 +

←−
b ) (4)

yt = g(U→
−→
h t + U←

←−
h t + c) (5)

where
−→
W ,
−→
V and

−→
b are the forward weight matri-

ces and bias vector as before;
←−
W ,
←−
V and

←−
b are their

backward counterparts; U→, U← are the output ma-
trices; and c is the output bias.1 Again, we assume−→
h 0 =

←−
h T+1 = 0. In this setting

−→
h t and

←−
h t can

be interpreted as a summary of the past, and the future,
respectively, around the time step t. When we make
a decision on an input vector, we employ the two in-
termediate representations

−→
h t and

←−
h t of the past and

1As a convention, we adopt the following notation
throughout the paper: Superscript arrows for vectors disam-
biguate between forward and backward representations. Su-
perscript arrows for matrices denote the resulting vector rep-
resentations (connection outputs), and subscript arrows for
matrices denote incoming vector representations (connection
inputs). We omit subscripts when there is no ambiguity.
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the future. (See Figure 1, top right.) Therefore in the
bidirectional case, we have perfect information about
the sequence (ignoring the practical difficulties about
capturing long term dependencies, caused by vanishing
gradients), whereas the classical Elman-type network
uses only partial information as described above.

Note that the forward and backward parts of the net-
work are independent of each other until the output
layer when they are combined. This means that during
training, after backpropagating the error terms from the
output layer to the forward and backward hidden lay-
ers, the two parts can be thought of as separate, and
each trained with the classical backpropagation through
time (Werbos, 1990).

3.3 Depth in Space
Recurrent neural networks are often characterized as
having depth in time: when unfolded, they are equiv-
alent to feedforward neural networks with as many
hidden layers as the number tokens in the input se-
quence (with shared connections across multiple layers
of time). However, this notion of depth likely does not
involve hierarchical processing of the data: across dif-
ferent time steps, we repeatedly apply the same trans-
formation to compute the memory contribution of the
input (W ), to compute the response value from the cur-
rent memory (U ) and to compute the next memory vec-
tor from the previous one (V ). Therefore, assuming the
input vectors {xt} together lie in the same representa-
tion space, as do the output vectors {yt}, hidden rep-
resentations {ht} lie in the same space as well. As a
result, they do not necessarily become more and more
abstract, hierarchical representations of one another as
we traverse in time. However in the more conventional,
stacked deep learners (e.g. deep feedforward nets), an
important benefit of depth is the hierarchy among hid-
den representations: every hidden layer conceptually
lies in a different representation space, and constitutes
a more abstract and higher-level representation of the
input (Bengio, 2009).

In order to address these concerns, we investi-
gate deep RNNs, which are constructed by stacking
Elman-type RNNs on top of each other (Hermans and
Schrauwen, 2013). Intuitively, every layer of the deep
RNN treats the memory sequence of the previous layer
as the input sequence, and computes its own memory
representation.

More formally, we have:
−→
h

(i)
t = f(

−→
W (i)
→
−→
h

(i−1)
t +

−→
W (i)
←
←−
h

(i−1)
t

+
−→
V (i)−→h (i)

t−1 +
−→
b (i)) (6)

←−
h

(i)
t = f(

←−
W (i)
→
−→
h

(i−1)
t +

←−
W (i)
←
←−
h

(i−1)
t

+
←−
V (i)←−h (i)

t+1 +
←−
b (i)) (7)

when i > 1 and
−→
h

(1)
t = f(

−→
W (1)xt +

−→
V (1)−→h (1)

t−1 +
−→
b (1)) (8)

←−
h

(1)
t = f(

←−
W (1)xt +

←−
V (1)←−h (1)

t+1 +
←−
b (1)) (9)

Importantly, note that both forward and backward rep-
resentations are employed when computing the forward
and backward memory of the next layer.

Two alternatives for the output layer computations
are to employ all memory layers or only the last. In
this work we adopt the second approach:

yt = g(U→
−→
h

(L)
t + U←

←−
h

(L)
t + c) (10)

whereL is the number of layers. Intuitively, connecting
the output layer to only the last hidden layer forces the
architecture to capture enough high-level information
at the final layer for producing the appropriate output-
layer decision.

Training a deep RNN can be conceptualized as in-
terleaved applications of the conventional backprop-
agation across multiple layers, and backpropagation
through time within a single layer.

The unidirectional and bidirectional deep RNNs are
depicted in the bottom half of Figure 1.

Hypotheses. In general, we expected that the deep
RNNs would show the most improvement over shal-
low RNNS for ESEs — phrases that implicitly convey
subjectivity. Existing research has shown that these
are harder to identify than direct expressions of sub-
jectivity (DSEs): they are variable in length and in-
volve terms that, in many (or most) contexts, are neu-
tral with respect to sentiment and subjectivity. As a re-
sult, models that do a better job interpreting the context
should be better at disambiguating subjective vs. non-
subjective uses of phrases involving common words
(e.g. “as usual”, “in fact”). Whether or not deep RNNs
would be powerful enough to outperform the state-of-
the-art semiCRF was unclear, especially if the semi-
CRF is given access to the distributed word represen-
tations (embeddings) employed by the deep RNNs. In
addition, the semiCRF has access to parse tree informa-
tion and opinion lexicons, neither of which is available
to the deep RNNs.

4 Experiments
Activation Units. We employ the standard softmax
activation for the output layer: g(x) = exi/

∑
j e

xj .
For the hidden layers we use the rectifier linear ac-
tivation: f(x) = max{0, x}. Experimentally, recti-
fier activation gives better performance, faster conver-
gence, and sparse representations. Previous work also
reported good results when training deep neural net-
works using rectifiers, without a pretraining step (Glo-
rot et al., 2011).

Data. We use the MPQA 1.2 corpus (Wiebe et al.,
2005) (535 news articles, 11,111 sentences) that is
manually annotated with both DSEs and ESEs at the
phrase level. As in previous work, we separate 135
documents as a development set and employ 10-fold
CV over the remaining 400 documents. The develop-
ment set is used during cross validation to do model
selection.

723



Layers |h| Precision Recall F1
Prop. Bin. Prop. Bin. Prop Bin.

Shallow 36 62.24 65.90 65.63* 73.89* 63.83 69.62
Deep 2 29 63.85* 67.23* 65.70* 74.23* 64.70* 70.52*
Deep 3 25 63.53* 67.67* 65.95* 73.87* 64.57* 70.55*
Deep 4 22 64.19* 68.05* 66.01* 73.76* 64.96* 70.69*
Deep 5 21 60.65 61.67 56.83 69.01 58.60 65.06
Shallow 200 62.78 66.28 65.66* 74.00* 64.09 69.85
Deep 2 125 62.92* 66.71* 66.45* 74.70* 64.47 70.36
Deep 3 100 65.56* 69.12* 66.73* 74.69* 66.01* 71.72*
Deep 4 86 61.76 65.64 63.52 72.88* 62.56 69.01
Deep 5 77 61.64 64.90 62.37 72.10 61.93 68.25

Table 2: Experimental evaluation of RNNs for DSE extraction

Layers |h| Precision Recall F1
Prop. Bin. Prop. Bin. Prop Bin.

Shallow 36 51.34 59.54 57.60 72.89* 54.22 65.44
Deep 2 29 51.13 59.94 61.20* 75.37* 55.63* 66.64*
Deep 3 25 53.14* 61.46* 58.01 72.50 55.40* 66.36*
Deep 4 22 51.48 60.59* 59.25* 73.22 54.94 66.15*
Deep 5 21 49.67 58.42 48.98 65.36 49.25 61.61
Shallow 200 52.20* 60.42* 58.11 72.64 54.75 65.75
Deep 2 125 51.75* 60.75* 60.69* 74.39* 55.77* 66.79*
Deep 3 100 52.04* 60.50* 61.71* 76.02* 56.26* 67.18*
Deep 4 86 50.62* 58.41* 53.55 69.99 51.98 63.60
Deep 5 77 49.90* 57.82 52.37 69.13 51.01 62.89

Table 3: Experimental evaluation of RNNs for ESE extraction

Evaluation Metrics. We use precision, recall and F-
measure for performance evaluation. Since the bound-
aries of expressions are hard to define even for human
annotators (Wiebe et al., 2005), we use two soft notions
of the measures: Binary Overlap counts every over-
lapping match between a predicted and true expres-
sion as correct (Breck et al., 2007; Yang and Cardie,
2012), and Proportional Overlap imparts a partial cor-
rectness, proportional to the overlapping amount, to
each match (Johansson and Moschitti, 2010; Yang and
Cardie, 2012). All statistical comparisons are done us-
ing a two-sided paired t-test with a confidence level of
α = .05.

Baselines (CRF and SEMICRF). As baselines, we
use the CRF-based method of Breck et al. (2007)
and the SEMICRF-based method of Yang and Cardie
(2012), which is the state-of-the-art in opinion expres-
sion extraction. Features that the baselines use are
words, part-of-speech tags and membership in a manu-
ally constructed opinion lexicon (within a [-1, +1] con-
text window). Since SEMICRF relaxes the Markovian
assumption and operates at the segment-level instead
of the token-level, it also has access to parse trees of
sentences to generate candidate segments (Yang and
Cardie, 2012).

Word Vectors (+VEC). We also include versions of
the baselines that have access to pre-trained word vec-
tors. In particular, CRF+VEC employs word vectors
as continuous features per every token. Since SEMI-
CRF has phrase-level rather than word-level features,
we simply take the mean of every word vector for a
phrase-level vector representation for SEMICRF+VEC
as suggested in Mikolov et al. (2013).

In all of our experiments, we keep the word vec-
tors fixed (i.e. do not finetune) to reduce the degree
of freedom of our models. We use the publicly avail-
able 300-dimensional word vectors of Mikolov et al.
(2013), trained on part of the Google News dataset
(∼100B words). Preliminary experiments with other
word vector representations such as Collobert-Weston
(2008) embeddings or HLBL (Mnih and Hinton, 2007)
provided poorer results (∼ −3% difference in propor-
tional and binary F1).

Regularizer. We do not employ any regularization
for smaller networks (∼24,000 parameters) because we
have not observed strong overfitting (i.e. the differ-
ence between training and test performance is small).
Larger networks are regularized with the recently pro-
posed dropout technique (Hinton et al., 2012): we ran-
domly set entries of hidden representations to 0 with
a probability called the dropout rate, which is tuned
over the development set. Dropout prevents learned
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Model Precision Recall F1
Prop. Bin. Prop. Bin. Prop Bin.

DSE CRF 74.96* 82.28* 46.98 52.99 57.74 64.45
semiCRF 61.67 69.41 67.22* 73.08* 64.27 71.15*
CRF +vec 74.97* 82.43* 49.47 55.67 59.59 66.44
semiCRF +vec 66.00 71.98 60.96 68.13 63.30 69.91
Deep RNN 3 100 65.56 69.12 66.73* 74.69* 66.01* 71.72*

ESE CRF 56.08 68.36 42.26 51.84 48.10 58.85
semiCRF 45.64 69.06 58.05 64.15 50.95 66.37*
CRF +vec 57.15* 69.84* 44.67 54.38 50.01 61.01
semiCRF +vec 53.76 70.82* 52.72 61.59 53.10 65.73
Deep RNN 3 100 52.04 60.50 61.71* 76.02* 56.26* 67.18*

Table 4: Comparison of Deep RNNs to state-of-the-art (semi)CRF baselines for DSE and ESE detection

features from co-adapting, and it has been reported
to yield good results when training deep neural net-
works (Krizhevsky et al., 2012; Dahl et al., 2013).

Network Training. We use the standard multiclass
cross-entropy as the objective function when training
the neural networks. We use stochastic gradient de-
scent with momentum with a fixed learning rate (.005)
and a fixed momentum rate (.7). We update weights
after minibatches of 80 sentences. We run 200 epochs
for training. Weights are initialized from small random
uniform noise. We experiment with networks of vari-
ous sizes, however we have the same number of hidden
units across multiple forward and backward hidden lay-
ers of a single RNN. We do not employ a pre-training
step; deep architectures are trained with the supervised
error signal, even though the output layer is connected
to only the final hidden layer. With these configura-
tions, every architecture successfully converges with-
out any oscillatory behavior. Additionally, we employ
early stopping for the neural networks: out of all itera-
tions, the model with the best development set perfor-
mance (Proportional F1) is selected as the final model
to be evaluated.

4.1 Results and Discussion

Bidirectional vs. Unidirectional. Although our fo-
cus is on bidirectional RNNs, we first confirm that the
SHALLOW bidirectional RNN outperforms a (shallow)
unidirectional RNN for both DSE and ESE recogni-
tion. To make the comparison fair, each network has
the same number of total parameters: we use 65 hid-
den units for the unidirectional, and 36 for the bidirec-
tional network, respectively. Results are as expected:
the bidirectional RNN obtains higher F1 scores than the
unidirectional RNN — 63.83 vs. 60.35 (proportional
overlap) and 69.62 vs. 68.31 (binary overlap) for DSEs;
54.22 vs. 51.51 (proportional) and 65.44 vs. 63.65 (bi-
nary) for ESEs. All differences are statistically signif-
icant at the 0.05 level. Thus, we will not include com-
parisons to the unidirectional RNNs in the remaining
experiments.

Adding Depth. Next, we quantitatively investigate
the effects of adding depth to RNNs. Tables 2
and 3 show the evaluation of RNNs of various depths
and sizes. In both tables, the first group networks
have approximately 24,000 parameters and the second
group networks have approximately 200,000 parame-
ters. Since all RNNs within a group have approxi-
mately the same number of parameters, they grow nar-
rower as they get deeper. Within each group, bold
shows the best result with an asterisk denoting statis-
tically indistinguishable performance with respect to
the best. As noted above, all statistical comparisons
use a two-sided paired t-test with a confidence level of
α = .05.

In both DSE and ESE detection and for larger net-
works (bottom set of results), 3-layer RNNs provide the
best results. For smaller networks (top set of results),
2, 3 and 4-layer RNNs show equally good performance
for certain sizes and metrics and, in general, adding ad-
ditional layers degrades performance. This could be re-
lated to how we train the architectures as well as to the
decrease in width of the networks. In general, we ob-
serve a trend of increasing performance as we increase
the number of layers, until a certain depth.

deepRNNs vs. (semi)CRF. Table 4 shows compari-
son of the best deep RNNs to the previous best results
in the literature. In terms of F-measure, DEEP RNN
performs best for both DSE and ESE detection, achiev-
ing a new state-of-the-art performance for the more
strict proportional overlap measure, which is harder to
improve upon than the binary evaluation metric. SEMI-
CRF, with its very high recall, performs comparably to
the DEEP RNN on the binary metric. Note that RNNs
do not have access to any features other than word vec-
tors.

In general, CRFs exhibit high precision but low re-
call (CRFs have the best precision on both DSE and
ESE detection) while SEMICRFs exhibit a high re-
call, low precision performance. Compared to SEMI-
CRF, the DEEP RNNs produce an even higher recall
but sometimes lower precision for ESE detection. This
suggests that the methods are complementary, and can
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(1)
The situation obviously remains fluid from hour to hour but it [seems to be] [going in the right direction]

DEEPRNN The situation [obviously] remains fluid from hour to hour but it [seems to be going in the right] direction
SHALLOW The situation [obviously] remains fluid from hour to hour but it [seems to be going in] the right direction
SEMICRF The situation [obviously remains fluid from hour to hour but it seems to be going in the right direction]

(2)
have always said this is a multi-faceted campaign [but equally] we have also said any future military action
[would have to be based on evidence] , ...

DEEPRNN have always said this is a multi-faceted campaign but [equally we] have also said any future military action
[would have to be based on evidence] , ...

SHALLOW have always said this is a multi-faceted [campaign but equally we] have also said any future military action
would have to be based on evidence , ...

SEMICRF have always said this is a multi-faceted campaign but equally we have also said any future military action
would have to be based on evidence , ...

(3)
Ruud Lubbers , the United Nations Commissioner for Refugees , said Afghanistan was [not yet] secure
for aid agencies to operate in and “ [not enough] ” food had been taken into the country .

DEEPRNN Ruud Lubbers , the United Nations Commissioner for Refugees , said Afghanistan was [not yet] secure
for aid agencies to operate in and “ [not enough] ” food had been taken into the country .

SHALLOW Ruud Lubbers , the United Nations Commissioner for Refugees , said Afghanistan was [not yet] secure
for aid agencies to operate in and “ [not enough] ” food had been taken into the country .

SEMICRF Ruud Lubbers , the United Nations Commissioner for Refugees , said Afghanistan was not yet secure
for aid agencies to operate in and “ not enough ” food had been taken into the country .

Figure 2: Examples of output. In each set, the gold-standard annotations are shown in the first line.

potentially be even more powerful when combined in
an ensemble method.

Word vectors. Word vectors help CRFs on both pre-
cision and recall on both tasks. However, SEMICRFs
become more conservative with word vectors, produc-
ing higher precision and lower recall on both tasks.
This sometimes hurts overall F-measure.

Among the (SEMI)CRF-based methods, SEMICRF
obtains the highest F1 score for DSEs and for ESEs
using the softer metric; SEMICRF+VEC performs best
for ESEs according to the stricter proportional overlap
measure.

Network size. Finally, we observe that even small
networks (such as 4-layer deep RNN for DSE and
2-layer deep RNN for ESE) outperform conventional
CRFs. This suggests that with the help of good word
vectors, we can train compact but powerful sequential
neural models.

When examining the output, we see some system-
atic differences between the previously top-performing
SEMICRF and the RNN-based models. (See Figure 2.)
First, SEMICRF often identifies excessively long sub-
jective phrases as in Example 1. Here, none of the mod-
els exactly matches the gold standard, but the RNNs
are much closer. And all three models appear to have
identified an ESE that was mistakenly omitted by the
human annotator — “obviously”. At the same time,
the SEMICRF sometimes entirely misses subjective ex-
pressions that the RNNs identify — this seems to occur
when there are no clear indications of sentiment in the

subjective expression. The latter can be seen in Exam-
ples 2 and 3, in which the SEMICRF does not identify
“but equally”, “would have to be based on evidence”,
“not yet”, and “not enough”.

We also observe evidence of the power of the DEEP-
RNN over the SHALLOWRNN in Examples 4 and 5.
(See Figure 3.) In contrast to Figure 2, Figure 3 dis-
tinguishes subjective expressions that are (correctly)
assigned an initial Begin label from those that con-
sist only of Inside labels2 — the latter are shown in
ALL CAPS and indicate some degree of confusion in
the model that produced them. In Example 4, SHAL-
LOWRNN exhibits some evidence for each ESE — it
labels one or more tokens as Inside an ESE (“any” and
“time”). But it does not explicitly tag the beginning
of the ESE. DEEPRNN does better, identifying the first
ESE in its entirety (“in any case”) and identifying more
words as being Inside the second ESE (“it is high time).
A similar situation occurs in Example 5.

5 Conclusion

In this paper we have explored an application of deep
recurrent neural networks to the task of sentence-level
opinion expression extraction. We empirically evalu-
ated deep RNNs against conventional, shallow RNNs
that have only a single hidden layer. We also com-
pared our models with previous (semi)CRF-based ap-
proaches.

Experiments showed that deep RNNs outperformed
shallow RNNs on both DSE and ESE extrac-

2Sequences of I’s are decoded as the associated DSE or
ESE even though they lack the initial B.
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(4)
[In any case] , [it is high time] that a social debate be organized ...

DEEPRNN [In any case] , it is HIGH TIME that a social debate be organized ...
SHALLOW In ANY case , it is high TIME that a social debate be organized ...
(5)

Mr. Stoiber [has come a long way] from his refusal to [sacrifice himself] for the CDU in an election that
[once looked impossible to win] , through his statement that he would [under no circumstances]
run against the wishes...

DEEPRNN Mr. Stoiber [has come a long way from] his [refusal to sacrifice himself] for the CDU in an election that
[once looked impossible to win] , through his statement that he would [under no circumstances
run against] the wishes...

SHALLOW Mr. Stoiber has come A LONG WAY FROM his refusal to sacrifice himself for the CDU in an election that
[once looked impossible] to win , through his statement that he would under NO CIRCUMSTANCES
run against the wishes...

Figure 3: DEEPRNN Output vs. SHALLOWRNN Output. In each set of examples, the gold-standard annotations
are shown in the first line. Tokens assigned a label of Inside with no preceding Begin tag are shown in ALL CAPS.

tion. Furthermore, deep RNNs outperformed previous
(semi)CRF baselines, achieving new state-of-the-art re-
sults for fine-grained on opinion expression extraction.

We have trained our deep networks without any pre-
training and with only the last hidden layer connected
to the output layer. One potential future direction is
to explore the effects of pre-training on the architec-
ture. Pre-training might help to exploit the additional
representational power available in deeper networks.
Another direction is to investigate the impact of fine-
tuning the word vectors during supervised training.
Additionally, alternative notions of depth that are or-
thogonal to stacking, as in Pascanu et al. (2013) can be
investigated for this task.
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