
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1914–1925,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Learning Distributions over Logical Forms
for Referring Expression Generation

Nicholas FitzGerald Yoav Artzi Luke Zettlemoyer
Computer Science & Engineering

University of Washington
Seattle, WA 98195

{nfitz,yoav,lsz}@cs.washington.edu

Abstract

We present a new approach to referring ex-
pression generation, casting it as a density es-
timation problem where the goal is to learn
distributions over logical expressions identi-
fying sets of objects in the world. Despite
an extremely large space of possible expres-
sions, we demonstrate effective learning of
a globally normalized log-linear distribution.
This learning is enabled by a new, multi-stage
approximate inference technique that uses a
pruning model to construct only the most
likely logical forms. We train and evaluate
the approach on a new corpus of references
to sets of visual objects. Experiments show
the approach is able to learn accurate models,
which generate over 87% of the expressions
people used. Additionally, on the previously
studied special case of single object reference,
we show a 35% relative error reduction over
previous state of the art.

1 Introduction

Understanding and generating natural language re-
quires reasoning over a large space of possible
meanings; while many statements might achieve the
same goal in a certain situation, some are more
likely to be used than others. In this paper, we model
these preferences by learning distributions over sit-
uated meaning use.

We focus on the task of referring expression gen-
eration (REG), where the goal is to produce an ex-
pression which uniquely identifies a pre-defined ob-
ject or set of objects in an environment. In prac-
tice, many such expressions can be produced. Fig-

ure 1 shows referring expressions provided by hu-
man subjects for a set of objects (Figure 1a), demon-
strating variation in utterances (Figure 1b) and their
corresponding meaning representations (Figure 1c).
Although nearly a third of the people simply listed
the colors of the desired objects, many other strate-
gies were also used and no single option dominated.
Learning to model such variation would enable sys-
tems to better anticipate what people are likely to
say and avoid repetition during generation, by pro-
ducing appropriately varied utterances themselves.
With these goals in mind, we cast REG as a den-
sity estimation problem, where the goal is to learn a
distribution over logical forms.

Learning such distributions is challenging. For a
target set of objects, the number of logical forms
that can be used to describe it grows combinatori-
ally with the number of observable properties, such
as color and shape. However, only a tiny fraction
of these possibilities are ever actually used by peo-
ple. We must learn to efficiently find these few, and
accurately estimate their associated likelihoods.

We demonstrate effective learning of a globally
normalized log-linear distribution with features to
account for context dependence and communicative
goals. We use a stochastic gradient descent algo-
rithm, where the key challenge is the need to com-
pute feature expectations over all possible logical
forms. For that purpose, we present a multi-stage
inference algorithm, which progressively constructs
meaning representations with increasing complex-
ity, and learns a pruning model to retain only those
that are likely to lead to high probability expres-
sions. This approach allows us to consider a large

1914

(a)

The green, red, orange and yellow toys. (1)
The green, red, yellow, and orange objects. (1)

The red, green, yellow and orange toys. (1)
The red, yellow, orange and green objects. (1)
All the green, red, yellow and orange toys. (1)

All the yellow, orange, red and green objects. (1)
All the pieces that are not blue or brown. (2)

All items that are not brown or blue. (2)
All items that are not brown or blue. (2)
Everything that is not brown or blue. (3)
Everything that is not purple or blue. (3)

All but the black and blue ones. (4)
Any toy but the blue and brown toys. (4)

Everything that is green, red, orange or yellow. (5)
All objects that are not triangular or blue. (6)

Everything that is not blue or a wedge. (7)
Everything that is not a brown or blue toy. (8)
All but the blue piece and brown wedge. (9)

Everything except the brown wedge and the blue object. (10)
All pieces but the blue piece and brown triangle shape. (11)

(b)

P̂ (z|S,G) z
0.30 ι(λx.(yellow(x) ∨ orange(x) ∨ red(x) ∨ green(x)) ∧ object(x) ∧ plu(x)) (1)
0.15 ι(λx.¬(brown(x) ∨ blue(x)) ∧ object(x) ∧ plu(x)) (2)
0.10 Every(λx.¬(brown(x) ∨ blue(x)) ∧ object(x) ∧ sg(x)) (3)
0.10 Every(λx.object(x) ∧ sg(x)) \ [ι(λx.(blue(x) ∨ brown(x)) ∧ object(x) ∧ plu(x)] (4)
0.05 Every(λx.(yellow(x) ∨ orange(x) ∨ red(x) ∨ green(x)) ∧ object(x) ∧ sg(x)) (5)
0.05 ι(λx.(triangle(x) ∨ blue(x)) ∧ object(x) ∧ plu(x)) (6)
0.05 Every(λx.object(x) ∧ sg(x)¬(blue(x) ∨ equal(x,A(λy.triangle(y) ∧ sg(y))))) (7)
0.05 Every(λx.object(x) ∧ sg(x) ∧ ¬equal(x,A(λy.(brown(y) ∨ blue(y)) ∧ object(y) ∧ sg(y)))) (8)
0.05 Every(λx.object(x) ∧ sg(x)) \ [ι(λx.(blue(x) ∧ object(x) ∧ sg(x)) ∨ (brown(x) ∧ triangle(x) ∧ sg(x))] (9)
0.05 Every(λx.object(x) ∧ sg(x)) \ [ι(λx.brown(x) ∧ triangle(x) ∧ sg(x)) ∪ ι(λy.blue(y) ∧ object(y) ∧ sg(x))] (10)
0.05 ι(λx.object(x) ∧ plu(x)) \ [ι(λx.(blue(x) ∧ object(x) ∧ sg(x)) ∨ (brown(x) ∧ triangle(x) ∧ object(x) ∧ sg(x))] (11)

(c)

Figure 1: An example scene from our object selection dataset. Figure 1a shows the image shown to subjects
on Amazon Mechanical Turk. The target set G is the circled objects. Figure 1b shows the 20 sentences
provided as responses. Figure 1c shows the empirical distribution P̂ (z|G,S) for this scene, estimated by
labeling the sentences in Figure 1b. The correspondence between a sentence in 1b and its labeled logical
expression in 1c is indicated by the number in parentheses. Section 5.1 presents a discussion of the space of
possible logical forms.

set of possible meanings, while maintaining compu-
tational tractability.

To represent meaning we build on previous ap-
proaches that use lambda calculus (Carpenter, 1997;
Zettlemoyer and Collins, 2005; Artzi and Zettle-
moyer, 2013b). We extend these techniques by mod-
eling the types of plurality and coordination that are
prominent in expressions which refer to sets.

We also present a new corpus for the task of re-
ferring expression generation.1 While most previ-
ous REG data focused on naming single objects,

1The corpus was collected using Amazon Mechanical Turk
and is available on the authors’ websites.

to the best of our knowledge, this is the first cor-
pus with sufficient coverage for learning to name
sets of objects. Experiments demonstrate highly ac-
curate learned models, able to generate over 87%
of the expressions people used. On the previously
studied special case of single object reference, we
achieve state-of-the-art performance, with over 35%
relative error reduction over previous state of the
art (Mitchell et al., 2013).

2 Related Work

Referring expression generation has been exten-
sively studied in the natural language generation

1915

community, dating as far back as SHRDLU (Wino-
grad, 1972). Most work has built on variations of
the Incremental Algorithm (Dale and Reiter, 1995),
a deterministic algorithm for naming single ob-
jects that constructs conjunctive logical expressions.
REG systems are used in generation pipelines (Dale
and Reiter, 2000) and are also commonly designed
to be cognitively plausible, for example by following
Gricean maxims (Grice, 1975). Krahmer and van
Deemter (2012) and van Deemter et al. (2012a) sur-
vey recent literature on REG.

Different approaches have been proposed for gen-
erating referring expressions for sets of objects.
Van Deemter (2002) extended the Incremental Al-
gorithm to allow disjunction and negation, enabling
reference to sets. Further work attempted to re-
solve the unnaturally long expressions which could
be generated by this approach (Gardent, 2002; Ho-
racek, 2004; Gatt and van Deemter, 2007). Later, de-
scription logic was used to name sets (Areces et al.,
2008; Ren et al., 2010). All of these algorithms are
manually engineered and deterministic.

In practice, human utterances are surprisingly
varied, loosely following the Gricean ideals (van
Deemter et al., 2012b). Much recent work in REG
has identified the importance of modeling the vari-
ation observed in human-generated referring ex-
pressions (Viethen and Dale, 2010; Viethen et al.,
2013; van Deemter et al., 2012b; Mitchell et al.,
2013), and some approaches have applied machine-
learning techniques to single-object references (Vi-
ethen and Dale, 2010; Mitchell et al., 2011a,b). Re-
cently, Mitchell et al. (2013) introduced a proba-
bilistic approach for conjunctive descriptions of sin-
gle objects, which will provide a comparison base-
line for experiments in Section 8. To the best of
our knowledge, this paper presents the first learned
probabilistic model for referring expressions defin-
ing sets, and is the first effort to treat REG as a den-
sity estimation problem.

REG is related to content selection, which
has been studied for generating text from
databases (Konstas and Lapata, 2012), event
streams (Chen et al., 2010), images (Berg et al.,
2012; Zitnick and Parikh, 2013), and text (Barzilay
and Lapata, 2005; Carenini et al., 2006). However,
most approaches to this problem output bags of con-
cepts, while we construct full logical expressions,

allowing our approach to capture complex relations
between attributes.

Finally, our approach to modeling meaning us-
ing lambda calculus is related to a number of ap-
proaches that used similar logical representation
in various domains, including database query in-
terfaces (Zelle and Mooney, 1996; Zettlemoyer
and Collins, 2005, 2007), natural language instruc-
tions (Chen and Mooney, 2011; Matuszek et al.,
2012b; Kim and Mooney, 2012; Artzi and Zettle-
moyer, 2013b), event streams (Liang et al., 2009;
Chen et al., 2010), and visual descriptions (Ma-
tuszek et al., 2012a; Krishnamurthy and Kollar,
2013). Our use of logical forms follows this line of
work, while extending it to handle plurality and co-
ordination, as described in Section 4.1. In addition,
lambda calculus was shown to enable effective nat-
ural language generation from logical forms (White
and Rajkumar, 2009; Lu and Ng, 2011). If com-
bined with these approaches, our approach would
allow the creation of a complete REG pipeline.

3 Technical Overview

Task Let Z be a set of logical expressions that se-
lect a target set of objects G in a world state S, as
formally defined in Section 5.1. We aim to learn a
probability distribution P (z | S,G), with z ∈ Z .

For example, in the referring expressions domain
we work with, the state S = {o1, . . . , on} is a set
of n objects oi. Each oi has three properties: color,
shape and type. The target setG ⊆ S is the subset of
objects to be described. Figure 1a shows an example
scene. The world state S includes the 11 objects in
the image, where each object is assigned color (yel-
low, green . . .), shape (cube, cylinder . . .) and type
(broccoli, apple . . .). The target set G contains the
circled objects. Our task is to predict a distribution
which closely matches the empirical distribution in
Figure 1c.

Model and Inference We model P (z|S,G) as a
globally normalized log-linear model, using features
of the logical form z, and its execution with respect
to S and G. Since enumerating all z ∈ Z is in-
tractable, we develop an approximate inference al-
gorithm which constructs a high quality candidate
set, using a learned pruning model. Section 5.2 de-
scribes the globally scored log-linear model. Sec-

1916

tion 5.3 presents a detailed description of the infer-
ence procedure.

Learning We use stochastic gradient descent to
learn both the global scoring model and the explicit
pruning model, as described in section 6. Our data
consists of human-generated referring expressions,
gathered from Amazon Mechanical Turk. These
sentences are automatically labelled with logical
forms with a learned semantic parser, providing a
stand-in for manually labeled data (see Section 7).

Evaluation Our goal is to output a distribution
that closely matches the distribution that would be
produced by humans. We therefore evaluate our
model with gold standard labeling of crowd-sourced
referring expressions, which are treated as samples
from the implicit distribution we are trying to model.
The data and evaluation procedure are described in
Section 7. The results are presented in Section 8.

4 Modeling Referring Expressions

4.1 Semantic Modeling

Our semantic modeling approach uses simply-typed
lambda-calculus following previous work (Carpen-
ter, 1997; Zettlemoyer and Collins, 2005; Artzi and
Zettlemoyer, 2013b), extending it in one important
way: we treat sets of objects as a primitive type,
rather than individuals. This allows us to model plu-
rality, cardinality, and coordination for the language
observed in our data, and is further motivated by re-
cent cognitive science evidence that sets and their
properties are represented as single units in human
cognition (Scontras et al., 2012).

Plurals Traditionally, noun phrases are identified
with the entity-type e and pick out individual ob-
jects (Carpenter, 1997). This makes it difficult to
interpret plural noun-phrases which pick out a set of
objects, like “The red cubes”. Previous approaches
would map this sentence to the same logical expres-
sion as the singular “The red cube”, ignoring the se-
mantic distinction encoded by the plural.

Instead, we define the primitive entity e to range
over sets of objects. 〈e, t〉-type expressions are
therefore functions from sets to a truth-value. These
are used in two ways, modeling both distributive and
collective predicates (cf. Stone, 2000):

1. Distributive predicates are 〈e, t〉-type expres-
sions which will return true if every individual
in the set has a given property. For example, the
expression λx.red(x) will be true for all sets
which contain only objects for which the value
red is true.

2. Collective predicates are 〈e, t〉-type expres-
sions which indicate a property of the set it-
self. For example, in the phrase “the two
cubes”, “two” corresponds to the expression
λx.cardinality2(x) which will return true
only for sets which have exactly two members.

We define semantic plurality in terms of two spe-
cial collective predicates: sg for singular and plu
for plural. For examples, “cube” is interpreted as
λx.cube(x) ∧ sg(x), whereas “cubes” is interpreted
as λx.cube(x) ∧ plu(x). The sg predicate returns
true only for singleton sets. The plu predicate re-
turns true for sets that contain two or more objects.

We also model three kinds of determiners,
functional-type 〈〈e, t〉, e〉-type expressions which
select a single set from the power-set represented
by their 〈e, t〉-type argument. The definite deter-
miner “the” is modeled with the predicate ι, which
resolves to the maximal set amongst those licensed
by its argument. The determinerEvery only accepts
〈e, t〉-type arguments that define singleton sets (i.e.
the argument includes the sg predicate) and returns
a set containing the union of these singletons. For
example, although “red cube” is a singular expres-
sion, “Every red cube” refers to a set. Finally, the
indefinite determiner “a” is modeled with the logical
constant A, which picks a singleton set by implic-
itly introducing an existential quantifier (Artzi and
Zettlemoyer, 2013b).2

Coordination Two types of coordination are
prominent in set descriptions. The first is attribute
coordination, which is typically modeled with the
boolean operators: ∧ for conjunction and ∨ for dis-
junction. For example, the phrase “the red cubes
and green rectangle” involves a disjunction that joins
two conjunctive expressions, both within the scope
of the definite determiner: ι(λx.(red(x)∧cube(x)∧
plu(x)) ∨ (green(x) ∧ rectangle(x) ∧ sg(x))).

2This treatment of the indefinite determiner is related to gen-
eralized skolem terms as described by Steedman (2011).

1917

The second kind of coordination, a new addition
of this work, occurs when two sets are coordinated.
This can either be set union (∪) as in the phrase “The
cubes and the rectangle” (ι(λx.cube(x)∧ plu(x))∪
ι(λx.rectangle(x) ∧ sg(x)))), or set difference
(\) as in the phrase “All blocks except the green
cube”: (ι(λx.object(x)∧plu(x))\ι(λx.green(x)∧
cube(x) ∧ sg(x))).

4.2 Visual Domain

Objects in our scenes are labeled with attribute val-
ues for four attribute types: color (7 values, such
as red, green), shape (9 values, such as cube,
sphere), type (16 values, such as broccoli, apple)
and a special object property, which is true for
all objects. The special object property captures
the role of descriptions that are true for all objects,
such as “toy” or “item”. Each of these 33 attribute
values corresponds to an 〈e, t〉-type predicate.

5 Model and Inference

In this section, we describe our approach to mod-
eling the probability P (z | S,G) of a logical form
z ∈ Z that names a set of objects G in a world S, as
defined in Section 3. We first define Z (Section 5.1),
and then present the distribution (Section 5.2) and an
approximate inference approach that makes use of a
learned pruning model (Section 5.3).

5.1 Space of Possible Meanings

The set Z defines logical expressions that we will
consider for picking the target set G in state S. In
general, we can construct infinitely many such ex-
pressions. For example, every z ∈ Z can be triv-
ially extended to form a new candidate z′ for Z
by adding a true clause to any conjunct it contains.
However, the vast majority of such expressions are
overly complex and redundant, and would never be
used in practice as a referring expression.

To avoid this explosion, we limit the type and
complexity of the logical expressions that are in-
cluded in Z . We consider only e-type expressions,
since they name sets, and furthermore only include
expressions that name the desired target set G.3 We

3We do not attempt to model underspecified or otherwise
incorrect expressions, although our model could handle this by
considering all e-type expressions.

• p : 〈〈e, t〉, e〉, e1 : 〈e, t〉 → p(e1) : e

e.g.
p = ι : 〈〈e, t〉, e〉
e1 = λx.cube(x) ∧ sg(x) : 〈e, t〉
ι(λx.cube(x) ∧ sg(x)) : e

• p : 〈t, t〉, e1 : 〈e, t〉 → λx.p(e1(x)) : 〈e, t〉

e.g.
p = ¬ : 〈t, t〉
e1 = λx.red(x) : 〈e, t〉
λx.¬(red(x)) : 〈e, t〉

• p : 〈e, 〈e, t〉〉, e1 : e→ λx.(p(x))(e1)

e.g.
p = equal : 〈e, 〈e, t〉〉
e1 = A(λy.cube(y) ∧ sg(y)) : e

λx.equal(x,A(λy.cube(y) ∧ sg(y)))

• p : 〈e, 〈e, e〉〉, e1 : e, e2 : e→ (p(e1))(e2) : e

e.g.

p = \ : 〈e, 〈e, e〉〉
e1 = ι(λx.cube(x) ∧ plu(x)) : e
e2 = Every(λx.object(x) ∧ sg(x)) : e

Every(λx.object(x) ∧ sg(x)) \
ι(λx.cube(x) ∧ plu(x)) : e

• p : 〈t, 〈t, t〉〉, e1 : 〈e, t〉, e2〈e, t〉 →
λx.(p(e1(x)))(e2(x)) : 〈e, t〉

e.g.

p = ∧ : 〈t, 〈t, t〉〉
e1 = λx.red(x) : 〈e, t〉
e2 = λx.cube(x) : 〈e, t〉
λx.red(x) ∧ cube(x) : e

Figure 2: The five rules used during generation.
Each rule is a template which takes a predicate p : t
of type t and one or two arguments ei : ti, with type
ti. The output is the logical expression after the ar-
row→, constructed using the inputs as shown.

also limit the overall complexity of each z ∈ Z , to
contain not more than M logical constants.

To achieve these constraints, we define an induc-
tive procedure for enumerating Z , in order of com-
plexity. We first define Aj to be the set of all e- and
〈e, t〉-type expressions that contain exactly j logi-
cal constants. Figure 2 presents five rules that can be
used to constructAj by induction, for j = 1, . . . ,∞,
by repeatedly adding new constants to expressions
in Aj′ for j′ < j. Intuitively, Aj is the set of all
complexity j expressions that can be used as sub-
expressions for higher complexity entires in our final
set Z . Next, we define Zj to be the e-type expres-
sions inAj that name the correct setG. And, finally,
Z = ∪j=1...MZj of all correct expressions up to a
maximum complexity of M .

This construction allows for a finite Z with good

1918

empirical coverage, as we will see in the experi-
ments in Section 8. However, Z is still prohibitively
large for the maximum complexities used in practise
(for example M = 20). Section 5.3 presents an ap-
proach for learning models to prune Z , while still
achieving good empirical coverage.

5.2 Global Model
Given a finite Z , we can now define our desired
globally normalized log-linear model, conditioned
on the state S and set of target objects G:

PG(z | S,G; θ) =
1

C
eθ·φ(z,S,G) (1)

where θ ∈ Rn is a parameter vector, φ(z, S,G) ∈
Rn is a feature function and C is the normalization
constant. Section 5.4 defines the features we use.

5.3 Pruning Z
As motivated in Section 5.1, the key challenge for
our global model in Equation 1 is that the set Z is
too large to be explicitly enumerated. Instead, we
designed an approach for learning to approximate Z
with a subset of the highly likely entries, and use this
subset as a proxy for Z during inference.

More specifically, we define a binary distribution
that is used to classify whether each a ∈ Aj is likely
to be used as a sub-expression in Z , and prune each
Aj to keep only the top k most likely entries. This
distribution is a logistic regression model:

Pj(a | S,G;πj) =
eπj ·φ(a,S,G)

1 + eπj ·φ(a,S,G)
(2)

with features φ(a, S,G) ∈ Rn and parameters πj ∈
Rn. This distribution uses the same features as the
global model presented in Equation 1, which we de-
scribe in Section 5.4.

Together, the pruning model and global model de-
fine the distribution P̂ (z | G,S; θ,Π) over z ∈ Z ,
conditioned on the world state S and target set G,
and parameterized by both the parameters θ of the
global model and the parameters Π = {π1, . . . , πM}
of the pruning models.

5.4 Features
We use three kinds of features: logical expression
structure features, situated features and a complexity
feature. All features but the complexity feature are

shared between the global model in Equation 1 and
the pruning model in Equation 2. In order to avoid
overly specific features, the attribute value predi-
cates in the logical expressions are replaced with
their attribute type (ie. red → color). In addition,
the special constants sg and plu are ignored when
computing features.

In the following description of our features, all
examples are computed for the logical expression
ι(λx.red(x) ∧ object(x) ∧ plu(x)), with respect to
the scene and target set in Figure 1a.

Structure Features We use binary features that
account for the presence of certain structures in the
logical form, allowing the model to learn common
usage patterns.

• Head Predicate - indicator for use of a logi-
cal constant as a head predicate in every sub-
expression of the expression. A head predicate
is the top-level operator of an expression. For
example, the head predicate of the expression
“λx.red(x) ∧ object(x)” is “∧” and the head
of λx.red(x) is red. For our running example,
the head features are ι, ∧, color, object.

• Head-Predicate Bigrams and Trigrams -
head-predicate bigrams are defined to be the
head predicate of a logical form, and the head
predicate of one of its children. Trigrams
are similarly defined. E.g. bigrams: [ι,∧],
[∧, color], [∧, object], and trigrams: [ι,∧, red],
[ι,∧, object].

• Conjunction Duplicate - this feature fires if a
conjunctive expression contains duplicate sub-
expressions amongst its children.

• Coordination Children - this feature set indi-
cates the presence of a coordination subexpres-
sion (∧, ∨, ∪ or \) and the head expressions
of all pairs and triples of its child expressions.
E.g. [∧; red, object].

Situated Features These features take into ac-
count the evaluation of the logical form z with re-
spect to the state S and target set G. They capture
common patterns between the target set G and the
object groups named by subexpressions of z.

1919

• Head Predicate and Coverage - this fea-
ture set indicates the head predicate of ev-
ery sub-expression of the logical form, com-
bined with a comparison between the execu-
tion of the sub-expression and the target set
G. The possible values for this comparison
(which we call the “coverage” of the expres-
sion with respect to G) are: EQUAL, SUBSET
(SUB), SUPERSET (SPR), DISJOINT, ALL,
EMPTY and OTHER. E.g. [ι,SUB], [∧,SUB],
[color,SUB], [object,ALL]

• Coordination Child Coverage - this feature
set indicates the head-predicate of a coordina-
tion subexpression, combined with the cover-
age of all pairs and triples of its child expres-
sions. E.g. [∧;SUB,ALL].

• Coordination Child Relative Coverage - this
feature set indicates, for every pair of child sub-
expressions of coordination expressions in the
logical form, the coverage of the child sub-
expressions relative to each other. The pos-
sible relative coverage values are: SUB-SPR,
DISJOINT, OTHER. E.g. [∧;SUB-SPR].

Complexity Features We use a single real-
numbered feature to account for the complexity of
the logical form. We define the complexity of a log-
ical form to be the number of logical constants used.
Our running example has a complexity of 4. This
feature is only used in the global model, since the
pruning model always considers logical expressions
of fixed complexity.

6 Learning

Figure 3 presents the complete learning algorithm.
The algorithm is online, using stochastic gradi-
ent descent updates for both the globally scored
density estimation model and the learned pruning
model. The algorithm assumes a dataset of the form
{(Zi, Si, Gi) : i = 1 . . . n} where each example
scene includes a list of logical expressions Zi, a
world state Si, and a target set of objects, Gi, which
will be identified by the resulting logical expres-
sions. The output is learned parameters for both the
globally scored density estimation model θ, and for
the learned pruning models Π.

Inputs: Training set {(Zi, Si, Gi) : i = 1 . . . n}, where Zi is
a list of logical forms, Si is a world state, and Gi is a target
set of objects. Number of iterations T . Learning rate α0.
Decay parameter c. Complexity threshold M , as described
in Section 5.3.

Definitions: Let P̂ (z | Gi, Si; θ,Π) be the predicted global
probability from Equation 1. Let P̂j(z | Gi, Si;πj) be the
predicted pruning probability from Equation 2. Let Âj be
the set of all complexity-M logical expressions, after prun-
ing (see Section 5.1). Let SUB(j, z) be all complexity-j
sub-expressions of logical expression z. Let Qi(z | Si, Gi)
be the empirical probability over z ∈ Z , estimated from
Zi. Finally, let φi(z) be a shorthand for the feature function
φ(z, Si, Gi) as defined in Section 5.4.

Algorithm:
Initialize θ ← ~0, πj ← ~0 for j = 1 . . .M

For t = 1 . . . T, i = 1 . . . n:

Step 1: (Update Global Model)
a. Compute the stochastic gradient:

∆θ ← EQi(z|Si,Gi)[φi(z)]− EP̂ (z|Gi,Si;θ,Π)[φi(z)]

b. Update the parameters:
γ ← α0

1+c×τ where τ = i+ t× n
θ ← θ + γ∆θ

Step 2: (Update Pruning Model)
For j = 1 . . .M

a. Construct a set of positive and negative examples:
D+ ←

⋃
z∈Zi

SUB(j, z).
D− ← Âj \ D+

b. Compute mini-batch stochastic gradient, normalizing
for data skew:
∆πj ← 1

|D+|
∑
z∈D+(1− Pj(z | Si, Gi;πj))φi(z)

− 1
|D−|

∑
z∈D− Pj(z | Si, G;πj)φi(z)

c. Update complexity-j pruning parameters:
πj ← πj + γ∆πj

Output: θ and Π = [π1, . . . , πM]

Figure 3: The learning algorithm.

6.1 Global Model Updates
The parameters θ of the globally scored density es-
timation model are trained to maximize the log-
likelihood of the data:

Oi = log
∏
z∈Zi

PG(z | Si, Gi) (3)

Taking the derivative of this objective with re-
spect to θ yields the gradient in Step 1a of Fig-
ure 3. The marginals, EP̂ (z|Gi,Si;θ,Π)(φi(z)), are
computed over the approximate finite subset of Z
constructed with the inference procedure described
in Section 5.3.

1920

6.2 Pruning Model Updates

To update each of the M pruning models, we first
construct a set of positive and negative examples
(Step 2a). The positive examples, D+, include those
sub-expressions which should be in the beam - these
are all complexity j sub-expressions of logical ex-
pressions in Zi. The negative examples, D−, in-
clude all complexity-j expressions constructed dur-
ing beam search, minus those which are in D+. The
gradient (Set 2b) is a binary mini-batch gradient,
normalized to correct for data skew.

7 Experimental Setup

Data Collection Our dataset consists of 118 im-
ages, taken with a Microsoft Kinect camera. These
are the same images used by Matuszek et al.
(2012a), but we create multiple prompts for each im-
age by circling different objects, giving 269 scenes
in total. These scenes were shown to workers on
Amazon Mechanical Turk4 who were asked to imag-
ine giving instructions to a robot and complete the
sentence “Please pick up ” in reference to the
circled objects. Twenty referring expressions were
collected for each scene, a total of 5380 expressions.

From this data, 43 scenes (860 expressions) were
held-out for use in a test set. Of the remaining
scenes, the sentences of 30 were labeled with log-
ical forms. 10 of these scenes (200 expressions) are
used as a labeled initialization set, and 20 are used
as a development test set (400 expressions). A small
number of expressions (∼5%) from the labeled ini-
tial set were discarded, either because they did not
correctly name the target set, or because they used
very rare attributes (such as texture, or location) to
name the target objects.

Surrogate Labeling To avoid hand labeling the
large majority of the scenes, we label the data
with a learned semantic parser (Zettlemoyer and
Collins, 2005). We created a hand-made lexicon
for the entire training set, which greatly simplifies
the learning problem, and learned the parameters
of the parsing moder on the 10-scene initialization
set. The weights were then further tuned using
semi-supervised techniques (Artzi and Zettlemoyer,
2011, 2013b) on the data to be labeled. Testing on

4http://www.mturk.com

the development set shows that this parser achieves
roughly 95% precision and 70% recall.

Using this parser, we label the sentences in our
training set. We only use scenes where at least 15
sentences were successfully parsed. This gives a
training set of 141 scenes (2587 expressions). Com-
bining the automatically labeled training set with the
hand-labelled initialization, development and held-
out data, our labelled corpus totals 3938 labeled ex-
pressions. By contrast, the popular TUNA furniture
sub corpus (Gatt et al., 2007) contains 856 descrip-
tions of 20 scenes, and although some of these refer
to sets, these sets contain two objects at most.

Framework Our experiments were implemented
using the University of Washington Semantic Pars-
ing Framework (Artzi and Zettlemoyer, 2013a).

Hyperparameters Our inference procedure re-
quires two hyperparameters: M , the maximum com-
plexity threshold, and k, the beam size. In practice,
we set these to the highest possible values which
still allow for training to complete in a reasonable
amount of time (under 12 hours). M is set to 20,
which is sufficient to cover 99.5% of the observed
expressions. The beam-size k is 100 for the first
three complexity levels, and 50 thereafter.

For learning, we use the following hyperparam-
eters, which were tuned on the development set:
learning rate α0 = .25, decay rate c = .02, num-
ber of epochs T = 10.

Evaluation Metrics Evaluation metrics used in
REG research have assumed a system that produces
a single output. Our goal is to achieve a distribution
over logical forms that closely matches the distribu-
tion observed from human subjects. Therefore, we
compare our learned model to the labeled test data
with mean absolute error:

MAE =
1

2n

n∑
i=1

∑
z∈Z

|P (z | Si, Gi)−Q(z | Si, Gi)|

where Q is the empirical distribution observed in the
training data. MAE measures the total probability
mass which is assigned differently in the predicted
distribution than in the empirical distribution. We
use MAE as opposed to KL divergence or data like-
lihood as both of these measures are uninformative
when the support of the two distributions differ.

1921

– MAE %dup %uniq Top1
VOA 39.7 98.2 92.5 72.7

GenX
25.8 100 100 72.7
(5.0) (0) (0) (0)

Table 1: Single object referring expression gener-
ation results. Our approach (GenX) is compared
to the approach from Mitchell et al. (2013) (VOA).
Standard deviation over five shuffles of training set
is reported in parentheses.

This metric is quite strict; small differences in the
estimated probabilities over a large number of logi-
cal expressions can result in a large error, even if the
relative ordering is quite similar. Therefore, we re-
port the percentage of observed logical expressions
which the model produces, either giving credit mul-
tiple times for duplicates (%dup) or counting each
unique logical expression in a scene once (%uniq).
Put another way, %dup counts logical expression to-
kens, whereas %uniq counts types. We also report
the proportion of scenes where the most likely log-
ical expression according to the model matched the
most common one in the data (Top1).

Single Object Baseline In order to compare our
method against the state of the art for generating
referring expressions for single objects, we use the
subset of our corpus where the target set is a sin-
gle object. This sub-corpus consists of 44 scenes for
training and 11 held out for testing.

For comparison we re-implemented the proba-
bilistic Visual Objects Algorithm (VOA) of Mitchell
et al. (2013). We refer the readers to the original
paper for details of the approach. The parameters
of the model were tuned on the training data: the
prior likelihood estimates for each of the four at-
tribute types (αatt) were estimated as the relative
frequency of each attribute in the data. We pick the
ordering of attributes and the length penalty, λ, from
the cross-product of all possible 4! orderings and all
integers on the range of [1,10], choosing the setting
which results in the lowest average absolute error
(AAE) on the training set. This process resulted
in the following parameter settings: αcolor = .916,
αshape = .586, αtype = .094, αobject = .506, AP
ordering = [type, shape, object, color], λ = 4. In-
ference was done using 10,000 samples per scene.

– MAE %dup %uniq Top1

Full GenX
54.3 87.4 72.9 52.6
(4.5) (0.6) (1.1) (8.3)

NoPrune
71.8 42.2 16.1 40.0
(2.5) (2.7) (1.7) (5.0)

NoCOV
87.0 26.0 11.2 14.9
(6.7) (3.7) (2.1) (9.7)

NoSTRUC
60.2 79.6 61.9 44.6
(1.7) (0.3) (0.5) (4.5)

HeadExpOnly
88.8 21.9 9.3 14.0
(6.4) (8.6) (3.5) (7.9)

Table 2: Results on the complete corpus for the
complete system (Full GenX), ablating the pruning
model (NoPrune) and the different features: without
coverage features (NoCOV), without structure fea-
tures (NoSTRUC) and using only the logical expres-
sion HeadExp features (HeadExpOnly). Standard
deviation over five runs is shown in parentheses.

8 Results

We report results on both the single-object subset of
our data and the full dataset. Since our approach is
online, and therefore sensitive to data ordering, we
average results over 5 different runs with randomly
ordered data, and report variance.

Single Objects Table 1 shows the different metrics
for generating referring expression for single objects
only. Our approach outperforms VOA (Mitchell
et al., 2013) on all metrics, including an average of
approximately 35% relative reduction in MAE. In
addition, unlike VOA, our system (GenX) produces
every logical expression used to refer to single ob-
jects in our dataset, including a small number which
use negation and equality.

Object Sets Table 2 lists results on the full dataset.
Our learned pruning approach produces an average
72.9% of the unique logical expressions used present
in our dataset – over 87% when these counts are
weighted by their frequency. The globally scored
model achieves a mean absolute error of 54.3, and
correctly assigns the highest probability to the most
likely expression over 52% of the time.

Also shown in Table 2 are results obtained when
elements of our approach are ablated. Using the
global model for pruning instead of an explicitly
trained model causes a large drop in performance,
demonstrating that our global model is inappropri-

1922

Q P̂ z
.750 .320 ι(λx.object(x) ∧ (yellow(x) ∨ red(x)))

.114 ι(λx.lego(x)) ∪ ι(λx.red(x) ∧ apple(x))

.114 ι(λx.yellow(x) ∧ lego(x))) ∪ ι(λx.apple(x))

.044 ι(λx.lego(x) ∨ (red(x) ∧ apple(x)))

.044 ι(λx.(yellow(x) ∧ lego(x)) ∨ apple(x))

.036 ι(λx.lego(x)) ∪ ι(λx.red(x) ∧ sphere(x))

.026 ι(λx.red(x) ∧ lego(x)) ∪ ι(λx.red(x) ∧ sphere(x))
.050 .021 ι(λx.(lego(x) ∧ yellow(x)) ∨ (red(x) ∧ apple(x)))

.017 ι(λx.(lego(x) ∧ yellow(x)) ∨ (red(x) ∧ sphere(x)))

.014 ι(λx.yellow(x) ∧ lego(x)) ∪ ι(λx.red(x) ∧ sphere(x))

.100 .010 ι(λx.yellow(x) ∧ object(x)) ∪ ι(λx.apple(x))

.050 .007 ι(λx.yellow(x) ∧ object(x)) ∪ ι(λx.red(x) ∧ sphere(x))

.050 .005 ι(λx.yellow(x) ∧ object(x)) ∪ ι(λx.red(x) ∧ object(x))

(a) (b)

Figure 4: Example output of our system for the scene on the right. We show the top 10 expressions (z) from
the predicted distribution (P̂) compared to the empirical distribution estimated from our labeled data (Q).
The bottom section shows the predicted probability of the three expressions which were not in the top 10 of
the predicted distribution. Although the mean absolute error (MAE) of P̂ and Q is 63.8, P̂ covers all of the
entries in Q in the correct relative order and also fills in many other plausible candidates.

ate for pruning. We also ablate subsets of our fea-
tures, demonstrating that the coverage and structural
features are both crucial for performance.

Qualitatively, we found the learned distributions
were often higher quality than the seemingly high
mean absolute error would imply. Figure 4 shows
an example output where the absolute error of the
predicted distribution was 63.8. Much of the error
can be attributed to probability mass assigned to log-
ical expressions which, although not observed in our
test data, are reasonable referring expressions. This
might be due to the fact that our estimate of the em-
pirical distribution comes from a fairly small sample
(20), or other factors which we do not model that
make these expressions less likely.

9 Conclusion

In this paper, we modeled REG as a density-
estimation problem. We demonstrated that we can
learn to produce distributions over logical referring
expressions using a globally normalized model. Key
to the approach was the use of a learned pruning
model to define the space of logical expression that
are explicitly enumerated during inference. Exper-
iments demonstrate state-of-the-art performance on
single object reference and the first results for learn-
ing to name sets of objects, correctly recovering over
87% of the observed logical forms.

This approach suggests several directions for fu-

ture work. Lambda-calculus meaning represen-
tations can be designed for many semantic phe-
nomena, such as spatial relations, superlatives, and
graded properties, that are not common in our data.
Collecting new datasets would allow us to study the
extent to which the approach would scale to domains
with such phenomena.

Although the focus of this paper is on REG, the
approach is also applicable to learning distributions
over logical meaning representations for many other
tasks. Such learned models could provide a range
of possible inputs for systems that map logical ex-
pressions to sentences (White and Rajkumar, 2009;
Lu and Ng, 2011), and could also provide a valuable
prior on the logical forms constructed by semantic
parsers in grounded settings (Artzi and Zettlemoyer,
2013b; Matuszek et al., 2012a).

Acknowledgements

This research was supported in part by the In-
tel Science and Technology Center for Pervasive
Computing, by DARPA under the DEFT program
through the AFRL (FA8750-13-2-0019) and the
CSSG (N11AP20020), the ARO (W911NF-12-1-
0197), and the NSF (IIS-1115966). The authors
wish to thank Margaret Mitchell, Mark Yatskar,
Anthony Fader, Kenton Lee, Eunsol Choi, Gabriel
Schubiner, Leila Zilles, Adrienne Wang, and the
anonymous reviewers for their helpful comments.

1923

References

Areces, C., Koller, A., and Striegnitz, K. (2008).
Referring expressions as formulas of description
logic. In Proceedings of the International Natu-
ral Language Generation Conference.

Artzi, Y. and Zettlemoyer, L. (2011). Bootstrapping
semantic parsers from conversations. In Proceed-
ings of the Conference on Empirical Methods in
Natural Language Processing.

Artzi, Y. and Zettlemoyer, L. (2013a). UW SPF:
The University of Washington Semantic Parsing
Framework.

Artzi, Y. and Zettlemoyer, L. (2013b). Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the As-
sociation for Computational Linguistics, 1(1):49–
62.

Barzilay, R. and Lapata, M. (2005). Collective
content selection for concept-to-text generation.
In Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

Berg, A. C., Berg, T. L., Daume, H., Dodge, J.,
Goyal, A., Han, X., Mensch, A., Mitchell, M.,
Sood, A., Stratos, K., et al. (2012). Under-
standing and predicting importance in images. In
IEEE Conference on Computer Vision and Pattern
Recognition.

Carenini, G., Ng, R. T., and Pauls, A. (2006). Multi-
document summarization of evaluative text. In
Proceedings of the Conference of the European
Chapter of the Association for Computational
Linguistics.

Carpenter, B. (1997). Type-Logical Semantics. The
MIT Press.

Chen, D., Kim, J., and Mooney, R. (2010). Train-
ing a multilingual sportscaster: using perceptual
context to learn language. Journal of Artificial In-
telligence Research, 37(1):397–436.

Chen, D. and Mooney, R. (2011). Learning to inter-
pret natural language navigation instructions from
observations. In Proceedings of the National Con-
ference on Artificial Intelligence.

Dale, R. and Reiter, E. (1995). Computational in-
terpretations of the gricean maxims in the gener-

ation of referring expressions. Cognitive Science,
19:233–264.

Dale, R. and Reiter, E. (2000). Building natural lan-
guage generation systems. Cambridge University
Press.

Gardent, C. (2002). Generating minimal definite de-
scriptions. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics.

Gatt, A. and van Deemter, K. (2007). Incremental
generation of plural descriptions: Similarity and
partitioning. In Proceedings of the Conference on
Empirical Methods in Natural Language Process-
ing.

Gatt, A., Van Der Sluis, I., and Van Deemter, K.
(2007). Evaluating algorithms for the generation
of referring expressions using a balanced corpus.
In Proceedings of the European Workshop on Nat-
ural Language Generation.

Grice, H. P. (1975). Logic and conversation. 1975,
pages 41–58.

Horacek, H. (2004). On referring to sets of objects
naturally. In Natural Language Generation, pages
70–79. Springer.

Kim, J. and Mooney, R. J. (2012). Unsupervised
PCFG induction for grounded language learning
with highly ambiguous supervision. In Proceed-
ings of the Conference on Empirical Methods in
Natural Language Processing.

Konstas, I. and Lapata, M. (2012). Unsupervised
concept-to-text generation with hypergraphs. In
Proceedings of the Conference of the North Amer-
ican Chapter of the Association for Computa-
tional Linguistics.

Krahmer, E. and van Deemter, K. (2012). Computa-
tional generation of referring expressions: A sur-
vey. Computational Linguistics, 38(1):173–218.

Krishnamurthy, J. and Kollar, T. (2013). Jointly
learning to parse and perceive: Connecting nat-
ural language to the physical world. Transactions
of the Association for Computational Linguistics,
1(2):193–206.

Liang, P., Jordan, M., and Klein, D. (2009). Learn-
ing semantic correspondences with less supervi-
sion. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics.

1924

Lu, W. and Ng, H. T. (2011). A probabilis-
tic forest-to-string model for language generation
from typed lambda calculus expressions. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing.

Matuszek, C., FitzGerald, N., Zettlemoyer, L., Bo,
L., and Fox, D. (2012a). A joint model of lan-
guage and perception for grounded attribute learn-
ing. Proceedings of the International Conference
on Machine Learning.

Matuszek, C., Herbst, E., Zettlemoyer, L. S., and
Fox, D. (2012b). Learning to parse natural lan-
guage commands to a robot control system. In
Proceedings of the International Symposium on
Experimental Robotics.

Mitchell, M., van Deemter, K., and Reiter, E.
(2011a). Applying machine learning to the choice
of size modifiers. In Proceedings of the PRE-
CogSci Workshop.

Mitchell, M., Van Deemter, K., and Reiter, E.
(2011b). Two approaches for generating size
modifiers. In Proceedings of the European Work-
shop on Natural Language Generation.

Mitchell, M., van Deemter, K., and Reiter, E. (2013).
Generating expressions that refer to visible ob-
jects. In Proceedings of Conference of the North
American Chapter of the Association for Compu-
tational Linguistics.

Ren, Y., Van Deemter, K., and Pan, J. Z. (2010).
Charting the potential of description logic for the
generation of referring expressions. In Proceed-
ings of the International Natural Language Gen-
eration Conference.

Scontras, G., Graff, P., and Goodman, N. D. (2012).
Comparing pluralities. Cognition, 123(1):190–
197.

Steedman, M. (2011). Taking Scope. The MIT Press.

Stone, M. (2000). On identifying sets. In Proceed-
ings of the International Conference on Natural
Language Generation.

van Deemter, K. (2002). Generating referring ex-
pressions: Boolean extensions of the incremental
algorithm. Computational Linguistics, 28:37–52.

van Deemter, K., Gatt, A., Sluis, I. v. d., and Power,
R. (2012a). Generation of referring expressions:

Assessing the incremental algorithm. Cognitive
Science, 36(5):799–836.

van Deemter, K., Gatt, A., van Gompel, R. P., and
Krahmer, E. (2012b). Toward a computational
psycholinguistics of reference production. Topics
in Cognitive Science, 4(2):166–183.

Viethen, J. and Dale, R. (2010). Speaker-dependent
variation in content selection for referring ex-
pression generation. In Proceedings of the Aus-
tralasian Language Technology Workshop.

Viethen, J., Mitchell, M., and Krahmer, E. (2013).
Graphs and spatial relations in the generation of
referring expressions. In Proceedings of the Eu-
ropean Workshop on Natural Language Genera-
tion.

White, M. and Rajkumar, R. (2009). Perceptron
reranking for ccg realization. In Proceedings of
the Conference on Empirical Methods in Natural
Language Processing.

Winograd, T. (1972). Understanding natural lan-
guage. Cognitive Psychology, 3(1):1–191.

Zelle, J. and Mooney, R. (1996). Learning to parse
database queries using inductive logic program-
ming. In Proceedings of the National Conference
on Artificial Intelligence.

Zettlemoyer, L. and Collins, M. (2005). Learning
to map sentences to logical form: Structured clas-
sification with probabilistic categorial grammars.
In Proceedings of the Conference on Uncertainty
in Artificial Intelligence.

Zettlemoyer, L. and Collins, M. (2007). Online
learning of relaxed CCG grammars for parsing to
logical form. In Proceedings of the Joint Confer-
ence on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning.

Zitnick, C. L. and Parikh, D. (2013). Bringing se-
mantics into focus using visual abstraction. In
IEEE Conference on Computer Vision and Pattern
Recognition.

1925

