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Abstract

We present a method which exploits auto-
matically generated scientific discourse an-
notations to create a content model for the
summarisation of scientific articles. Full pa-
pers are first automatically annotated using the
CoreSC scheme, which captures 11 content-
based concepts such as Hypothesis, Result,
Conclusion etc at the sentence level. A content
model which follows the sequence of CoreSC
categories observed in abstracts is used to pro-
vide the skeleton of the summary, making a
distinction between dependent and indepen-
dent categories. Summary creation is also
guided by the distribution of CoreSC cate-
gories found in the full articles, in order to
adequately represent the article content. Fi-
nally, we demonstrate the usefulness of the
summaries by evaluating them in a complex
question answering task. Results are very en-
couraging as summaries of papers from auto-
matically obtained CoreSCs enable experts to
answer 66% of complex content-related ques-
tions designed on the basis of paper abstracts.
The questions were answered with a precision
of 75%, where the upper bound for human
summaries (abstracts) was 95%.

1 Introduction

The publication boom of the last few years, espe-
cially in the life sciences, has highlighted the need
to facilitate automatic access to the information con-
tent of articles. Researchers, curators, reviewers all
need to process a continuously expanding flow of
articles whether the purpose is to follow the state of
the art, curate large knowledge bases or have a good

working knowledge of their own and related disci-
plines to assess progress in research. While a lot
of effort has concentrated on information extraction
of particular types of entities and relations from the
scientific literature (Cohen and Hersh, 2005; Kim
et al., 2009; Ananiadou et al., 2010; Kim et al.,
2011), with a view to support scientists in obtain-
ing relevant information from scientific articles and
abstracts, less work has focussed on automatically
combining such information in the form of a co-
hesive summary which preserves the context. Re-
searchers rely to a great extent on author-written ab-
stracts, but the latter suffer from a number of prob-
lems; they are less structured, vary significantly in
terms of length, are often not self-contained and
have been written independently of the main doc-
ument (Teufel, 2010, p.83).

Teufel (2001; 2010), (Teufel and Moens, 2002)
identify argumentative zones within scientific arti-
cles and use them to create use-targeted extractive
summaries. Argumentative zones are annotations
which designate the type of knowledge claim and
rhetorical status for a sentence and how these relate
to the communicative function of the entire paper.
A selection of various combinations of argumenta-
tive zones are chosen for the use-targeted extractive
summaries (rhetorical extracts), each of which ful-
fills a different role. For instance, purpose-oriented
extracts less than 10 sentences long are generated
containing a predetermined number of AIM, SOLU-
TION and BACKGROUND zones. As the emphasis
of this approach was the identification of the argu-
mentative zones, less attention was given to the sen-
tence selection criteria for the extractive summaries.
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The sentences chosen for the rhetorical extracts were
either all sentences of a particular category (in the
case of rare categories) (Teufel and Moens, 2002),
selected according to a classifier trained on a rele-
vance gold standard (Teufel and Moens, 2002), man-
ually or randomly selected (Teufel, 2010, p.60).

More recently Contractor et al. (2012) have used
automatically annotated argumentative zones (Guo
et al., 2011) to guide the creation of extractive sum-
maries of scientific articles. Here argumentative
zones are used as features for the summariser, along
with verbs, tf-idf values and sentence location. They
use a standard approach to summarisation, with a bi-
nary classification recognising candidate sentences
which are then fed into a clustering mechanism. Ex-
tracts can be created to summarise the entire paper or
focus on specific user-specified aspects. The num-
ber of sentences to include in the summary is pre-
specified (either directly or using a compression ra-
tio).

Our approach also makes use of the scientific dis-
course for summarisation purposes. We use the sci-
entific discourse to create a content model for ex-
tractive summarisation, with a focus on represent-
ing the content of the full paper, while keeping the
cohesion of the narrative. We first automatically
annotate the articles with a scheme which captures
fine-grained aspects of the content and conceptual
structure of the papers, namely the Core Scientific
Concepts (CoreSC) scheme (Liakata et al., 2010; Li-
akata et al., 2012). The CoreSC scheme is “uniquely
suited to recovering common types of scientific ar-
guments about hypotheses, explanations, and evi-
dence” (White et al., 2011), which are not read-
ily identifiable by other annotation schemes. Also,
when compared to argumentative zoning and more
specifically its extension for chemistry papers, AZ-
II (Teufel et al., 2009), it was shown to provide a
greater level of detail in terms of categories denot-
ing objectives, methods and outcomes whereas AZ-
II focusses on the attribution of knowledge claims
and the relation with previous work (Liakata et al.,
2010).

We then use the distribution of CoreSC categories
observed in abstracts to create a content model
which provides a skeleton for extractive summaries.
The reasoning behind this is to try to preserve co-
hesion within the summaries and we hypothesise

that the sequence of CoreSC categories is a good
proxy for cohesion (see section 3.1). In creating
the summary, instantiating the content model, we
identify independent categories and dependent cate-
gories, and we argue that in order to preserve the co-
hesion of the text the independent categories should
be determined first (see section 3.2). We also pre-
serve in the summary the distribution of CoreSC cat-
egories found in the corresponding full paper.

Finally, we evaluate the extractive summaries in
a complex real world question-answering task, in
which we assess the usefulness of the summaries as
well as to what extent the generated CoreSC sum-
maries represent the content of the original arti-
cle. Experts are presented with different types of
summaries and are asked to answer article-specific
questions on the basis of the summaries (see sec-
tion 4.1). Our results show that automatically gen-
erated CoreSC summaries can answer 66% of com-
plex questions with 75% precision, outperforming
a baseline of microsoft autosummarise summaries
(See section 4.2).

We have also peformed an intrinsic evaluation of
the summaries using ROUGE and automatic mea-
sures for summary informativeness, such as the
Jensen-Shannon divergence, yielding positive re-
sults (See section 4.2). However, as such measures
have not yet reached maturity and are harder to in-
terpret, we consider the user-based evaluation to be
a more reliable measure of summary quality.

Code for generating the summaries can be ob-
tained by contacting the first author and/or visiting
http://www.sapientaproject.com/software.

2 Related work

The Core Scientific Concepts (CoreSC) Scheme:
The CoreSC scheme consists of three layers; the first
layer corresponds to eleven concepts (Background
(BAC), Hypothesis (HYP), Motivation (MOT), Goal
(GOA), Object (OBJ), Method (MET), Model
(MOD), Experiment (EXP), Observation (OBS),
Result (RES) and Conclusion (CON)); the second
layer corresponds to properties of the concepts (e.g.
New/Old) and the third layer provides identifiers
which link instances of the same category. Liakata
et al. (2010) created a corpus of 265 full scientific
articles from chemistry and biochemistry annotated
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with this scheme and trained classifiers using SVMs
and CRFs in (Liakata et al., 2012), with an accu-
racy of >51% across the 11 concepts. Their data
and CoreSC classification system are available on-
line and can provide a good benchmark for com-
parison. Louis & Nenkova (2012) have successfully
used the CoreSC corpus for evaluating syntax-based
coherence models, which indicates the strong con-
nection between coherence and discourse structure.
Summarisation for scientific articles: A lot of
the work on summarising scientific articles has fo-
cussed on citation-based summaries. Qazvinian &
Radev (2008) use sentences from papers citing the
article to be summarised. Sentences are clustered to-
gether creating a topic, with the combination of clus-
ters forming a citation summary network. Qazvinian
& Radev (2010), (Qazvinian et al., 2010) also make
use of citation sentences in other scientific papers to
summarize the contributions of a paper. The draw-
back of citation summaries is that a paper must be
already cited, so this type of summary will not be
useful to a paper reviewer. Also, citations of articles
will have been influenced by other citations rather
than the paper itself.
Document models for summarisation: Our con-
tent model has some similarities with content mod-
elling using global sentence ordering (Barzilay and
Lee, 2004; Chen et al., 2009). In (Barzilay and
Lee, 2004) unsupervised methods are used to cre-
ate HMM topic sequence models for newswire text
articles. Topics are assigned to texts according to
the content model and extracts of fixed length are
created by selecting the topics most likely to occur
in summaries. While we use supervised methods to
annotate papers with a fixed set of topics (CoreSCs)
in scientific papers, our summary content model for
extracts shares similar principles such as global or-
dering of sentences and non-recurrence. However,
their evaluation involved newspaper articles and ex-
tracts which are a lot shorter (15 and 6 sentences,
respectively).

It is not clear whether unsupervised topic mod-
elling such as (Chen et al., 2009) can be applied to
scientific articles (over 100 sentences long), which
by nature include repetition of topics. It would be
interesting to make comparisons with summaries us-
ing content models learnt from our data automati-
cally, following a similar approach to (Sauper et al.,

2010) which learns a content model jointly with a
particular supervised task in web-based documents.

3 Extractive Summarisation using
CoreSCs

In this section we describe how we use CoreSC dis-
course categories annotated at the sentence level to
create extractive summaries of full papers, which we
subsequently evaluate in a question answering task
in section 4.

To generate summaries we follow classic text ex-
traction techniques while making use of a document
content model based on CoreSCs. Our aim is for
the content model to reflect both the distribution of
CoreSCs in the paper as well as the discourse model
of human summaries, as the latter is indicated by the
generic ordering of CoreSC categories in abstracts
encountered in a corpus of 265 annotated full pa-
pers (Liakata and Soldatova, 2009; Liakata et al.,
2012). While we do not consider abstracts to be ade-
quate summaries, we at least consider them to be co-
herent summaries, which is why the content model
reflects the distribution of CoreSCs in the abstracts.

To create our summaries, we employed automat-
ically generated CoreSC annotations, which are the
output of the classifiers described in (Liakata et al.,
2012). These classifiers assign CoreSC categories
to sentences on the basis of features local to a sen-
tence, such as significant n-grams, verbs and word
triples, as well as global features such as the posi-
tion of the sentence within the document and within
a paragraph and section headers. The following sub-
sections give details about the creation of extractive
summaries from CoreSC categories.

3.1 A content model for CoreSC extractive
summaries

Building an extractive summary using a computa-
tional model of document structure is an idea shared
by many previous approaches, whether the model is
hand-crafted, based on rhetorical elements (McKe-
own, 1985; Teufel and Moens, 2002) or rhetorical
relations (Marcu, 1998b; Marcu, 1998a) or whether
it is a content model, learnt automatically from text
as in (Barzilay and Lee, 2004), focussing on the lo-
cal content or a combination of the local content and
global structure (Sauper et al., 2010).
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Our document content model is primarily based
on the global discourse of the article as provided by
the type and number of CoreSC categories. How-
ever, unlike (Teufel and Moens, 2002), who take a
fixed number of AZ categories of specific type to
create rhetorical extracts, the number of categories
used from each CoreSC category depends on their
distribution in the original article. Any and all types
of CoreSC category could potentially appear in a
summary, as our summaries are meant to be repre-
sentative of the entire content of the paper. Also, the
ordering of the categories in the summary is learnt
to reflect the ordering of categories observed in ab-
stracts of papers from the same domain.

Our model also caters for local discourse depen-
dencies. For example, the selection of a particu-
lar ‘Method’ sentence for inclusion in the summary
should influence the choice of ‘Experiment’ sen-
tences, which refers to particular experimental pro-
cedures performed. This is not an issue of concern
to (Teufel and Moens, 2002), but relates to the no-
tion of NUCLEUS and SATELLITE clauses, which
form the foundation of Rhetorical Structure The-
ory (Mann and Thompson, 1998), and guides the
summarisation paradigm of (Marcu, 1998a; Marcu,
1998b). However, the difference here is that we
define a-priori certain categories to be independent
(have the property of playing the role of nucleus in
the discourse) and specify their relation with partic-
ular types of dependent categories. Thus, nuclearity
becomes a property of the CoreSC category, which
is indirectly inherited by the sentence.

Therefore, when creating the CoreSC content
model for summaries we addressed the following is-
sues: (i) summary length; (ii) number of sentences
from each CoreSC, (iii) the ordering in which sen-
tences from each CoreSC category should appear
and (iv) the extraction of sentences according to in-
dependent and dependent categories.

• Summary length: While the literature (Teufel,
2010, p.45) suggests that 20–30% of the original
document is required for an adequately informa-
tive summary, (Teufel, 2010, p.55) assumes this
is too long for scientific papers. For this reason
and to allow better comparison between papers
of varying lengths, we fixed our summary length
to 20 sentences. This is reasonable considering

we have 11 CoreSCs, any and all of which can
appear in both abstracts and full papers.

• Number of sentences from each category: To
reflect the content of the paper, the distribution
of the CoreSC categories in the extract follows
the distribution of CoreSCs in the full paper.

For each CoreSC we determine the number of
sentences to be selected (n(selected(C))) by
multiplying the ratio of that category in the paper
by 20. A difficulty arises if the ratio of a partic-
ular concept in the paper is very low (≤ 0.05)
in which case we prefer to include one sentence.
If a particular concept is not at all present in the
paper, the number of selected sentences for that
category will be 0.

• Ordering of CoreSC categories in the sum-
mary: According to a study of empirical sum-
maries (Liddy, 1991), sentences of a particular
textual type appear in a particular order. Since
paper abstracts were the closest approximation
of human summaries available to us, CoreSC
category transitions found in abstracts have been
adopted in our content model for extracts. The
transitions were derived semi-empirically. First,
we extracted initial, medium and final bi-grams
of categories from paper abstracts together with
transition probabilities.

Using this information we manually constructed
transitions of the CoreSC categories that best fit
the observed frequencies and our own intuitions.
This gave us the following sequence: MOT >
(HYP) > OBJ > GOA > BAC > MOD > MET
> EXP > OBS > (HYP) > RES > CON. HYP
appears twice in the sequence as annotators had
distinguished two types of hypotheses, global
hypotheses (stated together with other objec-
tives) and hypotheses about particular observa-
tions. The model provides an amalgamated rep-
resentation of CoreSC concepts in abstracts. In-
terestingly, our semi-empirically derived model
closely follows the content model for abstracts
described in (Liddy, 1991). It would be interest-
ing to see how this compares to a Markov model
of CoreSC categories learnt from the annotated
abstracts.
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3.2 Sentence extraction based on independent
and dependent categories

Sentence extraction involves selecting the most rel-
evant sentences to include in a summary. Typically,
this entails ranking the sentences according to some
measure of salience and selecting the top n-best
sentences. For example, a sentence will be repre-
sented by a number of features associated with it,
such as whether it contains certain high frequency
words or cue phrases, its location in the document,
location in a paragraph (Brandow et al., 1995; Ku-
piec et al., 1995). Other methods include clustering
based on sentence similarity and choosing the cen-
troids (Erkan and Radev, 2004) or choosing the best
connected sentences (Mihalcea and Tarau, 2004).

When sentences are classified according to
CoreSC categories features such as the ones de-
scribed above for text extraction are taken into
account. Liakata et al. (2012) report that the
most salient features for classifying CoreSC cat-
egories are overall n-grams, verbs and direct ob-
jects whereas other features such as the location of
the sentence, the neighbouring section headings and
whether a sentence contains citations play an impor-
tant role for some of the categories. Thus, classi-
fication into CoreSC categories already provides a
selection bias for sentence extraction.

As explained in section 3.1, the number of
CoreSC categories in the summaries is determined
according to their distribution in the paper and the
order of the categories is specified in the content
model. Salience for sentence extraction in this case
is determined by the need to select the most repre-
sentative sentences for a category. There isn’t much
point, for example, in identifying that we need to in-
clude a Method sentence (MET) and that this should
be followed by an Experiment sentence (EXP), if we
are not sure that those are indeed the categories of
the sentences we are about to select.

We therefore rank sentences according to the clas-
sifier confidence score (probability) with which they
were assigned a CoreSC category in (Liakata et al.,
2012). The intuition behind this is that sentences
with high classifier confidence will be less noisy,
high precision cases and more representative of a
particular category. Indeed, (Liakata et al., 2012)
report statistical significance for the correlation be-

tween high classifier confidence and agreement be-
tween manual and automatic classification

However, as mentioned in section 3.1, there is
inter-dependence between sentences in the text,
which is in turn inherited by the categories assigned
to them. For example, the highest ranking MET
sentence will be related to an Experiment (EXP) or
Background (BAC) sentence, which may not be the
ones with the highest confidence score in their cate-
gory.

In order to preserve discourse cohesion it is im-
portant to select related sentences from different
categories. We resolve this by distinguising the
CoreSCs into independent categories, which by def-
inition are expected to show nucleus behaviour, and
dependent categories. We also specify the rela-
tion between independent and dependent categories.
The independent categories include the categories
with the lowest percentage of sentences in scien-
tific articles as reported in (Liakata et al., 2012),
namely: Motivation (MOT) (1%), Goal (GOA)(1%),
Hypothesis (HYP)(2%), Object (OBJ)(3%), Model
(MOD)(9%), Conclusion (CON)(9%) and Method
(MET)(11%). Categories whose sentence selec-
tion semantically depends on the former are Exper-
iment (EXP)(10%), Background (BAC)(19%), Re-
sult (RES)(21%) and Observation (OBS)(14%). The
independent categories also have higher precision
than recall, in contrast to the dependent categories.
While MET and EXP are almost equally represented
in the CoreSC corpus, EXP by definition provides
the detailed steps of an experimental method and
thus it is semantically dependent on some MET cat-
egory. More specifically, the dependencies are con-
sidered to be as follows: EXP, BAC depend on MET,
RES depends on CON and OBS depends on RES
(OBS is double-dependent).

Sentence extraction is driven by first identifying
the independent categories based on classifier con-
fidence scores and then choosing the corresponding
dependent categories on the basis of both related-
ness to the independent categories and classifier con-
fidence. We use sentence proximity (defined below)
as a measure for relatedness and combine it with
classifier confidence during sentence extraction.

The mechanism to select sentences for inclusion
in the summary, which considers category depen-
dencies, proceeds as follows:
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• For an independent category CatI, order sentences by
decreasing order of confidence score. The confidence
score is the average confidence score of the SVM and
CRF classifiers reported in (Liakata et al., 2012) for
a sentence.

• For a dependent category Cat, for which we need n
sentences, given the selected sentences m from the
corresponding independent category CatI we do the
following:

• If m = 0, then treat Cat as independent category
for this case.

• Otherwise, for each selected sentence ti in CatI,
calculate its proximity score to every sentence cj

of the dependent category Cat. Proximity is de-
fined as 1−Distance where Distance is an ab-
solute difference in sentence ids between cj and
ti normalised by the maximum absolute distance
found between all cj and ti pairs.

• The classifier prediction score for each cj is mul-
tiplied by the Proximity(cj , ti) score and the
sentences are re-ranked according to the new
scores, where only the n highest ranking cjs are
kept. The last two steps result in an m×n matrix.

• If m = 1, then the choice for the n sentences for
Cat is straightforward.

• Otherwise, we pick the n highest ranking cjs,
proceeding row-wise. Thus, the highest ranking
cjs for the highest ranking independent sentences
ti are given priority and any cj is chosen at most
once.

Once the sentence ids are selected for each inde-
pendent and each dependent category we plug them
into the content model. Sentence order is preserved
within each CoreSC category. For example, if two
Result sentences are selected, the order in which
they appear in the paper will be preserved in the
summary.

4 Summary evaluation via question
answering

4.1 Task Description and experimental setup

We evaluate the extractive CoreSC summaries in
terms of how well they enable 12 chemistry ex-
perts/evaluators (with at least a Masters degree in
chemistry) to answer complex questions about the
papers. Our test corpus consists of 28 papers held
out from the ART/CoreSC corpus, roughly 1/9,
which were annotated automatically with the SVM

and CRF classifiers described in (Liakata et al.,
2012) trained on the remaining 8/9 of the corpus.
For each of the 28 papers in the test corpus, we gen-
erated CoreSC summaries automatically using the
method described in section 3. We compare the
performance of the experts on a question answer-
ing (Q-A) task when given the CoreSC summaries
and two other types of summary, amounting to a
total of three experimental conditions (A,B,C). The
other two types of summary are the original paper
abstracts (summaries A), in the absence of human
summaries, and summaries generated by Microsoft
Office Word 2007 AutoSummarize (summaries B).

Microsoft Office Word 2007 AutoSummarize
(MA) is a widely available commercial system with
reportedly good results (Garcia-Hernandez et al.,
2009) and performance equivalent to TextRank (Mi-
halcea and Tarau, 2004). MA works by assigning a
score to each word in a sentence depending on its
frequency in the document and sentences are ranked
and extracted according to the combination of scores
of the words they contain. MA therefore follows
classic lexicalised text extraction techniques, is do-
main independent and is completely agnostic of the
discourse. For the latter reason, we considered MA
to be a suitable baseline the comparison with which
would illustrate the effect of using CoreSC cate-
gories on the summary and the merits of having a
discourse based model for summarisation.

Neither the paper title nor section headings were
available to any of the summarising systems as our
extractive system does not make direct use of them
and we were not sure how they would influence MA.

To ensure that each evaluator considered only one
type of summary per paper, so as to avoid bias from
previous stimuli, and to make sure all experts were
exposed to all papers and all types of summary, the
12 experts were assigned to four groups (G1-G4)
and were allocated 28 summaries each according to
the Latin Square design in Table 1.1.

The experimental setup follows the paradigm
of (Teufel, 2001). However, while (Teufel, 2001) de-
veloped a Q-A task to evaluate summaries showing
the contribution of a scientific article in relation to
previous work, the purpose of the Q-A task at hand

1Initially we had four experimental conditions but one was
dropped, so is not presented in this context
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is to show the usefulness of the extracted summaries
in answering questions on the paper, and how they
compare to a discourse-agnostic baseline. In the
case of (Teufel, 2001) the task consists of a fixed set
of five questions, the same for all articles tuned par-
ticularly to the relation of current and previous work.
By contrast, the current Q-A task aims to show how
well the summaries represent the content of the en-
tire paper, which means that questions are individ-
ual to each paper and required domain knowledge to
create.

Each of the 12 experts answered three content-
based questions per summary, where the questions
were individual to each paper. An example of the
questions and the corresponding answers for a given
paper can be found below.

Example 4.1.1
• Q:What do DNJ imino sugars inhibit the action of?

A: They inhibit glycosidases and ceramide glucosyl-
transferases.

• Q:What methods do the authors use to study the confor-
mation of N-benzyl-DNJ?
A: They use resonant two-photon ionization (R2PI),
ultraviolet–ultraviolet (UV–UV) hole burning, and in-
frared (IR) ion-dip spectroscopies in conjunction with
electronic structure theory calculations.

• Q:What is the conformation of the exocyclic hydrox-
ymethyl group?
A: The exocyclic hydroxymethyl group is axial to the
piperidine ring (gauche- to the ring nitrogen).

As one can see, the questions are complex wh-
questions and correspond to answers with multiple
components. Questions were complex, to minimise
the likelihood of correct random answers. They
were designed by a senior chemistry expert with
knowledge of linguistics, so that they could be an-
swered based on the abstracts (A). For this purpose,
the senior expert chose abstracts that were at least
three sentences long. Ideally, the questions and an-
swers should have been set on the basis of the en-
tire paper, but this was not possible given our time-
frame for the experiment.The underlying assump-
tion is that a good summary should cover most of the
main points of the paper. One of the merits of set-
ting the questions on the basis of the abstracts was
that the answers to be identified were deemed suf-
ficiently important to be expressed in the humanly
created abstract. However, automatic summaries
created in the way proposed here could potentially

answer questions beyond the scope of the abstract
and in cases of very short abstracts be much more
informative.

Experts were told that summaries were automati-
cally generated with no details about different types
of summary; it is assumed that none of them is com-
pletely familiar with the work mentioned in the 28
papers.

On average, it took experts less than 10 minutes to
read a summary and answer the three content-based
questions.

Papers (28)
Evaluator groups 1–7 8–14 15–21 22-28

G1 A B - C
G2 C A B -
G3 - C A B
G4 B - C A

Table 1: Distribution of summaries to evaluators

4.2 Results and Discussion
We compared each evaluator’s answers obtained af-
ter reading a summary against the model answers
set by the senior expert, the author of the questions,
based on the abstract (A) of the corresponding pa-
per. If an evaluator’s answer is identical to a model
answer, then this counts as “matched”.

For instance in example 4.1.1 above, “axial to
the piperidine ring”, “gauche- to the ring nitrogen”
and “The OH6 group is axial (Gauche) to the ring
nitrogen” were all considered correct, fully matched
answers to the question “What is the conformation
of the exocyclic hydroxymethyl group?”. In the
case of the second question in the same example all
of the following were considered correct and fully
matched: “Resonant two-photon ionization (R2PI),
UV/UV hole-burn, and IR ion-dip spectroscopies in
conjunction with electronic structure theory calcula-
tions”, “R2PI UV/UV hole-burn IR ion-dip e- struc-
ture theory calculations” and “a combination of res-
onant two-photon ionization (R2PI), UV/UV hole-
burn, and IR ion-dip spectroscopies in conjunction
with electronic structure theory calculations”.

If the answer requires listing more than one item
(as is the case with questions one and two of ex-
ample 4.1.1), all of the items have to be matched.
Partially matched answers are counted as “partially
matched”. Non-matching answers can be of two
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types. If an un-matched answer coincided with the
answer the senior expert would have given after
reading that particular summary, then it was marked
as “un-matched:justified”: Such answers were cor-
rect given the particular summary, but are not nec-
essarily correct with respect to the paper and do
not count as alternative answers. If the answer
was un-matched and also unjustified given the con-
tent of the summary, then it was marked as “un-
matched:unjustified” . These are cases of evalua-
tor error. Similarly, cases where the evaluator gave
“N/A” as an answer were marked as “justified” or
“unjustified” according to whether the senior expert
could find the answer in the summary or not. The
results from marking answers are shown in Table 2.

Number of A B C
Matched 240 126 135
Partially matched 0 4 3
Un-matched:justified 0 25 15
N/A:justified 0 71 71
Un-matched:unjustified 5 11 17
N/A:unjustified 7 15 11
All answers 252 252 252

Table 2: Matches between summary-based answers and
model answers

Micro-AVG Macro-AVG
S. types R P F R P F
A 1 0.95 0.98 1 0.95 0.97
B 0.64 0.70 0.67 0.64 0.64 0.60
C 0.66 0.75 0.70 0.64 0.70 0.65

Table 3: Precision, Recall and F-score for answering
questions using the four types of summary. A: abstracts,
B: autosummarize, C:automatic CoreSC summaries.

We report Precision, Recall and F-score (P-R-F)
for answering questions given each type of sum-
mary (Table 3). To calculate these we define TP as
matched answers, FN as N/A:justified and FP every-
thing else (partially matched + un-matched:justified
+ un-matched:unjustified + N/A:unjustified). Here,
the standard definition of recall (TP/(TP+FN))
demonstrates how many questions can be answered
using the summary (summary coverage) and Preci-
sion (TP/(TP+FP)) how well the questions are an-
swered (summary clarity).

We consider the F-measure to be an overall indi-
cator of the summary usefulness. Micro-averaging
is obtained by adding all answers from all papers to

calculate TP, FN and FP whereas macro-averaging
calculates P-R-F first per paper and then averages
over all papers.

The rankings remain consistent regardless of the
averaging method. Condition A (abstracts) shows
perfect Recall (the evaluators are able to answer all
the questions) whereas Precision is affected by un-
justified failed matches (Table 2). The perfect recall
is hardly surprising as the questions are designed
on the basis of the abstract but provides a sanity
check for the experiment. The precision sets an up-
per bound for precision with automatic summaries.
Summaries of condition C provide answers to more
questions (Recall) and with greater accuracy (Pre-
cision) than summaries B. When macro-averaging,
the Recall score of summaries C is tied with that for
summaries B but Precision is 6% higher.

To verify the statistical significance for the dif-
ference in precision and recall for summaries B and
C respectively, we performed Monte Carlo sampling
10000 times, for the populations of answers for sum-
maries B and C. During each iteration of sampling,
precision and recall were calculated, creating popu-
lations of 10000 recalls and 10000 precisions propa-
gated to be representative of the original population
of answers. A t-test performed on the population
of precision and the population of recalls showed
statistical significance at 95% in both cases, with
summaries C having a precision of 5% higher and
a recall of 1.4-1.6% higher than summaries B (see
Table 4). Therefore, we can say that CoreSC sum-
maries C are overall better for answering questions
than summaries B.

Comparison between B and C (B-C)
precision recall

t = -105.90 t = -32.52
df = 19959.79 df = 19994.40

p-value < 2.2e-16 p-value < 2.2e-16
alternative hypothesis: true difference in means 6= 0

95% confidence interval: 95% confidence interval:
-0.051 -0.049 -0.016 -0.014

sample estimates: sample estimates:
mean of x mean of y mean of x mean of y

0.696 0.746 0.639 0.655

Table 4: Test for statistical significance betwen sum-
maries B (microsoft) and C (CoreSC)

The difference in precision between summaries
B and C shows the advantage of having a con-
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tent model: summaries C are significantly clearer.
We had also expected CoreSC summaries to have a
much higher coverage than summaries B, and there-
fore significantly higher recall. However, this dif-
ference was less pronounced perhaps because au-
tosummarize favours shorter sentences, which are
more likely to be found in the abstracts. We expect
that a refinement in the sentence selection criterion,
which would also take sentence length into account,
will help to showcase further the benefits of using a
CoreSC-based content model.

Analysis using ROUGE showed that while sum-
maries C had a slightly higher ROUGE-1 measure
than summaries B (0.75 vs 0.73), with respect to ab-
stracts, ROUGE-L was the same for the two (0.70).

In table 5 we also report measurements on sum-
mary informativeness based on divergence (Kull-
back Leibler (KL) divergence and Jensen Shannon
(JS) divergence), as in (Louis and Nenkova, 2013).
KL divergence is asymmetric and reflects the aver-
age number of bits wasted by coding samples of a
distribution P using another distribution Q. JS diver-
gence is an information-theoretic measure, reflect-
ing the average distance of the KL divergence be-
tween summary and input (the full paper in our case)
from the mean vocabulary distributions. Compared
to other measures, JS divergence has been found
to produce the best predictions of summary qual-
ity (Louis and Nenkova, 2013). In practice, what JS
divergence tells us is how ‘different’/divergent the
summary is from the original paper. Low divergence
scores are indicative of greater overlap between the
summaries and the original paper and are considered
positive in terms of the summary information con-
tent.

type KLI-S KLS-I UnJSD SJSD
B 1.66 0.70 0.21 0.19
C 1.40 0.62 0.18 0.17
random 1.61 0.79 0.21 0.19

Table 5: Macro-averaged divergence scores for the 28
test summaries. B: Autosummarize, C: CoreSC, random:
random summaries each 20 sentences long for each paper.
KLI-S: Average Kullback Leibler divergence between in-
put and summary. KLS-I: Kullback Leibler divergence
between summary and input, since KL divergence is not
symmetric. UnJSD: Jensen Shannon divergence between
input and summary. No smoothing. SJSD:A version with
smoothing.

One can see the that CoreSC summaries have con-
sistently lower divergence (both KL and JS) than mi-
crosoft autosummarise summaries and random sum-
maries of the same length. This is a positive out-
come but since such automatic measures of sum-
mary quality have not yet reached maturity and are
harder to interpret, we consider the manual evalua-
tion a more reliable indicator of summary informa-
tiveness and usefulness. Note that it is not appropri-
ate to use divergence to assess the abstracts as this
measure is influenced by the length of a text, which
varies dramatically in the case of abstracts.

5 Conclusions and future work

We have shown how a content model based on
the scientific discourse as annotated by the CoreSC
scheme can be used to produce extractive sum-
maries. These summaries can be generated as al-
ternatives to abstracts. Since they preserve the dis-
tribution of CoreSCs in the paper and are not pro-
duced independently of it, as is the case with many
abstracts, they are potentially more representative of
abstracts than the full article. We have tested the use-
fulness CoreSC based summaries in answering com-
plex questions relating to the content of scientific
papers. Extracts from automated CoreSCs are infor-
mative, outperform microsoft autosummarise sum-
maries, in both intrinsic and extrinsic evaluation, and
enable experts to answer 66% of complex questions
with a precision of 75%.

In the future we would like to experiment further
with refining the sentence selection method so as
to consider criteria for local cohesion, such as lex-
ical chains. We would also like to perform com-
parisons with automatically induced content mod-
els and check their viability for scientific articles.
We also would like to perform a human based eval-
uation of coherence and explore the full potential
of these summaries as alternatives to author-written
abstracts. This work constitutes a very important
step in producing automatic summaries of scientific
papers and enabling experts to extract information
from the papers, a major requirement for resource
curation, which is dependent on constant reviewing
of the literature.
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