
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 621–626,
October 25-29, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

Correcting Keyboard Layout Errors and Homoglyphs in Queries

Derek Barnes
debarnes@ebay.com

Mahesh Joshi
mahesh.joshi@ebay.com

eBay Inc., 2065 Hamilton Ave, San Jose, CA, 95125, USA

Hassan Sawaf
hsawaf@ebay.com

Abstract

Keyboard layout errors and homoglyphs
in cross-language queries impact our abil-
ity to correctly interpret user informa-
tion needs and offer relevant results.
We present a machine learning approach
to correcting these errors, based largely
on character-level n-gram features. We
demonstrate superior performance over
rule-based methods, as well as a signif-
icant reduction in the number of queries
that yield null search results.

1 Introduction

The success of an eCommerce site depends on
how well users are connected with products and
services of interest. Users typically communi-
cate their desires through search queries; however,
queries are often incomplete and contain errors,
which impact the quantity and quality of search
results.

New challenges arise for search engines in
cross-border eCommerce. In this paper, we fo-
cus on two cross-linguistic phenomena that make
interpreting queries difficult: (i) Homoglyphs:
(Miller, 2013): Tokens such as “case” (underlined
letters Cyrillic), in which users mix characters
from different character sets that are visually simi-
lar or identical. For instance, English and Russian
alphabets share homoglyphs such as c, a, e, o, y,
k, etc. Although the letters are visually similar or
in some cases identical, the underlying character
codes are different. (ii) Keyboard Layout Errors
(KLEs): (Baytin et al., 2013): When switching
one’s keyboard between language modes, users at
times enter terms in the wrong character set. For
instance, “чехол шзфв” may appear to be a Rus-
sian query. While “чехол” is the Russian word
for “case”, “шзфв” is actually the user’s attempt
to enter the characters “ipad” while leaving their

keyboard in Russian language mode. Queries con-
taining KLEs or homoglyphs are unlikely to pro-
duce any search results, unless the intended ASCII
sequences can be recovered. In a test set sam-
pled from Russian/English queries with null (i.e.
empty) search results (see Section 3.1), we found
approximately 7.8% contained at least one KLE or
homoglyph.

In this paper, we present a machine learning
approach to identifying and correcting query to-
kens containing homoglyphs and KLEs. We show
that the proposed method offers superior accuracy
over rule-based methods, as well as significant im-
provement in search recall. Although we focus our
results on Russian/English queries, the techniques
(particularly for KLEs) can be applied to other lan-
guage pairs that use different character sets, such
as Korean-English and Thai-English.

2 Methodology

In cross-border trade at eBay, multilingual queries
are translated into the inventory’s source language
prior to search. A key application of this, and
the focus of this paper, is the translation of Rus-
sian queries into English, in order to provide Rus-
sian users a more convenient interface to English-
based inventory in North America. The presence
of KLEs and homoglyphs in multilingual queries,
however, leads to poor query translations, which in
turn increases the incidence of null search results.
We have found that null search results correlate
with users exiting our site.

In this work, we seek to correct for KLEs and
homoglyphs, thereby improving query translation,
reducing the incidence of null search results, and
increasing user engagement. Prior to translation
and search, we preprocess multilingual queries
by identifying and transforming KLEs and homo-
glyphs as follows (we use the query “чехол шзфв
2 new” as a running example):

(a) Tag Tokens: label each query token
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with one of the following semantically moti-
vated classes, which identify the user’s informa-
tion need: (i) E: a token intended as an English
search term; (ii) R: a Cyrillic token intended as a
Russian search term; (iii) K: A KLE, e.g. “шзфв”
for the term “ipad”. A token intended as an En-
glish search term, but at least partially entered in
the Russian keyboard layout; (iv) H: A Russian
homoglyph for an English term, e.g. “вмw” (un-
derlined letters Cyrillic). Employs visually sim-
ilar letters from the Cyrillic character set when
spelling an intended English term; (v) A: Ambigu-
ous tokens, consisting of numbers and punctuation
characters with equivalent codes that can be en-
tered in both Russian and English keyboard lay-
outs. Given the above classes, our example query
“чехол шзфв 2 new” should be tagged as “R K A
E”.

(b) Transform Queries: Apply a deterministic
mapping to transform KLE and homoglyph tokens
from Cyrillic to ASCII characters. For KLEs the
transformation maps between characters that share
the same location in Russian and English keyboard
layouts (e.g. ф → a, ы → s). For homoglyphs the
transformation maps between a smaller set of vi-
sually similar characters (e.g. е→ e, м→m). Our
example query would be transformed into “чехол
ipad 2 new”.

(c) Translate and Search: Translate the trans-
formed query (into “case ipad 2 new” for our ex-
ample), and dispatch it to the search engine.

In this paper, we formulate the token-level tag-
ging task as a standard multiclass classification
problem (each token is labeled independently), as
well as a sequence labeling problem (a first order
conditional Markov model). In order to provide
end-to-end results, we preprocess queries by de-
terministically transforming into ASCII the tokens
tagged by our model as KLEs or homoglyphs. We
conclude by presenting an evaluation of the impact
of this transformation on search.

2.1 Features

Our classification and sequence models share a
common set of features grouped into the follow-
ing categories:

2.1.1 Language Model Features
A series of 5-gram, character-level language mod-
els (LMs) capture the structure of different types
of words. Intuitively, valid Russian terms will
have high probability in Russian LMs. In contrast,

KLEs or homoglyph tokens, despite appearing on
the surface to be Russian terms, will generally
have low probability in the LMs trained on valid
Russian words. Once mapped into ASCII (see
Section 2 above), however, these tokens tend to
have higher probability in the English LMs. LMs
are trained on the following corpora:
English and Russian Vocabulary: based on
a collection of open source, parallel En-
glish/Russian corpora (∼50M words in all).
English Brands: built from a curated list of 35K
English brand names, which often have distinctive
linguistic properties compared with common En-
glish words (Lowrey et al., 2013).
Russian Transliterations: built from a col-
lection of Russian transliterations of proper
names from Wikipedia (the Russian portion of
guessed-names.ru-en made available as a
part of WMT 20131).

For every input token, each of the above LMs
fires a real-valued feature — the negated log-
probability of the token in the given language
model. Additionally, for tokens containing Cyril-
lic characters, we consider the token’s KLE and
homoglyph ASCII mappings, where available. For
each mapping, a real-valued feature fires corre-
sponding to the negated log-probability of the
mapped token in the English and Brands LMs.
Lastly, an equivalent set of LM features fires for
the two preceding and following tokens around the
current token, if applicable.

2.1.2 Token Features
We include several features commonly used in
token-level tagging problems, such as case and
shape features, token class (such as letters-only,
digits-only), position of the token within the query,
and token length. In addition, we include fea-
tures indicating the presence of characters from
the ASCII and/or Cyrillic character sets.

2.1.3 Dictionary Features
We incorporate a set of features that indicate
whether a given lowercased query token is a mem-
ber of one of the lexicons described below.
UNIX: The English dictionary shipped with Cen-
tOS, including ∼480K entries, used as a lexicon
of common English words.
BRANDS: An expanded version of the curated list
of brand names used for LM features. Includes

1www.statmt.org/wmt13/
translation-task.html#download

622



∼58K brands.
PRODUCT TITLES: A lexicon of over 1.6M en-
tries extracted from a collection of 10M product
titles from eBay’s North American inventory.
QUERY LOGS: A larger, in-domain collection of
approximately 5M entries extracted from ∼100M
English search queries on eBay.

Dictionary features fire for Cyrillic tokens when
the KLE and/or homoglyph-mapped version of the
token appears in the above lexicons. Dictionary
features are binary for the Unix and Brands dictio-
naries, and weighted by relative frequency of the
entry for the Product Titles and Query Logs dic-
tionaries.

3 Experiments

3.1 Datasets
The following datasets were used for training and
evaluating the baseline (see Section 3.2 below) and
our proposed systems:
Training Set: A training set of 6472 human-
labeled query examples (17,239 tokens).
In-Domain Query Test Set: A set of 2500 Rus-
sian/English queries (8,357 tokens) randomly se-
lected from queries with null search results. By
focusing on queries with null results, we empha-
size the presence of KLEs and homoglyphs, which
occur in 7.8% of queries in our test set.

Queries were labeled by a team of Russian lan-
guage specialists. The test set was also indepen-
dently reviewed, which resulted in the correction
of labels for 8 out of the 8,357 query tokens.

Although our test set is representative of the
types of problematic queries targeted by our
model, our training data was not sampled using the
same methodology. We expect that the differences
in distributions between training and test sets, if
anything, make the results reported in Section 3.3
somewhat pessimistic2.

3.2 Dictionary Baseline
We implemented a rule-based baseline system em-
ploying the dictionaries described in Section 2.1.3.
In this system, each token was assigned a class
k ∈ {E,R,K,H,A} using a set of rules: a token
among a list of 101 Russian stopwords3 is tagged

2As expected, cross-validation experiments on the train-
ing data (for parameter tuning) yielded results slightly higher
than the results reported in Section 3.3, which use a held-out
test set

3Taken from the Russian Analyzer packaged with Lucene
— see lucene.apache.org.

as R. A token containing only ASCII characters is
labeled as A if all characters are common to En-
glish and Russian keyboards (i.e. numbers and
some punctuation), otherwise E. For tokens con-
taining Cyrillic characters, KLE and homoglyph-
mapped versions are searched in our dictionaries.
If found, K or H are assigned. If both mapped ver-
sions are found in the dictionaries, then either K
or H is assigned probabilistically4. In cases where
neither mapped version is found in the dictionary,
the token assigned is either R or A, depending on
whether it consists of purely Cyrillic characters, or
a mix of Cyrillic and ASCII, respectively.

Note that the above tagging rules allow tokens
with classes E and A to be identified with perfect
accuracy. As a result, we omit these classes from
all results reported in this work. We also note
that this simplification applies because we have
restricted our attention to the Russian → English
direction. In the bidirectional case, ASCII tokens
could represent either English tokens or KLEs (i.e.
a Russian term entered in the English keyboard
layout). We leave the joint treatment of the bidi-
rectional case to future work.

Tag Prec Recall F1
K .528 .924 .672
H .347 .510 .413
R .996 .967 .982

Table 1: Baseline results on the test set, using
UNIX, BRANDS, and the PRODUCT TITLES dic-
tionaries.

We experimented with different combinations
of dictionaries, and found the best combination to
be UNIX, BRANDS, and PRODUCT TITLES dic-
tionaries (see Table 1). We observed a sharp de-
crease in precision when incorporating the QUERY

LOGS dictionary, likely due to noise in the user-
generated content.

Error analysis suggests that shorter words are
the most problematic for the baseline system5.
Shorter Cyrillic tokens, when transformed from
Cyrillic to ASCII using KLE or homoglyph map-
pings, have a higher probability of spuriously
mapping to valid English acronyms, model IDs,
or short words. For instance, Russian car brand
“ваз” maps across keyboard layouts to “dfp”,

4We experimented with selecting K or H based on a prior
computed from training data; however, results were lower
than those reported, which use random selection.

5Stopwords are particularly problematic, and hence ex-
cluded from consideration as KLEs or homoglyphs.
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Tag Classification Sequence
P R F1 P R F1

LR
K .925 .944 .935 .915 .934 .925
H .708 .667 .687 .686 .686 .686
R .996 .997 .996 .997 .996 .997

RF
K .926 .949 .937 .935 .949 .942
H .732 .588 .652 .750 .588 .659
R .997 .997 .997 .996 .998 .997

Table 2: Classification and sequence tagging re-
sults on the test set

a commonly used acronym in product titles for
“Digital Flat Panel”. Russian words “муки” and
“рук” similarly map by chance to English words
“verb” and “her”.

A related problem occurs with product model
IDs, and highlights the limits of treating query to-
kens independently. Consider Cyrillic query “БМВ
e46”. The first token is a Russian transliteration
for the BMW brand. The second token, “e46”,
has three possible interpretations: i) as a Russian
token; ii) a homoglyph for ASCII “e46”; or iii)
a KLE for “t46”. It is difficult to discriminate
between these options without considering token
context, and in this case having some prior knowl-
edge that e46 is a BMW model.

3.3 Machine Learning Models

We trained linear classification models using lo-
gistic regression (LR)6, and non-linear models us-
ing random forests (RFs), using implementations
from the Scikit-learn package (Pedregosa et al.,
2011). Sequence models are implemented as first
order conditional Markov models by applying a
beam search (k = 3) on top of the LR and RF
classifiers. The LR and RF models were tuned us-
ing 5-fold cross-validation results, with models se-
lected based on the mean F1 score across R, K, and
H tags.

Table 2 shows the token-level results on our in-
domain test set. As with the baseline, we focus the
model on disambiguating between classes R, K and
H. Each of the reported models performs signifi-
cantly better than the baseline (on each tag), with
statistical significance evaluated using McNemar’s
test. The differences between LR and RF mod-
els, as well as sequence and classification variants,
however, are not statistically significant. Each of
the machine learning models achieves a query-
level accuracy score of roughly 98% (the LR se-

6Although CRFs are state-of-the-art for many tagging
problems, in our experiments they yielded results slightly
lower than LR or RF models.

quence model achieved the lowest with 97.78%,
the RF sequence model the highest with 97.90%).

Our feature ablation experiments show that
the majority of predictive power comes from the
character-level LM features. Dropping LM fea-
tures results in a significant reduction in perfor-
mance (F1 scores .878 and .638 for the RF Se-
quence model on classes K and H). These results
are still significantly above the baseline, suggest-
ing that token and dictionary features are by them-
selves good predictors. However, we do not see
a similar performance reduction when dropping
these feature groups.

We experimented with lexical features, which
are commonly used in token-level tagging prob-
lems. Results, however, were slightly lower than
the results reported in this section. We suspect the
issue is one of overfitting, due to the limited size of
our training data, and general sparsity associated
with lexical features. Continuous word presenta-
tions (Mikolov et al., 2013), noted as future work,
may offer improved generalization.

Error analysis for our machine learning mod-
els suggests patterns similar to those reported in
Section 3.2. Although errors are significantly less
frequent than in our dictionary baseline, shorter
words still present the most difficulty. We note
as future work the use of word-level LM scores
to target errors with shorter words.

3.4 Search Results

Recall that we translate multilingual queries into
English prior to search. KLEs and homoglyphs
in queries result in poor query translations, often
leading to null search results.

To evaluate the impact of KLE and homoglyph
correction, we consider a set of 100k randomly se-
lected Russian/English queries. We consider the
subset of queries that the RF or baseline models
predict as containing a KLE or homoglyph. Next,
we translate into English both the original query,
as well as a transformed version of it, with KLEs
and homoglyphs replaced with their ASCII map-
pings. Lastly, we execute independent searches
using original and transformed query translations.

Table 3 provides details on search results for
original and transformed queries. The baseline
model transforms over 12.6% of the 100k queries.
Of those, 24.3% yield search results where the un-
modified queries had null search results (i.e. Null
→ Non-null). In 20.9% of the cases, however, the
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transformations are destructive (i.e. Non-null →
Null), and yield null results where the unmodified
query produced results.

Compared with the baseline, the RF model
transforms only 7.4% of the 100k queries; a frac-
tion that is roughly in line with the 7.8% of queries
in our test set that contain KLEs or homoglyphs.
In over 42% of the cases (versus 24.3% for the
baseline), the transformed query generates search
results where the original query yields none. Only
4.81% of the transformations using the RF model
are destructive; a fraction significantly lower than
the baseline.

Note that we distinguish here only between
queries that produce null results, and those that do
not. We do not include queries for which original
and transformed queries both produce (potentially
differing) search results. Evaluating these cases
requires deeper insight into the relevance of search
results, which is left as future work.

Baseline RF model
#Transformed 12,661 7,364
Null→ Non-Null 3,078 (24.3%) 3,142 (42.7%)
Non-Null→ Null 2,651 (20.9%) 354 (4.81%)

Table 3: Impact of KLE and homoglyph correction
on search results for 100k queries

4 Related Work

Baytin et al. (2013) first refer to keyboard lay-
out errors in their work. However, their focus is
on predicting the performance of spell-correction,
not on fixing KLEs observed in their data. To
our knowledge, our work is the first to introduce
this problem and to propose a machine learning
solution. Since our task is a token-level tagging
problem, it is very similar to the part-of-speech
(POS) tagging task (Ratnaparkhi, 1996), only with
a very small set of candidate tags. We chose
a supervised machine learning approach in order
to achieve maximum precision. However, this
problem can also be approached in an unsuper-
vised setting, similar to the method Whitelaw et al.
(2009) use for spelling correction. In that setup,
the goal would be to directly choose the correct
transformation for an ill-formed KLE or homo-
glyph, instead of a tagging step followed by a de-
terministic mapping to ASCII.

5 Conclusions and Future Work

We investigate two kinds of errors in search
queries: keyboard layout errors (KLEs) and ho-
moglyphs. Applying machine learning methods,
we are able to accurately identify a user’s intended
query, in spite of the presence of KLEs and ho-
moglyphs. The proposed models are based largely
on compact, character-level language models. The
proposed techniques, when applied to multilingual
queries prior to translation and search, offer signif-
icant gains in search results.

In the future, we plan to focus on additional fea-
tures to improve KLE and homoglyph discrimina-
tion for shorter words and acronyms. Although
lexical features did not prove useful for this work,
presumably due to data sparsity and overfitting
issues, we intend to explore the application of
continuous word representations (Mikolov et al.,
2013). Compared with lexical features, we expect
continuous representations to be less susceptible
to overfitting, and to generalize better to unknown
words. For instance, using continuous word rep-
resentations, Turian et al. (2010) show significant
gains for a named entity recognition task.

We also intend on exploring the use of features
from in-domain, word-level LMs. Word-level fea-
tures are expected to be particularly useful in the
case of spurious mappings (e.g. “ваз” vs. “dfp”
from Section 3.2), where context from surround-
ing tokens in a query can often help in resolving
ambiguity. Word-level features may also be useful
in re-ranking translated queries prior to search, in
order to reduce the incidence of erroneous query
transformations generated through our methods.
Finally, our future work will explore KLE and ho-
moglyph correction bidirectionally, as opposed to
the unidirectional approach explored in this work.
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