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Abstract

In this paper, we propose a joint segmenta-
tion and classification framework for sen-
timent analysis. Existing sentiment clas-
sification algorithms typically split a sen-
tence as a word sequence, which does not
effectively handle the inconsistent senti-
ment polarity between a phrase and the
words it contains, such as “not bad” and
“a great deal of ”. We address this issue
by developing a joint segmentation and
classification framework (JSC), which si-
multaneously conducts sentence segmen-
tation and sentence-level sentiment classi-
fication. Specifically, we use a log-linear
model to score each segmentation candi-
date, and exploit the phrasal information
of top-ranked segmentations as features to
build the sentiment classifier. A marginal
log-likelihood objective function is de-
vised for the segmentation model, which
is optimized for enhancing the sentiment
classification performance. The joint mod-
el is trained only based on the annotat-
ed sentiment polarity of sentences, with-
out any segmentation annotations. Experi-
ments on a benchmark Twitter sentimen-
t classification dataset in SemEval 2013
show that, our joint model performs com-
parably with the state-of-the-art methods.

1 Introduction

Sentiment classification, which classifies the senti-
ment polarity of a sentence (or document) as posi-
tive or negative, is a major research direction in the
field of sentiment analysis (Pang and Lee, 2008;
Liu, 2012; Feldman, 2013). Majority of existing
approaches follow Pang et al. (2002) and treat sen-

∗ This work was partly done when the first and fourth
authors were visiting Microsoft Research.

timent classification as a special case of text cate-
gorization task. Under this perspective, previous
studies typically use pipelined methods with two
steps. They first produce sentence segmentation-
s with separate text analyzers (Choi and Cardie,
2008; Nakagawa et al., 2010; Socher et al., 2013b)
or bag-of-words (Paltoglou and Thelwall, 2010;
Maas et al., 2011). Then, feature learning and sen-
timent classification algorithms take the segmenta-
tion results as inputs to build the sentiment classi-
fier (Socher et al., 2011; Kalchbrenner et al., 2014;
Dong et al., 2014).

The major disadvantage of a pipelined method
is the problem of error propagation, since sen-
tence segmentation errors cannot be corrected by
the sentiment classification model. A typical kind
of error is caused by the polarity inconsistency be-
tween a phrase and the words it contains, such
as 〈not bad, bad〉 and 〈a great deal of, great〉.
The segmentations based on bag-of-words or syn-
tactic chunkers are not effective enough to han-
dle the polarity inconsistency phenomenons. The
reason lies in that bag-of-words segmentations re-
gard each word as a separate unit, which losses
the word order and does not capture the phrasal
information. The segmentations based on syntac-
tic chunkers typically aim to identify noun group-
s, verb groups or named entities from a sentence.
However, many sentiment indicators are phrases
constituted of adjectives, negations, adverbs or id-
ioms (Liu, 2012; Mohammad et al., 2013a), which
are splitted by syntactic chunkers. Besides, a bet-
ter approach would be to utilize the sentiment in-
formation to improve the segmentor. Accordingly,
the sentiment-specific segmentor will enhance the
performance of sentiment classification in turn.

In this paper, we propose a joint segmentation
and classification framework (JSC) for sentimen-
t analysis, which simultaneous conducts sentence
segmentation and sentence-level sentiment clas-
sification. The framework is illustrated in Fig-
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Figure 1: The joint segmentation and classification framework (JSC) for sentiment classification. CG
represents the candidate generation model, SC means the sentiment classification model and SEG stands
for the segmentation ranking model. Down Arrow means the use of a specified model, and Up Arrow
indicates the update of a model.

ure 1. We develop (1) a candidate generation mod-
el to generate the segmentation candidates of a
sentence, (2) a segmentation ranking model to s-
core each segmentation candidate of a given sen-
tence, and (3) a classification model to predic-
t the sentiment polarity of each segmentation. The
phrasal information of top-ranked candidates from
the segmentation model are utilized as features to
build the sentiment classifier. In turn, the predict-
ed sentiment polarity of segmentation candidates
from classification model are leveraged to update
the segmentor. We score each segmentation can-
didate with a log-linear model, and optimize the
segmentor with a marginal log-likelihood objec-
tive. We train the joint model from sentences an-
notated only with sentiment polarity, without any
segmentation annotations.

We evaluate the effectiveness of our joint mod-
el on a benchmark Twitter sentiment classifica-
tion dataset in SemEval 2013. Results show that
the joint model performs comparably with state-
of-the-art methods, and consistently outperforms
pipeline methods in various experiment settings.
The main contributions of the work presented in
this paper are as follows.

• To our knowledge, this is the first work that
automatically produces sentence segmenta-
tion for sentiment classification within a joint
framework.

• We show that the joint model yields com-
parable performance with the state-of-the-art
methods on the benchmark Twitter sentiment
classification datasets in SemEval 2013.

2 Related Work

Existing approaches for sentiment classification
are dominated by two mainstream directions.
Lexicon-based approaches (Turney, 2002; Ding
et al., 2008; Taboada et al., 2011; Thelwall et
al., 2012) typically utilize a lexicon of sentiment
words, each of which is annotated with the sen-
timent polarity or sentiment strength. Linguis-
tic rules such as intensifications and negations are
usually incorporated to aggregate the sentimen-
t polarity of sentences (or documents). Corpus-
based methods treat sentiment classification as a
special case of text categorization task (Pang et al.,
2002). They mostly build the sentiment classifier
from sentences (or documents) with manually an-
notated sentiment polarity or distantly-supervised
corpora collected by sentiment signals like emoti-
cons (Go et al., 2009; Pak and Paroubek, 2010;
Kouloumpis et al., 2011; Zhao et al., 2012).

Majority of existing approaches follow Pang et
al. (2002) and employ corpus-based method for
sentiment classification. Pang et al. (2002) pi-
oneer to treat the sentiment classification of re-
views as a special case of text categorization prob-
lem and first investigate machine learning meth-
ods. They employ Naive Bayes, Maximum En-
tropy and Support Vector Machines (SVM) with a
diverse set of features. In their experiments, the
best performance is achieved by SVM with bag-
of-words feature. Under this perspective, many s-
tudies focus on designing or learning effective fea-
tures to obtain better classification performance.
On movie or product reviews, Wang and Man-
ning (2012) present NBSVM, which trades-off
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between Naive Bayes and NB-feature enhanced
SVM. Kim and Zhai (2009) and Paltoglou and
Thelwall (2010) learn the feature weights by in-
vestigating variants weighting functions from In-
formation Retrieval. Nakagawa et al. (2010) uti-
lize dependency trees, polarity-shifting rules and
conditional random fields (Lafferty et al., 2001)
with hidden variables to compute the documen-
t feature. On Twitter, Mohammad et al. (2013b)
develop a state-of-the-art Twitter sentiment classi-
fier in SemEval 2013, using a variety of sentiment
lexicons and hand-crafted features.

With the revival of deep learning (representa-
tion learning (Hinton and Salakhutdinov, 2006;
Bengio et al., 2013; Jones, 2014)), more recen-
t studies focus on learning the low-dimensional,
dense and real-valued vector as text features for
sentiment classification. Glorot et al. (2011) inves-
tigate Stacked Denoising Autoencoders to learn
document vector for domain adaptation in sen-
timent classification. Yessenalina and Cardie
(2011) represent each word as a matrix and
compose words using iterated matrix multipli-
cation. Socher et al. propose Recursive Au-
toencoder (RAE) (2011), Matrix-Vector Recursive
Neural Network (MV-RNN) (2012) and Recur-
sive Neural Tensor Network (RNTN) (2013b) to
learn the composition of variable-length phrases
based on the representation of its children. To
learn the sentence representation, Kalchbrenner et
al. (2014) exploit Dynamic Convolutional Neu-
ral Network and Le and Mikolov (2014) inves-
tigate Paragraph Vector. To learn word vectors
for sentiment analysis, Maas et al. (2011) propose
a probabilistic document model following Blei et
al. (2003), Labutov and Lipson (2013) re-embed
words from existing word embeddings and Tang
et al. (2014b) develop three neural networks to
learn word vectors from tweets containing posi-
tive/negative emoticons.

Unlike most previous corpus-based algorithms
that build sentiment classifier based on splitting a
sentence as a word sequence, we produce sentence
segmentations automatically within a joint frame-
work, and conduct sentiment classification based
on the segmentation results.

3 The Proposed Approach

In this section, we first give the task definition
of two tasks, namely sentiment classification and
sentence segmentation. Then, we present the

overview of the proposed joint segmentation and
classification model (JSC) for sentiment analysis.
The segmentation candidate generation model and
the segmentation ranking model are described in
Section 4. The details of the sentiment classifica-
tion model are presented in Section 5.

3.1 Task Definition

The task of sentiment classification has been well
formalized in previous studies (Pang and Lee,
2008; Liu, 2012). The objective is to identify the
sentiment polarity of a sentence (or document) as
positive or negative 1.

The task of sentence segmentation aims to s-
plit a sentence into a sequence of exclusive part-
s, each of which is a basic computational unit of
the sentence. An example is illustrated in Table 1.
The original text “that is not bad” is segmented
as “[that] [is] [not bad]”. The segmentation re-
sult is composed of three basic computational u-
nits, namely [that], [is] and [not bad].

Type Sample
Sentence that is not bad
Segmentation [that] [is] [not bad]
Basic units [that], [is], [not bad]

Table 1: Example for sentence segmentation.

3.2 Joint Model (JSC)

The overview of the proposed joint segmentation
and classification model (JSC) for sentiment anal-
ysis is illustrated in Figure 1. The intuitions of the
joint model are two-folds:

• The segmentation results have a strong influ-
ence on the sentiment classification perfor-
mance, since they are the inputs of the sen-
timent classification model.

• The usefulness of a segmentation can be
judged by whether the sentiment classifier
can use it to predict the correct sentence po-
larity.

Based on the mutual influence observation, we
formalize the joint model in Algorithm 1. The in-
puts contain two parts, training data and feature
extractors. Each sentence si in the training data

1In this paper, the sentiment polarity of a sentence is not
relevant to the target (or aspect) it contains (Hu and Liu, 2004;
Jiang et al., 2011; Mitchell et al., 2013).
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Algorithm 1 The joint segmentation and classifi-
cation framework (JSC) for sentiment analysis
Input:

training data: T = [si, pol
g
i ], 1 ≤ i ≤ |T |

segmentation feature extractor: sfe(·)
classification feature extractor: cfe(·)

Output:
sentiment classifier: SC
segmentation ranking model: SEG

1: Generate segmentation candidates Ωi for each
sentence si in T , 1 ≤ i ≤ |T |

2: Initialize sentiment classifier SC(0) based on
cfe(Ωij), randomize j ∈ [1, |Ωi|], 1 ≤ i ≤
|T |

3: Randomly initialize the segmentation ranking
model SEG(0)

4: for r ← 1 ... R do
5: Predict the sentiment polarity poli for Ωi

based on SC(r−1) and cfe(Ωi·)
6: Update the segmentation model SEG(r)

with SEG(r−1) and [Ωi, sfe(Ωi·),
poli·, pol

g
i ], 1 ≤ i ≤ |T |

7: for i← 1 ... |T | do
8: Calculate the segmentation score for Ωi·

based on SEG(r) and sfe(Ωi·)
9: Select the top-ranked K segmentation

candidates Ωi∗ from Ωi

10: end for
11: Train the sentiment classifier SC(r) with

cfe(Ωi∗), 1 ≤ i ≤ |T |
12: end for
13: SC← SC(R)

14: SEG← SEG(R)

T is annotated only with its gold sentiment po-
larity polgi , without any segmentation annotation-
s. There are two feature extractors for the task
of sentence segmentation (sfe(·)) and sentiment
classification (cfe(·)), respectively. The output-
s of the joint model are the segmentation ranking
model SEG and the sentiment classifier SC.

In Algorithm 1, we first generate segmentation
candidates Ωi for each sentence si in the training
set (line 1). Each Ωi contains no less than one
segmentation candidates. We randomly select one
segmentation result from each Ωi and utilize their
classification features to initialize the sentimen-
t classifier SC(0) (line 2). We randomly initialize
the segmentation model SEG(0) (line 3). Subse-
quently, we iteratively train the segmentation mod-

el SEG(r) and sentiment classifier SC(r) in a join-
t manner (line 4-12). At each iteration, we pre-
dict the sentiment polarity of each segmentation
candidate Ωi· with the current sentiment classifi-
er SC(r−1) (line 5), and then leverage them to up-
date the segmentation model SEG(r) (line 6). Af-
terwards, we utilize the recently updated segmen-
tation ranking model SEG(r) to update the senti-
ment classifier SC(r) (line 7-11). We extract the
segmentation features for each segmentation can-
didate Ωi·, and employ them to calculate the seg-
mentation score (line 8). The top-ranked K seg-
mentation results Ωi∗ of each sentence si is select-
ed (line 9), and further used to train the sentimen-
t classifier SC(r) (line 11). Finally, after training
R iterations, we dump the segmentation ranking
model SEG(R) and sentiment classifier SC(R) in
the last iteration as outputs (line 13-14).

At training time, we train the segmentation
model and classification model from sentences
with manually annotated sentiment polarity. At
prediction time, given a test sentence, we gener-
ate its segmentation candidates, and then calculate
segmentation score for each candidate. Afterward-
s, we select the top-ranked K candidates and vote
their predicted sentiment polarity from sentiment
classifier as the final result.

4 Segmentation Model

In this section, we present details of the segmenta-
tion candidate generation model (Section 4.1), the
segmentation ranking model (Section 4.2) and the
feature description for segmentation ranking mod-
el (Section 4.3).

4.1 Segmentation Candidate Generation
In this subsection, we describe the strategy to gen-
erate segmentation candidates for each sentence.
Since the segmentation results have an exponen-
tial search space in the number of words in a
sentence, we approximate the computation using
beam search with constrains on a phrase table,
which is induced from massive corpora.

Many studies have been previously proposed to
recognize phrases in the text. However, it is out
of scope of this work to compare them. We ex-
ploit a data-driven approach given by Mikolov et
al. (2013), which identifies phrases based on the
occurrence frequency of unigrams and bigrams,

freq(wi, wj) =
freq(wi, wj)− δ

freq(wi)× freq(wj)
(1)
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where δ is a discounting coefficient that prevents
too many phrases consisting of very infrequen-
t words. We run 2-4 times over the corpora to get
longer phrases containing more words. We em-
pirically set δ as 10 in our experiment. We use
the default frequency threshold (value=5) in the
word2vec toolkit 2 to select bi-terms.

Given a sentence, we initialize the beam of each
index with the current word, and sequentially add
phrases into the beam if the new phrase is con-
tained in the phrase table. At each index of a sen-
tence, we rank the segmentation candidates by the
inverted number of items within a segmentation,
and save the top-ranked N segmentation candi-
dates into the beam. An example of the generated
segmentation candidates is given in Table 2.

Type Sample
Sentence that is not bad
Phrase Table [is not], [not bad], [is not bad]

Segmentations

[that] [is not bad]
[that] [is not] [bad]
[that] [is] [not bad]
[that] [is] [not] [bad]

Table 2: Example for segmentation candidate gen-
eration.

4.2 Segmentation Ranking Model
The objective of the segmentation ranking model
is to assign a scalar to each segmentation candi-
date, which indicates the usefulness of the seg-
mentation result for sentiment classification. In
this subsection, we describe a log-linear model to
calculate the segmentation score. To effectively
train the segmentation ranking model, we devise a
marginal log-likelihood as the optimization objec-
tive.

Given a segmentation candidate Ωij of the sen-
tence si, we calculate the segmentation score
for Ωij with a log-linear model, as given in Equa-
tion 2.

φij = exp(b+
∑
k

sfeijk · wk) (2)

where φij is the segmentation score of Ωij ; sfeijk
is the k-th segmentation feature of Ωij ; w and b are
the parameters of the segmentation ranking model.

During training, given a sentence si and its gold
sentiment polarity polgi , the optimization objec-

2Available at https://code.google.com/p/word2vec/

tive of the segmentation ranking model is to max-
imize the segmentation scores of the hit candi-
dates, whose predicted sentiment polarity equal-
s to the gold polarity of sentence polpi . The loss
function of the segmentation model is given in E-
quation 3.

loss = −
|T |∑
i=1

log(
∑

j∈Hi
φij∑

j′∈Ai
φij′

) + λ||w||22 (3)

where T is the training data; Ai represents all the
segmentation candidates of sentence si; Hi mean-
s the hit candidates of si; λ is the weight of the
L2-norm regularization factor. We train the seg-
mentation model with L-BFGS (Liu and Nocedal,
1989), running over the complete training data.

4.3 Feature
We design two kinds of features for sentence seg-
mentation, namely the phrase-embedding feature
and the segmentation-specific feature. The final
feature representation of each segmentation is the
concatenation of these two features. It is worth
noting that, the phrase-embedding feature is used
in both sentence segmentation and sentiment clas-
sification.

Segmentation-Specific Feature We empirically
design four segmentation-specific features to re-
flect the information of each segmentation, as list-
ed in Table 3.

Phrase-Embedding Feature We leverage
phrase embedding to generate the features of
segmentation candidates for both sentence seg-
mentation and sentiment classification. The
reason is that, in both tasks, the basic compu-
tational units of each segmentation candidate
might be words or phrases of variable length.
Under this scenario, phrase embedding is highly
suitable as it is capable to represent phrases with
different length into a consistent distributed vector
space (Mikolov et al., 2013). For each phrase,
phrase embedding is a dense, real-valued and
continuous vector. After the phrase embedding is
trained, the nearest neighbors in the embedding
space are favored to have similar grammatical us-
ages and semantic meanings. The effectiveness of
phrase embedding has been verified for building
large-scale sentiment lexicon (Tang et al., 2014a)
and machine translation (Zhang et al., 2014).

We learn phrase embedding with Skip-Gram
model (Mikolov et al., 2013), which is the state-of-
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Feature Feature Description
#unit the number of basic computation units in the segmentation candidate
#unit / #word the ratio of units’ number in a candidate to the length of original sentence
#word − #unit the difference between sentence length and the number of basic computational units
#unit > 2 the number of basic component units composed of more than two words

Table 3: Segmentation-specific features for segmentation ranking.

Feature Feature Description
All-Caps the number of words with all characters in upper case
Emoticon the presence of positive (or negative) emoticons, whether the last unit is emoticon
Hashtag the number of hashtag
Elongated units the number of basic computational containing elongated words (with one character

repeated more than two times), such as gooood
Sentiment lexicon the number of sentiment words, the score of last sentiment words, the total sentiment

score and the maximal sentiment score for each lexicon
Negation the number of negations as individual units in a segmentation
Bag-of-Units an extension of bag-of-word for a segmentation
Punctuation the number of contiguous sequences of dot, question mark and exclamation mark.
Cluster the presence of units from each of the 1,000 clusters from Twitter NLP tool (Gimpel

et al., 2011)

Table 4: Classification-specific features for sentiment classification.

the-art phrase embedding learning algorithm. We
compose the representation (or feature) of a seg-
mentation candidate from the embedding of the
basic computational units (words or phrases) it
contains. In this paper, we explore min, max and
average convolution functions, which have been
used as simple and effective methods for composi-
tion learning in vector-based semantics (Mitchell
and Lapata, 2010; Collobert et al., 2011; Socher et
al., 2013a; Shen et al., 2014; Tang et al., 2014b),
to calculate the representation of a segmentation
candidate. The final phrase-embedding feature is
the concatenation of vectors derived from different
convolutional functions, as given in Equation 4,

pf(seg) = [pfmax(seg), pfmin(seg), pfavg(seg)]
(4)

where pf(seg) is the representation of the given
segmentation; pfx(seg) is the result of the con-
volutional function x ∈ {min,max, avg}. Each
convolutional function pfx(·) conducts the matrix-
vector operation of x on the sequence represented
by columns in the lookup table of phrase embed-
ding. The output of pfx(·) is calculated as

pfx(seg) = θx〈Lph〉seg (5)

where θx is the convolutional function of pfx;
〈Lph〉seg is the concatenated column vectors of

the basic computational units in the segmentation;
Lph is the lookup table of phrase embedding.

5 Classification Model

For sentiment classification, we follow the su-
pervised learning framework (Pang et al., 2002)
and build the classifier from sentences with man-
ually labelled sentiment polarity. We extend the
state-of-the-art hand-crafted features in SemEval
2013 (Mohammad et al., 2013b), and design the
classification-specific features for each segmenta-
tion. The detailed feature description is given in
Table 4.

6 Experiment

In this section, we conduct experiments to evaluate
the effectiveness of the joint model. We describe
the experiment settings and the result analysis.

6.1 Dataset and Experiment Settings

We conduct sentiment classification of tweets on a
benchmark Twitter sentiment classification dataset
in SemEval 2013. We run 2-class (positive vs neg-
ative) classification as sentence segmentation has a
great influence on the positive/negative polarity of
tweets due to the polarity inconsistency between a
phrase and its constitutes, such as 〈not bad, bad〉.

482



We leave 3-class classification (positive, negative,
neutral) and fine-grained classification (very neg-
ative, negative, neutral, positive, very positive) in
the future work.

Positive Negative Total
Train 2,642 994 3,636
Dev 408 219 627
Test 1,570 601 2,171

Table 5: Statistics of the SemEval 2013 Twitter
sentiment classification dataset (positive vs nega-
tive).

The statistics of our dataset crawled from Se-
mEval 2013 are given in Table 5. The evalua-
tion metric is the macro-F1 of sentiment classifi-
cation. We train the joint model on the training
set, tune parameters on the dev set and evaluate
on the test set. We train the sentiment classifier
with LibLinear (Fan et al., 2008) and utilize exist-
ing sentiment lexicons 3 to extract classification-
specific features. We randomly crawl 100M tweets
from February 1st, 2013 to April 30th, 2013 with
Twitter API, and use them to learn the phrase em-
bedding with Skip-Gram 4. The vocabulary size
of the phrase embedding is 926K, from unigram
to 5-gram. The parameter -c in SVM is tuned on
the dev-set in both baseline and our method. We
run the L-BFGS for 50 iterations, and set the reg-
ularization factor λ as 0.003. The beam size N of
the candidate generation model and the top-ranked
segmentation number K are tuned on the dev-set.

6.2 Baseline Methods
We compare the proposed joint model with the fol-
lowing sentiment classification algorithms:
• DistSuper: We collect 10M balanced tweets

selected by positive and negative emoticons 5 as
training data, and build classifier using the Lib-
Linear and ngram features (Go et al., 2009; Zhao
et al., 2012).
• SVM: The n-gram features and Support Vec-

tor Machine are widely-used baseline methods to
build sentiment classifiers (Pang et al., 2002). We
use LibLinear to train the SVM classifier.

3In this work, we use HL (Hu and Liu, 2004), M-
PQA (Wilson et al., 2005), NRC Emotion Lexicon (Moham-
mad and Turney, 2012), NRC Hashtag Lexicon and Senti-
ment140Lexicon (Mohammad et al., 2013b).

4https://code.google.com/p/word2vec/
5We use the emoticons selected by Hu et al. (2013). The

positive emoticons are :) : ) :-) :D =), and the negative emoti-
cons are :( : ( :-( .

• NBSVM: NBSVM (Wang and Manning,
2012) trades-off between Naive Bayes and NB-
features enhanced SVM. We use NBSVM-bi be-
cause it performs best on sentiment classification
of reviews.
• RAE: Recursive Autoencoder (Socher et al.,

2011) has been proven effective for sentiment clas-
sification by learning sentence representation. We
train the RAE using the pre-trained phrase embed-
ding learned from 100M tweets.
• SentiStrength: Thelwall et al. (2012) build a

lexicon-based classifier which uses linguistic rules
to detect the sentiment strength of tweets.
• SSWEu: Tang et al. (2014b) propose to learn

sentiment-specific word embedding (SSWE) from
10M tweets collected by emoticons. They apply
SSWE as features for Twitter sentiment classifica-
tion.
• NRC: NRC builds the state-of-the-art system

in SemEval 2013 Twitter Sentiment Classifica-
tion Track, incorporating diverse sentiment lexi-
cons and hand-crafted features (Mohammad et al.,
2013b). We re-implement this system because the
codes are not publicly available. We do not di-
rectly report their results in the evaluation task,
as our training and development sets are smaller
than their dataset. In NRC + PF, We concatenate
the NRC features and the phrase embeddings fea-
ture (PF), and build the sentiment classifier with
LibLinear.

Except for DistSuper, other baseline method-
s are conducted in a supervised manner. We do
not compare with RNTN (Socher et al., 2013b) be-
cause the tweets in our dataset do not have accu-
rately parsed results. Another reason is that, due to
the differences between domains, the performance
of RNTN trained on movie reviews might be de-
creased if directly applied on the tweets (Xiao et
al., 2013).

6.3 Results and Analysis

Table 6 shows the macro-F1 of the baseline sys-
tems as well as our joint model (JSC) on senti-
ment classification of tweets (positive vs negative).

As is shown in Table 6, distant supervision is
relatively weak because the noisy-labeled tweets
are treated as the gold standard, which decreases
the performance of sentiment classifier. The result
of bag-of-unigram feature (74.50%) is not satisfied
as it losses the word order and does not well cap-
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Method Macro-F1
DistSuper + unigram 61.74
DistSuper + 5-gram 63.92
SVM + unigram 74.50
SVM + 5-gram 74.97
Recursive Autoencoder 75.42
NBSVM 75.28
SentiStrength 73.23
SSWEu 84.98
NRC (Top System in SemEval 2013) 84.73
NRC + PF 84.75
JSC 85.51

Table 6: Macro-F1 for positive vs negative classi-
fication of tweets.

ture the semantic meaning of phrases. The integra-
tion of high-order n-ngram (up to 5-gram) does not
achieve significant improvement (+0.47%). The
reason is that, if a sentence contains a bigram “not
bad”, they will use “bad” and “not bad” as par-
allel features, which confuses the sentiment clas-
sification model. NBSVM and Recursive Autoen-
coder perform comparatively and have a big gap
in comparison with JSC. In RAE, the representa-
tion of a sentence is composed from the represen-
tation of words it contains. Accordingly, “great”
in “a great deal of ” also contributes to the final
sentence representation via composition function.
JSC automatically conducts sentence segmenta-
tion by considering the sentiment polarity of sen-
tence, and utilize the phrasal information from the
segmentations. Ideally, JSC regards phrases like
“not bad” and “a great deal of ” as basic compu-
tational units, and yields better classification per-
formance. JSC (85.51%) performs slightly better
than the state-of-the-art systems (SSWEu, 84.98%;
NRC+PF, 84.75%), which verifies its effective-
ness.

6.4 Comparing Joint and Pipelined Models
We compare the proposed joint model with
pipelined methods on Twitter sentiment classifi-
cation with different feature sets. Figure 2 gives
the experiment results. The tick [A, B] on x-
axis means the use of A as segmentation feature
and the use of B as classification feature. PF
represents the phrase-embedding feature; SF and
CF stand for the segmentation-specific feature and
classification-specific feature, respectively. We
use the bag-of-word segmentation result to build
sentiment classier in Pipeline 1, and use the seg-

mentation candidate with maximum phrase num-
ber in Pipeline 2.
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Figure 2: Macro-F1 for positive vs negative classi-
fication of tweets with joint and pipelined models.

From Figure 2, we find that the joint model
consistently outperforms pipelined baseline meth-
ods in all feature settings. The reason is that
the pipelined methods suffer from error propaga-
tion, since the errors from linguistic-driven and
bag-of-word segmentations cannot be corrected by
the sentiment classification model. Besides, tra-
ditional segmentors do not update the segmenta-
tion model with the sentiment information of tex-
t. Unlike pipelined methods, the joint model is
capable to address these problems by optimizing
the segmentation model with the classification re-
sults in a joint framework, which yields better
performance on sentiment classification. We also
find that Pipeline 2 always outperforms Pipeline
1, which indicates the usefulness of phrase-based
segmentation for sentiment classification.

6.5 Effect of the beam size N

We investigate the influence of beam size N ,
which is the maximum number of segmentation
candidates of a sentence. In this part, we clamp the
feature set as [PF+SF, PF+CF], and vary the beam
size N in [1,2,4,8,16,32,64]. The experiment re-
sults of macro-F1 on the development set are il-
lustrated in Figure 3 (a). The time cost of each
training iteration is given in Figure 3 (b).

From Figure 3 (a), we can see that when larg-
er beam size is considered, the classification per-
formance is improved. When beam size is 1, the
model stands for the greedy search with the bag-
of-words segmentation. When the beam size is s-
mall, such as 2, beam search losses many phrasal
information of sentences and thus the improve-
ment is not significant. The performance remains
steady when beam size is larger than 16. From
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(a) Macro-F1 score for senti-
ment classification.
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(b) Time cost (seconds) of
each training iteration.

Figure 3: Sentiment classification of tweets with
different beam size N .

Figure 3 (b), we can find that the runtime of each
training iteration increases with larger beam size.
It is intuitive as the joint model with larger beam
considers more segmentation results, which in-
creases the training time of the segmentation mod-
el. We set beam size as 16 after parameter learn-
ing.

6.6 Effect of the top-ranked segmentation
number K

We investigate how the top-ranked segmentation
number K affects the performance of sentimen-
t classification. In this part, we set the feature as
[PF+SF, PF+CF], and the beam size as 16. The
results of macro-F1 on the development set are il-
lustrated in Figure 4.
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Figure 4: Sentiment classification of tweets with
different top-ranked segmentation number K.

From Figure 4, we find that the classification
performance increases with K being larger. The
reason is that when a larger K is used, (1) at train-
ing time, the sentiment classifier is built by using
more phrasal information from multiple segmen-
tations, which benefits from the ensembles; (2) at
test time, the joint model considers several top-
ranked segmentations and get the final sentiment
polarity through voting. The performance remain-
s stable when K is larger than 7, as the phrasal
information has been mostly covered.

7 Conclusion

In this paper, we develop a joint segmentation
and classification framework (JSC) for sentiment
analysis. Unlike existing sentiment classification
algorithms that build sentiment classifier based
on the segmentation results from bag-of-words or
separate segmentors, the proposed joint model si-
multaneously conducts sentence segmentation and
sentiment classification. We introduce a marginal
log-likelihood function to optimize the segmenta-
tion model, and effectively train the joint mod-
el from sentences annotated only with sentiment
polarity, without segmentation annotations of sen-
tences. The effectiveness of the joint model has
been verified by applying it on the benchmark
dataset of Twitter sentiment classification in Se-
mEval 2013. Results show that, the joint model
performs comparably with state-of-the-art meth-
ods, and outperforms pipelined methods in various
settings. In the future, we plan to apply the join-
t model on other domains, such as movie/product
reviews.
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