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Abstract

Assigning a positive or negative score to a
word out of context (i.e. a word’s prior polar-
ity) is a challenging task for sentiment analy-
sis. In the literature, various approaches based
on SentiWordNet have been proposed. In this
paper, we compare the most often used tech-
niques together with newly proposed ones and
incorporate all of them in a learning frame-
work to see whether blending them can fur-
ther improve the estimation of prior polarity
scores. Using two different versions of Sen-
tiWordNet and testing regression and classifi-
cation models across tasks and datasets, our
learning approach consistently outperforms
the single metrics, providing a new state-of-
the-art approach in computing words’ prior
polarity for sentiment analysis. We conclude
our investigation showing interesting biases
in calculated prior polarity scores when word
Part of Speech and annotator gender are con-
sidered.

1 Introduction

Many approaches to sentiment analysis make use of
lexical resources – i.e. lists of positive and neg-
ative words – often deployed as baselines or as
features for other methods (usually machine learn-
ing based) for sentiment analysis research (Liu and
Zhang, 2012). In these lexica, words are associated
with their prior polarity, i.e. if that word out of con-
text evokes something positive or something nega-
tive. For example, wonderful has a positive connota-
tion – prior polarity – while horrible has a negative
one. These approaches have the advantage of not

needing deep semantic analysis or word sense dis-
ambiguation to assign an affective score to a word
and are domain independent (they are thus less pre-
cise but more portable).

SentiWordNet (henceforth SWN) is one of these
resources and has been widely adopted since it pro-
vides a broad-coverage lexicon – built in a semi-
automatic manner – for English (Esuli and Sebas-
tiani, 2006). Given that SWN provides polarities
scores for each word sense (also called ‘posterior
polarities’), it is necessary to derive prior polarities
from the posteriors. For example, the word cold has
a posterior polarity for the meaning “having a low
temperature” – like in “cold beer” – that is different
from the one in “cold person” which refers to “being
emotionless”. This information must be considered
when reconstructing the prior polarity of cold.

Several formulae to compute prior polarities start-
ing from posterior polarities scores have been used
in the literature. However, their performance varies
significantly depending on the adopted variant. We
show that researchers have not paid sufficient atten-
tion to this posterior-to-prior polarity issue. Indeed,
we show that some variants outperform others on
different datasets and can represent a fairer state-of-
the-art approach using SWN. On top of this, we at-
tempt to outperform the state-of-the-art formula us-
ing a learning framework that combines the various
formulae together.

In detail, we will address five main research
questions: (i) is there any relevant difference in
the posterior-to-prior polarity formulae performance
(both in regression and classification tasks), (ii) is
there any relevant variation in prior polarity values
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if we use different releases of SWN (i.e. SWN1 or
SWN3), (iii) can a learning framework boost per-
formance of such formulae, (iv) considering word
Part of Speech (PoS), is there any relevant difference
in formulae performance, (v) considering the gender
dimension of the annotators (male/female) and the
sentiment dimension (positive/negative), is there any
relevant difference in SWN performance.

In Section 2 we briefly describe our approach and
how it differentiates from similar sentiment analysis
tasks. Then, in Sections 3 and 4, we present Sen-
tiWordNet and overview various posterior-to-prior
polarity formulae based on this resource that ap-
peared in the literature (included some new ones
we identified as potentially relevant). In Section 5
we describe the learning approach adopted on prior-
polarity formulae. In Section 6 we introduce the
ANEW and General Inquirer resources that will be
used as gold standards. Finally, in the two last sec-
tions, we present a series of experiments, both in
regression and classification tasks, that give an an-
swer to the aforementioned research questions. The
results support the hypothesis that using a learning
framework we can improve on state-of-the-art per-
formance and that there are some interesting phe-
nomena connected to PoS and annotator gender.

2 Proposed Approach

In the broad field of Sentiment Analysis we will fo-
cus on the specific problem of posterior-to-prior po-
larity assessment, using both regression and classifi-
cation experiments. A general overview on the field
and possible approaches can be found in (Pang and
Lee, 2008) or (Liu and Zhang, 2012).

For the regression task, we tackled the problem
of assigning affective scores (along a continuum be-
tween -1 and 1) to words using the posterior-to-prior
polarity formulae. For the classification task (assess-
ing whether a word is either positive or negative) we
used the same formulae, but considering just the sign
of the result. In these experiments we will also use a
learning framework which combines the various for-
mulae together. The underlying hypothesis is that by
blending these formulae, and looking at the same in-
formation from different perspectives (i.e. the pos-
terior polarities provided by SWN combined in var-
ious ways), we can give a better prediction.

The regression task is harder than binary classifi-
cation, since we want to assess not only that pretty,
beautiful and gorgeous are positive words, but also
to define a partial or total order so that gorgeous
is more positive than beautiful which, in turn, is
more positive than pretty. This is fundamental for
tasks such as affective modification of existing texts,
where words’ polarity together with their score are
necessary for creating multiple graded variations of
the original text (Guerini et al., 2008). Some of
the work that addresses the problem of sentiment
strength are presented in (Wilson et al., 2004; Pal-
toglou et al., 2010), however, their approach is mod-
eled as a multi-class classification problem (neutral,
low, medium or high sentiment) at the sentence level,
rather than a regression problem at the word level.
Other works such as (Neviarouskaya et al., 2011)
use a fine grained classification approach too, but
they consider emotion categories (anger, joy, fear,
etc.), rather than sentiment strength categories. On
the other hand, even if approaches that go beyond
pure prior polarities – e.g. using word bigram fea-
tures (Wang and Manning, 2012) – are better for
sentiment analysis tasks, there are tasks that are in-
trinsically based on the notion of words’ prior polar-
ity. Consider copywriting, where evocative names
are a key element to a successful product (Özbal and
Strapparava, 2012; Özbal et al., 2012). In such cases
no context is given and the brand name alone, with
its perceived prior polarity, is responsible for stating
the area of competition and evoking semantic asso-
ciations. For example Mitsubishi changed the name
of one of its SUV for the Spanish market, since the
original name Pajero had a very negative prior po-
larity, as it meant ‘wanker’ in Spanish (Piller, 2003).

To our knowledge, the only work trying to address
the SWN posterior-to-prior polarity issue, compar-
ing some of the approaches appeared in the literature
is (Gatti and Guerini, 2012). However, in our previ-
ous study we only considered a regression frame-
work, we did not use machine learning and we only
tested SWN1. So, we took this work as a starting
point for our analysis and expanded on it.

3 SentiWordNet

SentiWordNet (Esuli and Sebastiani, 2006) is a
lexical resource in which each entry is a set of
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lemma-PoS pairs sharing the same meaning, called
“synset”. Each synset s is associated with the nu-
merical scores Pos(s) and Neg(s), which range
from 0 to 1. These scores – automatically as-
signed starting from a bunch of seed terms – rep-
resent the positive and negative valence (or pos-
terior polarity) of the synset and are inherited by
each lemma-PoS in the synset. According to the
structure of SentiWordNet, each pair can have more
than one sense and each of them takes the form of
lemma#PoS#sense-number, where the small-
est sense-number corresponds to the most frequent
sense.

Obviously, different senses can have different po-
larities. In Table 1, the first 5 senses of cold#a
present all possible combinations, included mixed
scores (cold#a#4), where positive and negative
valences are assigned to the same sense. Intuitively,
mixed scores for the same sense are acceptable, as
in “cold beer” (positive) vs. “cold pizza” (negative).

PoS Offset Pos(s) Neg(s) SynsetTerms
a 1207406 0.0 0.75 cold#a#1
a 1212558 0.0 0.75 cold#a#2
a 1024433 0.0 0.0 cold#a#3
a 2443231 0.125 0.375 cold#a#4
a 1695706 0.625 0.0 cold#a#5

Table 1: First five SentiWordNet entries for cold#a

In our experiments we use two different versions
of SWN: SentiWordNet 1.0 (SWN1), the first re-
lease of SWN, and its updated version SentiWord-
Net 3.0 (Baccianella et al., 2010) – SWN3. In
SWN3 the annotation algorithm used in SWN1

was revised, leading to an increase in the accuracy
of posterior polarities over the previous version.

4 Prior Polarities Formulae

In this section we review the main strategies for
computing prior polarities used in previous stud-
ies. All the proposed approaches try to estimate
the prior polarity score from the posterior polari-
ties of all the senses for a single lemma-PoS. Given
a lemma-PoS with n senses (lemma#PoS#n), ev-
ery formula f is independently applied to all the
Pos(s) and Neg(s) . This produces two scores,
f(posScore) and f(negScore), for each lemma-
PoS. To obtain a unique prior polarity for each
lemma-PoS, f(posScore) and f(negScore) can be

mapped according to different strategies:

fm =


f(posScore) if f(posScore) ≥

f(negScore)

−f(negScore) otherwise

fd = f(posScore)− f(negScore)

where fm computes the absolute maximum of
the two scores, while fd computes the difference
between them. It is worth noting that f(negScore)
is always positive by construction. To obtain
a final prior polarity that ranges from -1 to 1,
the negative sign is imposed. So, consider-
ing the first 5 senses of cold#a in Table 1,
f(posScore) will be derived from the Pos(s) val-
ues <0.0, 0.0, 0.0, 0.125, 0.625>, while f(negScore)
from <0.750, 0.750, 0.0, 0.375, 0.0>. Then, the fi-
nal polarity strength returned will be either fm or fd.

The formulae (f ) we tested are the following:
fs. In this formula only the first (and thus

most frequent) sense is considered for the given
lemma#PoS. This is equivalent to considering only
the SWN score for lemma#PoS#1. Based on
(Neviarouskaya et al., 2009; Agrawal and Siddiqui,
2009; Guerini et al., 2008; Chowdhury et al., 2013),
this is the most basic form of prior polarities.

mean. It calculates the mean of the positive
and negative scores for all the senses of the given
lemma#PoS. This formula has been used in (Thet
et al., 2009; Denecke, 2009; Devitt and Ahmad,
2007; Sing et al., 2012).

uni. Based on (Neviarouskaya et al., 2009), it
considers only those senses that have a Pos(s)
greater than or equal to the corresponding Neg(s),
and greater than 0 (the stronglyPos set). In case
posScore is equal to negScore, the one with the
highest weight is returned, where weights are de-
fined as the cardinality of stronglyPos divided by
the total number of senses. The same applies for the
negative senses. This is the only method, together
with rnd, for which we cannot apply fd, as it returns
a positive or negative score according to the weight.

uniw. Like uni but without the weighting system.
w1. This formula weighs each sense with a geo-

metric series of ratio 1/2. The rationale behind this
choice is based on the assumption that more frequent
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senses should bear more “affective weight” than rare
senses when computing the prior polarity of a word.
The system presented in (Chaumartin, 2007) uses a
similar approach of weighted mean.

w2. Similar to the previous one, this formula
weighs each lemma with a harmonic series, see for
example (Denecke, 2008).

On top of these formulae, we implemented some
new formulae that were relevant to our task and
have not been implemented before. These for-
mulae mimic the ones discussed previously, but
they are built under a different assumption: that
the saliency (Giora, 1997) of a word’s prior polar-
ity might be more related to its posterior polari-
ties score, rather than to sense frequencies. Thus
we ordered posScore and negScore by strength,
giving more relevance to ‘valenced’ senses. For
instance, in Table 1, posScore and negScore
for cold#a become<0.625, 0.125, 0.0, 0.0, 0.0> and
<0.750, 0.750, 0.375, 0.0, 0.0> respectively.

w1s and w1n. Like w1 and w2, but senses are
ordered by strength (sorting Pos(s) and Neg(s) in-
dependently).

w1n and w2n. Like w1 and w2 respectively, but
without considering senses that have a 0 score for
both Pos(s) and Neg(s). Our motivation is that
“empty” senses are mostly noise.

w1sn and w2sn. Like w1s and w2s, but with-
out considering senses that have a 0 score for both
Pos(s) and Neg(s).

median: return the median of the senses ordered
by polarity score.

All these prior polarities formulae are compared
against two gold standards (one for regression, one
for classification) both one by one, as in the works
mentioned above, and combined together in a learn-
ing framework (to see whether combining these fea-
tures – that capture different aspect of prior polari-
ties – can further improve the results).

Finally, we implemented two variants of a prior
polarity random baseline to asses possible advan-
tages of approaches using SWN:

rnd. This formula represents the basic baseline
random approach. It simply returns a random num-
ber between -1 and 1 for any given lemma#PoS.

swnrnd. This formula represents an advanced
random approach that incorporates some “knowl-

edge” from SWN. It takes the scores of a random
sense for the given lemma#PoS. We believe this
is a fairer baseline than rnd since SWN informa-
tion can possibly constrain the values. A similar ap-
proach has been used in (Qu et al., 2008).

5 Learning Algorithms

We used two non-parametric learning approaches,
Support Vector Machines (SVMs) (Shawe-Taylor
and Cristianini, 2004) and Gaussian Processes (GPs)
(Rasmussen and Williams, 2006), to test the perfor-
mance of all the metrics in conjunction. SVMs are
non-parametric deterministic algorithms that have
been widely used in several fields, in particular in
NLP where they are the state-of-the-art for various
tasks. GPs, on the other hand, are an extremely flex-
ible non-parametric probabilistic framework able to
explicitly model uncertainty, that, despite being con-
sidered state-of-the-art in regression, have rarely
been used in NLP. To our knowledge only two pre-
vious works did so (Polajnar et al., 2011; Cohn and
Specia, 2013).

Both methods take advantage of the kernel trick,
a technique used to embed the original feature space
into an alternative space where data may be linearly
separable. This is performed by the kernel func-
tion that transforms the input data in a new structure,
called kernel. How it is used to produce the predic-
tion is one of the main differences between SVMs
and GPs. In classification SVMs use the geomet-
ric mean to discriminate between the positive and
negative classes, while the GP model uses the pos-
terior probability distribution over each class. Both
frameworks support learning algorithms for regres-
sion and classification. An exhaustive explanation
of the two methodologies can be found in (Shawe-
Taylor and Cristianini, 2004) and (Rasmussen and
Williams, 2006).

In the SVM experiments, we use C-SVM and ε-
SVM implemented in the LIBSVM toolbox (Chang
and Lin, 2011). The selection of the kernel (linear,
polynomial, radial basis function and sigmoid) and
the optimization of the parameters are carried out
through grid search in 10-fold cross-validation.

GP regression models with Gaussian noise are a
rare exception where the exact inference with like-
lihood functions is tractable, see §2 in (Rasmussen
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and Williams, 2006). Unfortunately, this is not valid
for the classification task – see §3 in (Rasmussen and
Williams, 2006) – where an approximation method
is required. In this work, we use the Laplace ap-
proximation method proposed in (Williams and Bar-
ber, 1998). Different kernels are tested (covariance
for constant functions, linear with and without au-
tomatic relevance determination (ARD)1, Matern,
neural network, etc.2) and the linear logistic (lll)
and probit regression (prl) likelihood functions are
evaluated in classification. In our classification ex-
periments we tried all possible combinations of ker-
nels and likelihood functions, while in the regression
tests we ranged only on different kernels. All the GP
models were implemented using the GPML Matlab
toolbox3. Unlike SVMs, the optimization of the ker-
nel parameters can be performed without using grid
search, but the optimal parameters can be obtained
iteratively, by maximizing the marginal likelihood
(or in classification, the Laplace approximation of
the marginal likelihood). We fix at 100 the maxi-
mum number of iterations.

An interesting property of the GPs is their capa-
bility of weighting the features differently accord-
ing to their importance in the data. This is referred
to as the automatic variance determination kernel.
As demonstrated in (Weston et al., 2000), SVMs
can benefit from the application of feature selec-
tion techniques especially when there are highly re-
dundant features. Since the prior polarities formu-
lae tend to cluster in groups that provide similar re-
sults (Gatti and Guerini, 2012) – creating noise for
the learner – we want to understand whether feature
selection approaches can boost the performance of
SVMs. For this reason, we also test feature selection
prior to the SVM training. For that we used Ran-
domized Lasso, or stability selection (Meinshausen
and Bühlmann, 2010). Re-sampling of the training
data is performed several times and a Lasso regres-
sion model is fit on each sample. Features that ap-
pear in a given number of samples are retained. Both
the fraction of the data to be sampled and the thresh-
old to select the features can be configured. In our

1linone and linard in the result tables, respectively.
2More detailed information on the available kernels are in

§4 (Rasmussen and Williams, 2006)
3http://www.gaussianprocess.org/gpml/

code/matlab/doc/

experiments we set the sampling fraction to 75%,
the selection threshold to 25% and the number of re-
samples to 1,000. We refer to these as SVMfs.

6 Gold Standards

To assess how well prior polarity formulae perform,
a gold standard with word polarities provided by hu-
man annotators is needed. There are many such re-
sources in the literature, each with different cover-
age and annotation characteristics. ANEW (Bradley
and Lang, 1999) rates the valence score of 1,034
words, which were presented in isolation to anno-
tators. The SO-CAL entries (Taboada et al., 2011)
were collected from corpus data and then manu-
ally tagged by a small number of annotators with
a multi-class label. These ratings were further vali-
dated through crowdsourcing. Other resources, such
as the General Inquirer lexicon (Stone et al., 1966),
provide a binomial classification (either positive or
negative) of sentiment-bearing words. The resource
presented in (Wilson et al., 2005) uses a similar bi-
nomial annotation for single words; another inter-
esting resource is WordNetAffect (Strapparava and
Valitutti, 2004) but it labels words senses and it can-
not be used for the prior polarity validation task.

In the following we describe in detail the two
resources we used for our experiments, namely
ANEW for the regression experiments and the Gen-
eral Inquirer (GI) for the classification ones.

6.1 ANEW

ANEW (Bradley and Lang, 1999) is a resource de-
veloped to provide a set of normative emotional rat-
ings for a large number of words (roughly 1 thou-
sand) in the English language. It contains a set of
words that have been rated in terms of pleasure (af-
fective valence), arousal, and dominance. In par-
ticular for our task we considered the valence di-
mension. Since words were presented to subjects
in isolation (i.e. no context was provided) this re-
source represents a human validation of prior polar-
ities scores for the given words, and can be used as a
gold standard. For each word ANEW provides two
main metrics: anewµ, which correspond to the av-
erage of annotators votes, and anewσ, which gives
the variance in annotators scores for the given word.
In the same way these metrics are also provided for
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the male/female annotator groups.

6.2 General Inquirer

The Harvard General Inquirer dictionary is a widely
used resource, built for automatic text analysis
(Stone et al., 1966). Its latest revision4 contains
11789 words, tagged with 182 semantic and prag-
matic labels, as well as with their part of speech.
Words and their categories were initially taken
from the Harvard IV-4 Psychosociological Dictio-
nary (Dunphy et al., 1974) and the Lasswell Value
Dictionary (Lasswell and Namenwirth, 1969). For
this paper we consider the Positiv and Negativ
categories (1,915 words the former, 2,291 words the
latter, for a total of 4,206 affective words).

7 Experiments

In order to use the ANEW dataset to measure
prior polarities formulae performance, we had to
assign a PoS to all the words to obtain the SWN
lemma#PoS format. To do so, we proceeded as
follows: for each word, check if it is present among
both SWN1 and SWN3 lemmas; if not, lemmatize
the word with the TextPro tool suite (Pianta et al.,
2008) and check if the lemma is present instead5.
If it is not found (i.e., the word cannot be aligned
automatically), remove the word from the list (this
was the case for 30 words of the 1,034 present in
ANEW). The remaining 1,004 lemmas were then
associated with all the PoS present in SWN to get
the final lemma#PoS. Note that a lemma can have
more than one PoS, for example, writer is present
only as a noun (writer#n), while yellow is present
as a verb, a noun and an adjective (yellow#v,
yellow#n, yellow#a). This gave us a list of
1,484 words in the lemma#PoS format.

In a similar way we pre-processed the GI words
that uses the generic modif label to indicate ei-
ther adjective or adverb (noun and verb PoS were
instead consistently used). Finally, all the sense-
disambiguated words in the lemma#PoS#n format
were discarded (1,114 words out of the 4,206 words
with positive or negative valence).

4http://www.wjh.harvard.edu/˜inquirer/
5We did not lemmatize everything to avoid duplications (for

example, if we lemmatize the ANEW entry addicted, we obtain
addict, which is already present in ANEW).

After the two datasets were built this way, we
removed the words for which the posScore and
negScore contained all 0 in both SWN1 and
SWN3 (523 lemma#PoS for ANEW and 484 for
the GI dataset), since these words are not informa-
tive for our experiments. The final dataset included
961 entries for ANEW and 2,557 for GI. For each
lemma#PoS in GI and ANEW, we then applied the
prior polarity formulae described in Section 4, using
both SWN1 and SWN3 and annotated the results.

According to the nature of the human labels (real
numbers or -1/1), we ran several regression and clas-
sification experiments. In both cases, each dataset
was randomly split into 70% for training and the re-
maining for test. This process was repeated 5 times
to generate different splits. For each partition, opti-
mization of the learning algorithm parameters was
performed on the training data (in 10-fold cross-
validation for SVMs). Training and test sets were
normalized using the z-score.

To evaluate the performance of our regression ex-
periments on ANEW we used the Mean Absolute
Error (MAE), that averages the error over a given
test set. Accuracy was used for the classification ex-
periments on GI instead. We opted for accuracy –
rather than F1 – since for us True Negatives have
same importance as True Positives. For each experi-
ments we reported the average performance and the
standard deviation over the 5 random splits. In the
following sections, to check if there was a statisti-
cally significant difference in the results, we used
Student’s t-test for regression experiments, while
an approximate randomization test (Yeh, 2000) was
used for the classification experiments.

In Tables 2 and 3, the results of regression exper-
iments over the ANEW dataset, using SWN1 and
SWN3, are presented. The results of the classifica-
tion experiments over the GI dataset, using SWN1

and SWN3 are shown in Tables 4 and 5. For the
sake of interpretability, results are divided accord-
ing to the main approaches: randoms, posterior-to-
prior formulae, learning algorithms. Note that for
classification we report the generics f and not the
fm and fd variants. In fact, both versions always
return the same classification answer (we are clas-
sifying according to the sign of f result and not its
strength). For the GPs, we report the two best con-
figurations only.
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MAE µ MAE σ
rnd 0.652 0.026
swnrndm 0.427 0.011
swnrndd 0.426 0.009
uniwm 0.420 0.009
maxm 0.419 0.009
fsd 0.413 0.011
fsm 0.412 0.009
uni 0.410 0.010
uniwd 0.406 0.007
w1snm 0.405 0.011
maxd 0.404 0.005
w2snm 0.402 0.011
mediand 0.401 0.014
w1d 0.401 0.010
w1nd 0.399 0.008
meand 0.398 0.010
w2d 0.398 0.010
medianm 0.397 0.015
w1snd 0.397 0.008
w2snd 0.397 0.008
w2nd 0.397 0.008
w1sm 0.396 0.010
w1m 0.396 0.010
w1nm 0.394 0.009
meanm 0.393 0.011
w2sd 0.393 0.008
w1sd 0.393 0.009
w2sm 0.392 0.010
w2m 0.391 0.011
w2nm 0.391 0.012
GPlinard 0.398 0.014
GPlinone 0.398 0.014
SVM 0.367 0.010
SVMfs 0.366 0.011
AVERAGE 0.398 0.010

Table 2: MAE results for metrics using SWN1

8 General Discussion

In this section we sum up the main results of our
analysis, providing an answer to the various ques-
tions we introduced at the beginning of the paper:

SentiWordNet improves over random. One of
the first things worth noting – in Tables 2, 3, 4 and
5 – is that the random approach (rnd), as expected,
is the worst performing metric, while all other ap-
proaches, based on SWN, have statistically signif-
icant improvements both for MAE and for Accu-
racy (p < 0.001). So, using SWN for posterior-
to-prior polarity computation brings benefits, since
it increases the performance above the baseline in
words’ prior polarity assessment.

SWN3 is better than SWN1. With respect to

MAE µ MAE σ
rnd 0.652 0.026
swnrndd 0.404 0.013
swnrndm 0.402 0.010
maxm 0.393 0.009
fsd 0.382 0.008
uniwm 0.382 0.015
fsm 0.381 0.010
medianm 0.377 0.008
uniwd 0.377 0.012
mediand 0.377 0.011
uni 0.376 0.010
maxd 0.372 0.011
meand 0.371 0.010
w1snm 0.371 0.011
w2snm 0.369 0.010
w1d 0.368 0.010
w2d 0.367 0.010
meanm 0.367 0.010
w1m 0.365 0.010
w2snd 0.364 0.011
w1snd 0.364 0.010
w1sm 0.363 0.009
w1nd 0.362 0.009
w2sd 0.362 0.010
w2m 0.362 0.010
w1sd 0.362 0.009
w1nm 0.362 0.007
w2nd 0.361 0.010
w2sm 0.360 0.009
w2nm 0.359 0.009
GPlinone 0.356 0.008
GPlinard 0.355 0.008
SVM 0.333 0.004
SVMfs 0.333 0.003
AVERAGE 0.366 0.009

Table 3: MAE results for regression using SWN3

SWN1, using SWN3 enhances performance, both
in regression (MAE µ 0.398 vs. 0.366, p < 0.001)
and classification (Accuracy µ 0.710 vs. 0.771,
p < 0.001) tasks. Since many of the approaches
described in the literature use SWN1 their results
should be revised and SWN3 should be used as
standard. This difference in performance can be
partially explained by the fact that, even after pre-
processing, for the ANEW dataset 137 lemma#PoS
have all senses equal to 0 in SWN1, while in SWN3

they are just 48. In the GI lexicon the numbers are
233 for SWN1 and 69 for SWN3.

Not all formulae are created equal. The formu-
lae described in Section 4 have very different results,
along a continuum. While inspecting every differ-
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Acc. µ Acc. σ
rnd 0.447 0.019
swn rndm 0.639 0.026
swn rndd 0.646 0.021
fs m 0.659 0.020
uni 0.684 0.017
median 0.686 0.022
uniw 0.702 0.019
max 0.710 0.022
w1 0.712 0.021
w1n 0.713 0.022
w2n 0.714 0.023
w2 0.715 0.021
mean 0.718 0.023
w2s 0.719 0.023
w2sn 0.719 0.023
w1s 0.719 0.023
w1sn 0.719 0.023
GP lll

linard 0.721 0.026
GP prl

linard 0.722 0.025
SVM 0.733 0.021
SVMfs 0.743 0.021
Average 0.710 0.022

Table 4: Accuracy results for classification using SWN1

ence in performance is out of the scope of the present
paper, we can see that there is a strong difference be-
tween best and worst performing formulae both in
regression (in Table 2 w2nm is better than uniwm,
in Table 3 w2nm is better than maxm) and classifi-
cation (in Table 4 w1snm is better than fsm,in Ta-
ble 5 w2m is better than fsm) and these differences
are all statistically significant (p < 0.001). Again,
these results indicate that the previous experiments
in the literature that use SWN as a baseline should
be revised to take these results into account. Further-
more, the new formulae we introduced, based on the
“posterior polarities saliency” hypothesis, proved to
be among the best performing in all experiments.
This entails that there is room for inspecting new
formulae variants other than those already proposed
in the literature.

Selecting just one sense is not a good choice.
On a side note, the approaches that rely on only one
sense polarity (namely fs, median and max) have
similar results which do not differ significantly from
swnrnd (for maxm, fsd and fsm in Table 2, and
for maxm in Table 3). These same approaches are
also far from the best performing formulae: in Ta-
ble 3, mediand differs from w2nm (p < 0.05), as
do maxm, maxd, fsm and fsd (p < 0.001); in Ta-

Acc. µ Acc. σ
rnd 0.447 0.019
swn rndd 0.700 0.030
swn rndm 0.706 0.034
fs 0.723 0.014
medianm 0.742 0.016
uni 0.750 0.015
uniw 0.762 0.023
max 0.769 0.019
w2s 0.777 0.017
w2sn 0.777 0.017
w1s 0.777 0.017
w1sn 0.777 0.017
w1n 0.780 0.021
w2n 0.780 0.022
mean 0.781 0.018
w1 0.781 0.021
w2 0.781 0.021
SVM 0.779 0.016
GPl 0.779 0.018
GPg 0.781 0.018
SVMfs 0.792 0.014
Average 0.771 0.018

Table 5: Accuracy results for classification using SWN3

ble 3, fs, max and median in both their fm and fd
variants are significantly different from the best per-
forming w2nm (p < 0.001). For classification, in
Table 4 and 5 the difference between the correspond-
ing best performing formula and the single senses
formulae is always significant (at least p < 0.01).
Among other things, this finding entails, surpris-
ingly, that taking the first sense of a lemma#PoS in
some cases has no improvement over taking a ran-
dom sense, and that in all cases it is one of the worst
approaches with SWN . This is surprising since in
many NLP tasks, such as word sense disambigua-
tion, algorithms based on most frequent sense repre-
sent a very strong baseline6.

Learning improvements. Combining the formu-
lae in a learning framework further improves the
results over the best performing formulae, both in
regression (MAEµ with SWN1 0.366 vs. 0.391,
p < 0.001; MAEµ with SWN3 0.333 vs. 0.359,
p < 0.001) and in classification (Accuracyµ for
SWN1 is 0.743 vs. 0.719, p < 0.001; Accuracyµ
for SWN3 is 0.792 vs. 0.781, not significant p =
0.07). Another thing worth noting is that, in re-
gression, GPs are outperformed by both versions of

6In SemEval 2010, only 5 participants out of 29 performed
better than the most frequent threshold (Agirre et al., 2010).
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SVM (p < 0.001), see Tables 2 and 3. This is in
contrast with the results presented in (Cohn and Spe-
cia, 2013), where GPs on the single task are on av-
erage better than SVMs. In classification, GPs have
similar performance to SVM without feature selec-
tion, and in some cases (see Table 5) even slightly
better. Analyzing the selected kernels for GPs and
SVMs, we notice that in most of the splits SVMs
prefer the radial based function, while the best per-
formance with the GPs are obtained with linear ker-
nels with and without ARD. There is no significant
difference in using linear logistic and probit regres-
sion likelihoods. In all our experiments, SVM with
feature selection leads to the best performance. This
is not surprising due the high level of redundancy
in the formulae scores. Interestingly, inspecting the
most frequent selected features by SVMfs, we see
that features from different groups are selected, and
even the worst performing formulae can add infor-
mation, confirming the idea that viewing the same
information from different perspectives (i.e. the pos-
terior polarities provided by SWN combined in var-
ious ways) can give better predictions.

To sum up: the new state-of-the-art performance
level in prior-polarity computation is represented
by the SVMfs approach using SWN3, and this
should be used as the reference from now on.

9 PoS and Gender Experiments

Next, we wanted to understand if the performance of
our approach, using SWN3, was consistent across
word PoS. In Table 6 we report the results for the
best performing formulae and learning algorithm on
the GI PoS classes. In particular for ADJ there are
1,073 words, 922 for NOUN and 508 for VERB. We
discarded adverbs since the class was too small to
allow reliable evaluation and efficient learning (only
54 instances). The results show a greater accuracy
for adjectives (p < 0.01), while performance for
nouns and verbs are similar.

SVMfs best f
Acc. µ Acc. σ Acc. µ Acc. σ

ADJ 0.829 0.019 0.821 0.016
NOUN 0.784 0.021 0.765 0.023
VERBS 0.782 0.052 0.744 0.046

Table 6: Accuracy results for PoS using SWN3

Finally we test against the male and female ratings
provided by ANEW. As can be seen from Table 7,
SWN approaches are far more precise in predicting
Male judgments rather than Female ones (MAEµ
goes from 0.392 to 0.323 with the best formula and
from 0.369 to 0.292 with SVMfs, both differences
are significant p < 0.001). Instead, in Table 8 –
which displays the results along gender and polarity
dimensions – there is no statistically significant dif-
ference in MAE on positive words between male
and female, while there is a strong statistical signifi-
cance for negative words (p < 0.001).

Interestingly, there is also a large difference be-
tween positive and negative affective words (both
for male and female dimensions). This difference
is maximum for male scores on positive words com-
pared to female scores on negative words (0.283 vs.
0.399, p < 0.001). Recent work by Warriner et al.
(2013) inspected the differences in prior polarity as-
sessment due to gender.

At this stage we can only note that prior polari-
ties calculated with SWN are closer to ANEW male
annotations than female ones. Understanding why
this happens would require an accurate examination
of the methods used to create WordNet and SWN
(which will be the focus of our future work).

Male female
MAE µ MAE σ MAE µ MAE σ

SVMfs 0.292 0.020 0.369 0.008
best f 0.323 0.022 0.392 0.010

Table 7: MAE results for Male vs Female using SWN3

Male female
MAE µ MAE σ MAE µ MAE σ

Pos 0.283 0.022 0.340 0.009
Neg 0.301 0.029 0.399 0.013

Table 8: MAE for Male/Female - Pos/Neg using SWN3

10 Conclusions

We have presented a study on the posterior-to-prior
polarity issue, i.e. the problem of computing words’
prior polarity starting from their posterior polarities.
Using two different versions of SentiWordNet and
30 different approaches that have been proposed in
the literature, we have shown that researchers have
not paid sufficient attention to this issue. Indeed, we
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showed that the better variants outperform the oth-
ers on different datasets both in regression and clas-
sification tasks, and that they can represent a fairer
state-of-art baseline approach using SentiWordNet.
On top of this, we also showed that these state-of-
the-art formulae can be further outperformed using
a learning framework that combines the various for-
mulae together. We conclude our analysis with some
experiments investigating the impact of word PoS
and annotator gender in gold standards, showing in-
teresting phenomena that requires further investiga-
tion.
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