
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 468–478,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Improving Web Search Ranking by Incorporating Structured

Annotation of Queries*

Xiao Ding1, Zhicheng Dou2, Bing Qin1, Ting Liu1, Ji-Rong Wen3

1Research Center for Social Computing and Information Retrieval

Harbin Institute of Technology, China

2Microsoft Research Asia, Beijing 100190, China

3Renmin University of China, Beijing, China

1{xding, qinb, tliu}@ir.hit.edu.cn;
2zhichdou@microsoft.com; 3jirong.wen@gmail.com

Abstract

Web users are increasingly looking for

structured data, such as lyrics, job, or recipes,

using unstructured queries on the web.

However, retrieving relevant results from such

data is a challenging problem due to the

unstructured language of the web queries. In

this paper, we propose a method to improve

web search ranking by detecting Structured

Annotation of queries based on top search

results. In a structured annotation, the original

query is split into different units that are

associated with semantic attributes in the

corresponding domain. We evaluate our

techniques using real world queries and achieve

significant improvement.

1 Introduction

Search engines are getting more sophisticated by

utilizing information from multiple diverse sources.

One such valuable source of information is

structured and semi-structured data, which is not

very difficult to access, owing to information

extraction (Wong et al., 2009; Etzioni et al., 2008;

Zhai and Liu 2006) and semantic web efforts.

 *Work was done when the first author was visiting Microsoft

Research Asia

Driving the web search evolution are the user

needs. Users usually have a template in mind when

formulating queries to search for information.

Agarwal et al., (2010) surveyed a search log of 15

million queries from a commercial search engine.

They found that 90% of queries follow certain

templates. For example, by issuing the query

“taylor swift lyrics falling in love”, the users are

actually seeking for the lyrics of the song “Mary's

Song (oh my my my)” by artist Taylor Swift. The

words “falling in love” are actually part of the

lyrics they are searching for. However, some top

search results are irrelevant to the query, although

they contain all the query terms. For example, the

first top search result shown in Figure 1(a) does

not contain the required lyrics. It just contains the

lyrics of another song of Taylor Swift, rather than

the song that users are seeking.

A possible way to solve the above ranking

problem is to understand the underlying query

structure. For example, after recognizing that

“taylor swift” is an artist name and “falling in love”

are part of the lyrics, we can improve the ranking

by comparing the structured query with the

corresponding structured data in documents

(shown in Figure 1(b)). Some previous studies

investigated how to extract structured information

from user queries, such as query segmentation

(Bergsma and Wang, 2007). The task of query

segmentation is to separate the query words into

468

disjointed segments so that each segment maps to a

semantic unit (Li et al., 2011). For example, the

segmentation of the query “taylor swift lyrics

falling in love” can be “taylor swift | lyrics | falling

in love”. Since query segmentation cannot tell

“talylor swift” is an artist name and “falling in love”

are part of lyrics, it is still difficult for us to judge

whether each part of the query segmentations

matches the right field of the documents or not

(such as judge whether “talylor swift” matches the

artist name in the document). Recently, a lot of

work (Sarkas et al., 2010; Li et al., 2009) proposed

the task of structured annotation of queries which

aims to detect the structure of the query and assign

a specific label to it. However, to our knowledge,

the previous methods do not exploit an effective

approach for improving web search ranking by

incorporating structured annotation of queries.

In this paper, we investigate the possibility of

using structured annotation of queries to improve

web search ranking. Specifically, we propose a

greedy algorithm which uses the structured data

(named annotated tokens in Figure 1(b)) extracted

from the top search results to annotate the latent

structured semantics in web queries. We then

compute matching scores between the annotated

query and the corresponding structured

information contained in documents. The top

search results can be re-ranked according to the

matching scores. However, it is very difficult to

extract structured data from all of the search results.

Hence, we propose a relevance feedback based re-

ranking model. We use these structured documents

whose matching scores are greater than a threshold

as feedback documents, to effectively re-rank other

search results to bring more relevant and novel

information to the user.

Experiments on a large web search dataset from

a major commercial search engine show that the F-

Measure of structured annotation generated by our

approach is as high as 91%. On this dataset, our re-

ranking model using the structured annotations

significantly outperforms two baselines.

The main contributions of our work include:

1. We propose a novel approach to generate

structured annotation of queries based on top

search results.

2. Although structured annotation of queries has

been studied previously, to the best of our

knowledge this is the first paper that attempts

to improve web search ranking by

incorporating structured annotation of queries.

The rest of this paper is organized as follows.

We briefly introduce related work in Section 2.

Section 3 presents our method for generating

structured annotation of queries. We then propose

two novel re-ranking models based on structured

annotation in Section 4. Section 5 introduces the

data used in this paper. We report experimental

results in Section 6. Finally we conclude the work

in Section 7.

Figure 1. Search results of query “taylor swift lyrics falling in love” and processing pipeline

[Taylor Swift, #artist_name, 0.34]

...

[Mary’s Song (oh my my my), #song_name, 0.16]

[Crazier, #song_name, 0.1]

[Jump Then Fall, #song_name, 0.08]

...

[Growing up and falling in love…, #lyrics, 0.16]

[Feel like I’m falling and …, #lyrics, 0.1]

[I realize your love is the best …, #lyrics, 0.08]

d1 [Taylor Swift, #artist_name]

[Crazier, #song_name]

[Feel like I’m falling and …, #lyrics]

d2 [Taylor Swift, #artist_name]

[Mary’s Song (oh my my my), #song_name]

[Growing up and falling in love…, #lyrics]

d3 [Taylor Swift, #artist_name]

[Jump Then Fall, #song_name]

[I realize your love is the best …, #lyrics]

d4 [Taylor Swift, #artist_name]

[Mary’s Song (oh my my my), #song_name]

[Growing up and falling in love…, #lyrics]Search Results (a)

Weighted Annotated Tokens (c)Query Structured Annotation Generation (d)Top Results Re-ranking (e)

Annotated Tokens (b)

1.

2.

3.

4.

Query: taylor swift lyrics falling in love

<[taylor swift, #artist_name] lyrics

[falling in love, #lyrics]>

 1.

2.

3.

4.

1.

2.

3.

4.

469

2 Related Work

There is a great deal of prior research that

identifies query structured information. We

summarize this research according to their

different approaches.

2.1 Structured Annotation of Queries

Recently, a lot of work has been done on

understanding query structure (Sarkas et al., 2010;

Li et al., 2009; Bendersky et al., 2010). One

important method is structured annotation of

queries which aims to detect the structure of the

query and assign a specific label to it. Li et al.,

(2009) proposed web query tagging and its goal is

to assign to each query term a specified category,

roughly corresponding to a list of attributes. A

semi-supervised Conditional Random Field (CRF)

is used to capture dependencies between query

words and to identify the most likely joint

assignment of words to “categories.” Comparing

with previous work, the advantages of our

approach are on the following aspects. First, we

generate structured annotation of queries based on

top search results, not some global knowledge base

or query logs. Second, they mainly focus on the

method of generating structured annotation of

queries, rather than leverage the generated query

structures to improve web search rankings. In this

paper, we not only offer a novel solution for

generating structured annotation of queries, but

also propose a re-ranking approach to improve

Web search based on structured annotation of

queries. Bendersky et al., (2011) also used top

search results to generate structured annotation of

queries. However, the annotations in their

definition are capitalization, POS tags, and

segmentation indicators, which are different from

ours.

2.2 Query Template Generation

The concept of query template has been discussed

in a few recent papers (Agarwal et al., 2010; Pasca

2011; Liu et al., 2011; Szpektor et al., 2011). A

query template is a sequence of terms, where each

term could be a word or an attribute. For example,

<#artist_name lyrics #lyrics> is a query template,

“#artist_name” and “#lyrics” are attributes, and

“lyrics” is a word. Structured annotation of queries

is different from query template, as a query

template can instantiate multiple queries while a

structured annotation only serves for a specific

query. Unlike query template, our work is ranking-

oriented. We aim to automatically annotate query

structure based on top search results, and further

use these structured annotations to re-rank top

search results for improving search performance.

2.3 Query Segmentation

The task of query segmentation is to separate the

query words into disjointed segments so that each

segment maps to a semantic unit (Li et al., 2011).

Query segmentation techniques have been well

studied in recent literature (Tan and Peng, 2008;

Yu and Shi, 2009). However, structured annotation

of queries cannot only separate the query words

into disjoint segments but can also assign each

segment a semantic label which can help the search

engine to judge whether each part of query

segmentation matches the right field of the

documents or not.

2.4 Entity Search

The problem of entity search has received a great

deal of attention in recent years (Guo et al., 2009;

Bron et al., 2010; Cheng et al., 2007). Its goal is to

answer information needs that focus on entities.

The problem of structured annotation of queries is

related to entity search because for some queries,

structured annotation items are entities or attributes.

Some existing entity search approaches also

exploit knowledge from the structure of webpages

(Zhao et al., 2005). Annotating query structured

information differs from entity search in the

following aspects. First, structured annotation

based ranking is applicable for all queries, rather

than just entity related queries. Second, the result

of an entity search is usually a list of entities, their

attributes, and associated homepages, whereas our

work uses the structured information from

webpages to annotate query structured information

and further leverage structured annotation of

queries to re-rank top search results.

Table 1. Example domain schemas
Domain Schema Example structured annotations

lyrics #artist_name

#song_name

#lyrics

<lyrics of [hey jude, #song_name] [beatles,

#artist_name]>

job #category

#location

<[teacher, #category] job in [America,

#location]>

recipe #directions

#ingredients

<[baking, # directions] [bread, #

ingredients] recipe>

470

3 Structured Annotation of Queries

3.1 Problem Definition

We start our discussion by defining some basic

concepts. A token is defined as a sequence of

words including space, i.e., one or more words. For

example, the bigram “taylor swift” can be a single

token. As our objective is to find structured

annotation of queries in a specific domain, we

begin with a definition of domain schema.

Definition 1 (Domain Schema): For a given

domain of interest, the domain schema is the set of

attributes. We denote the domain schema as 𝐴 =
{𝑎1, 𝑎2, ⋯ , 𝑎𝑛}, where each 𝑎𝑖 is the name of an

attribute of the domain. Sample domain schemas

are shown in Table 1. In contrast to previous

methods (Agarwal et al., 2010), our definition of

domain schema does not need attribute values. For

the sake of simplicity, this paper assumes that

attributes in domain schema are available.

However, it is not difficult to pre-specify attributes

in a specific domain.

Definition 2 (Annotated Token): An annotated

token in a specific domain is a pair [𝑣, 𝑎], where v

is a token and a is a corresponding attribute for v

in this domain. [hey jude, #song_name] is an

example of an annotated token for the “lyrics”

domain shown in Table 1. The words “hey jude”

comprise a token, and its corresponding attribute

name is #song_name. If a token does not have any

corresponding attributes, we denote it as free token.

Definition 3 (Structured Annotation): A

structured annotation p is a sequence of terms <
𝑠1,𝑠2,⋯,𝑠𝑘 >, where each 𝑠𝑖 could be a free token or

an annotated token, and at least one of the terms is

an annotated token, i.e., ∃𝑖 ∈ [1, 𝑘] for which 𝑠𝑖 is

an annotated token.

Given the schema for the domain “lyrics”,

<[taylor swift, #artist_name] lyrics [falling in love,

#lyrics]> is a possible structured annotation for the

query “taylor swift lyrics falling in love”. In this

annotation, [taylor swift, #artist_name] and

[falling in love, #lyrics] are two annotated tokens.

The word “lyrics” is a free token.

Intuitively, a structured annotation corresponds

to an interpretation of the query as a request for

some structured information from documents. The

set of annotated tokens expresses the information

need of the documents that have been requested.

The free tokens may provide more diverse

information. Annotated tokens and free tokens

together cover all query terms, reflecting the

complete user intent of the query.

3.2 Generating Structured Annotation

In this paper, given a domain schema A, we

generate structured annotation for a query q based

on the top search results of q. We propose using

top search results, rather than some global

knowledge base or query logs, because:

(1) Top search results have been proven to be

a successful technique for query explanation

(Bendersky et al., 2010).

(2) We have observed that in most cases, a

reasonable percentage of the top search results are

relevant to the query. By aggregating structured

information from the top search results, we can get

more query-dependent annotated tokens than using

global data sources which may contain more noise

and outdated.

(3) Our goal for generating structured

annotation is to improve the ranking quality of

queries. Using top search results enables

simultaneous and consistent detection of structured

information from documents and queries.

As mentioned in Section 3.1, we generate

structured annotation of queries based on annotated

tokens, which are actually structured data (shown

in Figure 1(b)) embedded in web documents. In

this paper, we assume that the annotated tokens are

Algorithm 1: Query Structured Annotation Generation

Input: a list of weighted annotated tokens T = {t1, … , tm} ;

 a query q = “w1, … , wn” where wi ∈ W;

a pre-defined threshold score 𝛿.

Output: a query structured annotation p = <s1, … , sk>.

 1: Set p = q = {s1, …, sn}, where si = wi

 2: for u = 1 to T.size do

 3: compute 𝑀𝑎𝑡𝑐ℎ(𝑝, 𝑡𝑢)

 = 𝑀𝑎𝑡𝑐ℎ(𝑝, 𝑡𝑢. 𝑣)

 = 𝑡𝑢. 𝑤 × 𝑚𝑎𝑥0≤𝑖<𝑗≤𝑛𝑆𝑖𝑚(𝑝𝑖𝑗 , 𝑡𝑢. 𝑣),

 where pij = si,…,sj, s.t. sl ∈ W for l ∈ [i, j]. //pij is just

in the remaining query words

 4: end for

 5: find the maximum matching tu with

 𝑡𝑚𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑢≤𝑚𝑀𝑎𝑡𝑐ℎ(𝑝, 𝑡𝑢)

 6: if 𝑀𝑎𝑡𝑐ℎ(𝑝, 𝑡𝑚𝑎𝑥) > 𝛿 then

 7: replace si,…,sj in p with [si,…,sj, tmax.a]

 8: remove tmax from T

9: n ← n – (j - i)

10: go to step 2

11: else

12: return p

13: end if

471

available and we mainly focus on how to use these

annotated tokens from top search results to

generate structured annotation of queries. The

approach is comprised of two parts, one for

weighting annotated tokens and the other for

generating structured annotation of queries based

on the weighted annotated tokens.

Weighting: As shown in Figure 1, annotated

tokens extracted from top results may be

inconsistent, and hence some of the extracted

annotated tokens are less useful or even useless for

generating structured annotation.

We assume that a better annotated token should

be supported by more top results; while a worse

annotated token may appear in fewer results.

Hence we aggregate all the annotated tokens

extracted from top search results, and evaluate the

importance of each unique one by a ranking-aware

voting model as follows. For an annotated token [v,

a], its weight w is defined as:

 𝑤 =
1

𝑁
∑ 𝑤𝑗1≤𝑗≤𝑁 (1)

where wj is a voting from document dj, and

𝑤𝑗 = {
𝑁 − 𝑗 + 1

𝑁
, if [𝑣, 𝑎] ∈ 𝑑𝑗

0, else

Here, N is the number of top search results and j

is the ranking position of document dj. We then

generate a weighted annotated token [v, a, w] for

each original unique token [v, a].

Generating: The process by which we map a

query q to Structured Annotation is shown in

Algorithm 1. The algorithm takes as input a list of

weighted annotated tokens and the query q, and

outputs the structured annotation of the query q.

The algorithm first partitions the query q by

comparing each sub-sequence of the query with all

the weighted annotated tokens, and find the

maximum matching annotated token (line 1 to line

5). Then, if the degree of match is greater than the

threshold 𝛿 which is a pre-defined threshold score

for fuzzy string matching, the query substring will

be assigned the attribute label of the maximum

matching annotated token (line 6 to line 8). The

algorithm stops when all the weighted annotated

tokens have been scanned, and outputs the

structured annotation of the query.

Note that in some cases, the query may fail to

exactly match with the annotated tokens, due to

spelling errors, acronyms or abbreviations in users’

queries. For example, in the query “broken and

beatuful lyrics”, “broken and beatuful” is a

misspelling of “broken and beautiful.” We adopt a

fuzzy string matching function for comparing a

sub-sequence string s with a token v:

 𝑆𝑖𝑚(𝑠, 𝑣) = 1 −
𝐸𝑑𝑖𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠,𝑣)

max (|𝑠|,|𝑣|)
 (2)

where EditDistance(s, v) measures the edit

distances of two strings, |s| is the length of string s

and |v| is the length of string v.

4 Ranking with Structured Annotation

Given a domain schema 𝐴 = {𝑎1, 𝑎2, ⋯ , 𝑎𝑛}, and a

query q, suppose that 𝑝 = < 𝑠1,𝑠2,⋯,𝑠𝑘 > is the

structured annotation for query q obtained using

the method introduced in the above sections. p can

better reflects the user’s real search intent than the

original q, as it presents the structured semantic

information needed instead of a simple word string.

Therefore, a document di can better satisfy a user’s

information need if it contains corresponding

structured semantic information in p. Suppose that

Ti is the set of annotated tokens extracted from

document di, we compute a re-ranking score,

denoted by RScore, for document di as follows:

RScore(q, di) = 𝑀𝑎𝑡𝑐ℎ(𝑞, 𝑑𝑖)

 = 𝑀𝑎𝑡𝑐ℎ(𝑝, 𝑇𝑖)

 = ∑ ∑ 𝑀𝑎𝑡𝑐ℎ(𝑠𝑗 , 𝑡)𝑡∈𝑇𝑖1≤𝑗≤𝑘

where

 𝑀𝑎𝑡𝑐ℎ(𝑠𝑗 , 𝑡)= {
𝑆𝑖𝑚(𝑠𝑗 . 𝑣𝑗 , 𝑡. 𝑣), if 𝑠𝑗 . 𝑎𝑗 = 𝑡. 𝑎

0, else
 (3)

where 𝑠𝑗 is an annotated token in p and t is an

annotated token in di. We use Equation (2) to

compute the similarity between values in query

annotated tokens and values in document annotated

tokens. We propose two re-ranking models,

namely the conservative re-ranking model, to re-

rank top results based on RScore and relevance

feedback based re-ranking model.

4.1 Conservative Re-ranking Model

A nature way to re-rank top search results is

according to their RScore. However, we fail to

obtain annotated tokens from some retrieved

documents, and hence the RScore of these

documents are not available. In the conservative

re-ranking model, we only re-rank search results

that have an RScore. For example, suppose there

are five retrieved documents {d1, d2, d3, d4, d5} for

query q, we can extract structured information

from document d3 and d4 and RScore(q, d4) >

RScore(q, d3). Note that we cannot obtain

472

structured information from d1, d2, and d5. In the

conservative re-ranking method, d1, d2, and d5

retain their original positions; while d3 and d4 will

be re-ranked according to their RScore. Therefore,

the final ranking generated by our conservative re-

ranking model should be {d1, d2, d4, d3, d5}, in

which the documents are re-ranked among the

affected positions.

There is also useful information in the

documents without structured data, such as

community question answering websites. However,

in the conservative re-ranking model they will not

be re-ranked. This may hurt the performance of our

re-ranking model. One reasonable solution is

relevance feedback model.

4.2 Relevance Feedback based Re-ranking

Model

The disadvantage of the conservative re-ranking

model is that it only can re-rank those top search

results with structured data. To make up its

limitation, we propose a relevance feedback based

re-ranking model. The key idea of this model is

based on the observation that the search results

with the corrected annotated tokens could give

implicit feedback information. Hence, we use these

structured documents whose RScore are greater

than a threshold γ (empirically set it as 0.6) as

feedback documents, to effectively re-rank other

search results to bring more relevant and novel

information to the user.

Formally, given a query Q and a document

collection C, a retrieval system returns a ranked list

of documents D. Let di denote the i-th ranked

document in the ranked list. Our goal is to study

how to use these feedback documents, J ⊆ {d1,…,

dk}, to effectively re-rank the other r search results:

U ⊆ {dk+1,…, dk+r}. A general formula of relevance

feedback model (Salton et al, 1990) R is as follows:

𝑅(𝑄′) = (1 − α)𝐿𝑞(Q) + α𝐿𝑑(J) (4)

where α ∈ [0, 1] is the feedback coefficient, and 𝐿𝑞

and 𝐿𝑑 are two models that map a query and a set

of relevant documents, respectively, into some

comparable representations. For example, they can

be represented as vectors of weighted terms or

language models.

In this paper, we explore the problem in the

language model framework, particularly the KL-

divergence retrieval model and mixture-model

feedback method (Zhai and Lafferty, 2001), mainly

because language models deliver state-of-the-art

retrieval performance and the mixture-model based

feedback is one of the most effective feedback

techniques which outperforms Rocchio feedback.

4.2.1 The KL-Divergence Retrieval Model

The KL-divergence retrieval model was introduced

in Lafferty and Zhai, (2001) as a special case of the

risk minimization retrieval framework and can

support feedback more naturally. In this model,

queries and documents are represented by unigram

language models. Assuming that these language

models can be appropriately estimated, KL-

divergence retrieval model measures the relevance

value of a document D with respect to a query Q

by computing the negative Kullback-Leibler

divergence between the query language model 𝜃𝑄

and the document language model 𝜃𝐷 as follows:

𝑆(𝑄, 𝐷) = −𝐷(𝜃𝑄||𝜃𝐷) = − ∑ 𝑝(𝑤|𝜃𝑄)𝑙𝑜𝑔
𝑝(𝑤|𝜃𝑄)

𝑝(𝑤|𝜃𝐷)𝑤∈𝑉 (5)

where V is the set of words in our vocabulary.

Intuitively, the retrieval performance of the KL-

divergence relies on the estimation of the

document model 𝜃𝐷 and the query model 𝜃𝑄.

For the set of k relevant documents, the

document model 𝜃𝐷 is estimated as 𝑝(w|𝜃𝐷) =
1

𝑘
∑

𝑐(𝑤,𝑟𝑖)

|𝑟𝑖|
𝑘
𝑖=1 , where 𝑐(𝑤, 𝑟𝑖) is the count of word

w in the i-th relevant document, and |𝑟𝑖| is the total

number of words in that document. The document

model 𝜃𝐷 needs to be smoothed and an effective

method is Dirichlet smoothing (Zhai et al., 2001).

The query model intuitively captures what the

user is interested in, and thus would affect retrieval

performance. With feedback documents, 𝜃𝑄 is

estimated by the mixture-model feedback method.

4.2.2 The Mixture Model Feedback Method

As the problem definition in Equation (4), the

query model can be estimated by the original query

model 𝑝(𝑤|𝜃𝑄) =
𝑐(𝑤,𝑄)

|𝑄|
 (where c(w,Q) is the count

of word w in the query Q, and |Q| is the total

number of words in the query) and the feedback

document model. Zhai and Lafferty, (2001)

proposed a mixture model feedback method to

estimate the feedback document model. More

specifically, the model assumes that the feedback

documents can be generated by a background

language model 𝑝(𝑤|𝐶) estimated using the whole

collection and an unknown topic language model

473

𝜃𝐹 to be estimated. Formally, let F ⊂ C be a set of

feedback documents. In this paper, F is comprised

of documents that RScore are greater thanγ. The

log-likelihood function of the mixture model is:

𝑙𝑜𝑔(𝐹|𝜃𝐹) =

 ∑ ∑ 𝑐(𝑤, 𝐷)𝑤∈𝑉 log [(1 − 𝜆)𝑝(𝑤|𝜃𝐹) + 𝜆𝑝(𝑤|𝐶)]𝐷∈𝐹 (6)

where 𝜆 ∈ [0,1) is a mixture noise parameter

which controls the weight of the background

model. Given a fixed 𝜆, a standard EM algorithm

can then be used to estimate 𝑝(𝑤|𝜃𝐹), which is

then interpolated with the original query model

𝑝(𝑤|Q) to obtain an improved estimation of the

query model:

𝑝(𝑤|𝜃𝑄) = (1 − 𝛼)𝑝(𝑤|𝑄) + 𝛼𝑝(𝑤|𝜃𝐹) (7)

 where 𝛼 is the feedback coefficient.

5 Data

We used a dataset composed of 12,396 queries

randomly sampled from query logs of a search

engine. For each query, we retrieved its top 100

results from a commercial search engine. The

documents were judged by human editors. A five-

grade (from 0 to 4 meaning from bad to perfect)

relevance rating was assigned for each document.

We used a proprietary query domain classifier to

identify queries in three domains, namely “lyrics,”

“recipe,” and “job,” from the dataset. The statistics

about these domains are shown in Table 2. To

investigate how many queries may potentially have

structured annotations, we manually created

structured annotations for these queries. The last

column of Table 2 shows the percentage of queries

that have structured annotations created by

annotators. We found that for each domain, there

was on average more than 90% of queries

identified by us that had a certain structured

annotation. This indicates that a large percentage

of these queries contain structured information, as

we expected.

6 Experimental Results

In this section, we present the structured annotation

of queries and further re-rank the top search results

for the three domains introduced in Section 5. We

used the ranking returned by a commercial search

engine as our one of the Baselines. Note that as the

baseline already uses a large number of ranking

signals, it is very difficult to improve it any further.

We evaluate the ranking quality using the widely

used Normalized Discounted Cumulative Gain

measure (NDCG) (Javelin and Kekalainen., 2000).

We use the same configuration for NDCG as

(Burges et al. 2005). More specifically, for a given

query q, the NDCG@K is computed as:

 𝑁𝑞 =
1

𝑀𝑞

∑ (2𝑟(𝑗)−1)𝐾
𝑗=1

log (1 + 𝑗)
 (4)

Mq is a normalization constant (the ideal NDCG)

so that a perfect ordering would obtain an NDCG

of 1; and r(j) is the rating score of the j-th

document in the ranking list.

6.1 Overall Results

6.1.1 Quality of Structured Annotation of

Queries

We generated the structured annotation of queries

based on the top 10 search results and used 𝛿 =

0.04 for Algorithm 1. We used several existing

metrics, P (Precision), R (Recall), and F-Measure

to evaluate the quality of the structured annotation.

As a query structured annotation may contain more

than one annotated token, we concluded that the

Figure 2. Ranking Quality (* indicates significant

improvement)

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

NDCG@1 NDCG@3 NDCG@5

V
a

lu
e

o
f

m
ea

su
re

m
en

t

Measurement

Seg-Ranker Ori-Ranker Con-Ranker FB-Ranker

*

*

*

*

*

*

Table 3. Quality of Structured Annotation. All the

improvements are significant (p < 0.05)

Domain Method Precision Recall F-Measure

lyrics Baseline

Our

90.06%

95.45%

84.92%

89.83%

87.41%

92.55%

job Baseline

Our

89.62%

95.31%

80.14%

84.93%

84.62%

89.82%

recipe Baseline

Our

83.96%

89.68%

84.23%

88.44%

84.09%

89.06%

All Baseline

Our

87.88%

93.61%

83.10%

88.45%

85.42%

90.96%

Table 2. Domain queries used in our experiment

Domain Containing

Keyword

Queries

Structured

Annotation%

lyrics “lyrics” 196 95%

job “job” 124 92%

recipe “recipe” 76 93%

474

annotation was correct only if the entire annotation

was completely the same as the annotation labeled

by annotators. Otherwise we treated the structured

annotation as incorrect. Experimental results for

the three domains are shown in Table 3. We

compare our approach with Xiao Li, (2010)

(denoted as baseline), on the dataset described in

Section 5. They labeled the semantic structure of

noun phrase queries based on semi-Markov CRFs.

Our approach achieves better performance than the

baseline (about 5.5% significant improvement on

F-Measure). This indicates that the approach of

generating structured annotation based on the top

search results is more effective. With the high-

quality structured annotation of queries in hand, it

may be possible to obtain better ranking results

using our proposed re-ranking models.

6.1.2 Re-ranking Result

We used the models introduced in Section 4 to re-

rank the top 10 search results, based on structured

annotation of queries and annotated tokens.

Recall that our goal is to quantify the

effectiveness of structured annotation of queries

for real web search. One dimension is to compare

with the original search results of a commercial

search engine (denoted as Ori-Ranker). The other

is to compare with the query segmentation based

re-ranking model (denoted as Seg-Ranker; Li et

al., 2011) which tries to improve web search

ranking by incorporating query segmentation. Li et

al., (2011) incorporated query segmentation in the

BM25, unigram language model and bigram

language model retrieval framework, and bigram

language model achieved the best performance. In

this paper, Seg-Ranker integrates bigram language

model with query segmentation.

The ranking results of these models are shown

in Figure 2. This figure shows that all our two

rankers significantly outperform the Ori-Ranker–

the original search results of a commercial search

engine. This means that using high-quality

structured annotation does help better

understanding of user intent. By comparing these

structured annotations and the annotated tokens in

documents, we can re-rank the more relevant

results higher and yield better ranking quality.

Figure 2 also suggests that structured annotation

based re-ranking models outperform query

segmentation based re-ranking model. This is

mainly because structured annotation can not only

separate the query words into disjoint segments but

can also assign each segment a semantic label.

Taking full advantage of the semantic label can

lead to better ranking performance.

Furthermore, Figure 2 shows that FB-Ranker

outperforms Con-Ranker. The main reason is that

in Con-Ranker, we can only reasonably re-rank the

search results with structured data. However, in

FB-Ranker we can not only re-rank the structured

search results but also can re-rank other documents

by incorporating implicit information from those

structured documents.

On average, FB-Ranker achieves the best

ranking performance. Table 4 shows more detailed

Table 4. Detailed ranking results on three domains.

All the improvements are significant (p < 0.05)
Domain Ranking Method NDCG@1 NDCG@3 NDCG@5

lyrics Seg-Ranker 0.572 0.574 0.575

Ori-Ranker

FB-Ranker
0.621

0.637
0.628

0.639
0.636

0.647
recipe Seg-Ranker 0.629 0.631 0.634

Ori-Ranker

FB-Ranker
0.678

0.707
0.687

0.704
0.696

0.709
job Seg-Ranker 0.438 0.413 0.408

Ori-Ranker

FB-Ranker
0.470

0.504
0.453

0.474
0.442

0.459

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.3 0.5 0.7 0.9

V
a

lu
e

o
f

m
ea

su
re

m
en

t

Query structured annotation generation threshold δ

Precision
Recall
F-Measure

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0 0.02 0.04 0.06 0.08 0.1 0.3 0.5 0.7 0.9 perfect

N
D

C
G

@
3

Query structured annotation generation threshold δ

Seg-Ranker Ori-Ranker FB-Ranker

 (a) Quality of re-ranking (b) Quality of query structured annotation

Figure 3. Quality of re-ranking and quality of query structured annotation with different number of search results

475

results for the three selected domains. This table

shows that FB-Ranker consistently outperforms the

two baseline rankers on these domains. In the

remaining part of this paper, we will only report

the results for this ranker, due to space limitations.

Table 4 also indicates that we can get robust

ranking improvement in different domains, and we

will consider applying it to more domains.

6.2 Experiment with Different Thresholds of

Query Structured Annotation Algorithm

As introduced in Algorithm 1, we pre-defined a

threshold δ for fuzzy string matching. We

evaluated the quality of re-ranking and query

structured annotation with different settings for δ.

The results are shown in Figure 3. We found that:

(1) When we use δ = 0, which means that the

structured annotations can be generated no matter

how small the similarity between the query string

and a weighted annotated token is, we can get a

significant NDCG@3 gain of 2.15%. Figure 3(b)

shows that the precision of the structured

annotation is lowest when δ = 0 . However, the

precision is still as high as 0.7375, and the highest

recall is obtained in this case. This means that the

quality of the generated structured annotations is

still reasonable, and hence we can get a ranking

improvement when δ = 0, as shown in Figure 3(a).

(2) Figure 3(a) suggests that the quality of re-

ranking increases when the threshold δ increases

from 0 to 0.05. It then decreases when δ increases

from 0.06 to 0.5. Comparing these two figures

shows that the trend of re-ranking performance

adheres to the quality of the structured annotation.

The settings for δ dramatically affect the recall and

precision of the structured annotation; and hence

the ranking quality is impacted. The larger δ is, the

lower the recall of the structured annotation is.

(3) Since the re-ranking performance

dramatically changes along with the quality of the

structured annotation, we conducted a re-ranking

experiment with perfect structured annotations (F-

Measure equal to 1.0). Perfect structured

annotations mean the annotations created by

annotators as introduced in Section 5. The results

are shown in the last bar of Figure 3(a). We did not

find a large space for ranking improvement. The

NDCG@3 when using perfect structured

annotations was 0.606, which is just slightly better

than our best result (yield when δ=0.05). It

indicates that our structured annotation generation

algorithm is already quite effective.

(4) Figure 3(a) shows that our approach

outperforms the two baseline approaches with most

settings for δ. This indicates that our approach is

relatively stable with different settings for δ.

6.3 Experiment with Number of Top Search

Results

The above experiments are conducted based on the

top 10 search results. In this section, by adjusting

the number of top search results, ranging from 2 to

100, we investigate whether the quality of

structured annotation of queries and the

performance of re-ranking are affected by the

quantity of search results. The results shown in

Figure 4 indicate that the number of search results

does affect the quality of structured annotation of

queries and the performance of re-ranking.

Structured annotations of queries become better

when more search results are used from 2 to 20.

This is because more search results cover more

websites in our domain list, and hence can generate

more annotated tokens. More results also provide

more evidence for voting the importance of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100

V
a

u
lu

e
o

f
m

ea
su

re
m

en
t

Number of search results

Precision
Recall
F-Measure

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100

N
D

C
G

@
3

Number of search results

Seg-Ranker Ori-Ranker FB-Ranker

 (a) Quality of re-ranking (b) Quality of query structured annotation

Figure 4. Quality of re-ranking and quality of query structured annotation with different number of search results

476

annotated tokens, and hence can improve the

quality of structured annotation of queries.

In addition, we also found that structured

annotation of queries become worse when too

many lower ranked results are used (e.g, using

results ranked lower than 20). This is because the

lower ranked results are less relevant than the

higher ranked results. They may contain more

irrelevant or noisy annotated tokens than higher

ranked documents; and hence using them may

harm the precision of the structured annotations.

Figure 4 also indicates that the quality of ranking

and the accuracy of structured annotations are

correlated.

7 Conclusions

In this paper, we studied the problem of improving

web search ranking by incorporating structured

annotation of queries. We proposed a systematic

solution, first to generate structured annotation of

queries based on top search results, and then

launching two structured annotation based re-

ranking models. We performed a large-scale

evaluation over 12,396 queries from a major search

engine. The experiment results show that the F-

Measure of query structured annotation generated

by our approach is as high as 91%. In the same

dataset, our structured annotation based re-ranking

model significantly outperforms the original ranker

– the ranking of a major search engine, with

improvements 5.2%.

Acknowledgments
This work was supported by National Natural Science

Foundation of China (NSFC) via grant 61273321,

61133012 and the Nation-al 863 Leading Technology

Research Project via grant 2012AA011102.

References

G. Agarwal, G. Kabra, and K. C.-C. Chang. Towards

rich query interpretation: walking back and forth for

mining query templates. In Proc. of WWW '10.

M. Bendersky, W. Bruce Croft and D. A. Smith. Joint

Annotation of Search Queries, In Proc. of ACL-HLT

2011.

M. Bendersky, W. Bruce Croft and D. A. Smith.

Structural Annotation of Search Queries Using

Pseudo-Relevance Feedback, In Proc. Of CIKM 2010.

S. Bergsma and Q. I. Wang. Learning noun phrase

query segmentation. In Proceedings of EMNLP-

CoNLL'07.

M. Bron, K. Balog, and M. de Rijke. Ranking related

entities: components and analyses. In Proc. of

CIKM ’10.

C. Buckley. Automatic query expansion using SMART.

InProc. of TREC-3, pages 69–80, 1995.

C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,

N. Hamilton, and G. Hullender. Learning to rank

usinggradient descent. In Proceedings of ICML '05.

T. Cheng, X. Yan, and K. C.-C. Chang. Supporting

entity search: a large-scale prototype search engine.

In Proc. of SIGMOD ’07.

O. Etzioni, M. Banko, S. Soderland, and D.S. Weld,

(2008). Open Information Extraction from the Web,

Communications of the ACM, 51(12): 68-74.

J. Guo, G. Xu, X. Cheng, and H. Li. Named entity

recognition in query. In Proc. Of SIGIR’ 2009.

K. Jarvelin and J. Kekalainen. Ir evaluation methods for

retrieving highly relevant documents. In SIGIR '00.

J. Lafferty and C. Zhai, Document language models,

query models, and risk minimization for information

retrieval, In Proceedings of SIGIR'01, pages 111-119,

2001.

V. Lavrenko and W. B. Croft. Relevance based

language models. In Proc. of SIGIR, pages 120–127,

2001.

Y. Li, BJP. Hsu, CX. Zhai and K. Wang. Unsupervised

Query Segmentation Using Clickthrough for

Information Retrieval. In Proc. of SIGIR'11.

X. Li, Y.-Y. Wang, and A. Acero. Extracting structured

information from user queries with semi-supervised

conditional random fields. In Proc. of SIGIR'09.

Y. Liu, X. Ni, J-T. Sun, Z. Chen. Unsupervised

Transactional Query Classification Based on

Webpage Form Understanding. In Proc. of CIKM '11.

Y. Liu, M. Zhang, L. Ru, and S. Ma. Automatic query

type identification based on click-through

information. In LNCS, 2006.

M. Pasca. Asking What No One Has Asked Before:

Using Phrase Similarities To Generate Synthetic

Web Search Queries. In Proc. of CIKM '11.

G. Salton and C. Buckley. Improving retrieval

performance by relevance feedback. Journal of the

American Society for Information Science,

41(4):288-297, 1990.

477

N. Sarkas, S. Paparizos, and P. Tsaparas. Structured

annotations of web queries. In Proc. of SIGMOD'10.

I. Szpektor, A. Gionis, and Y. Maarek. Improving

recommendation for long-tail queries via templates.

In Proc. of WWW '11

B. Tan and F. Peng. Unsupervised query segmentation

using generative language models and wikipedia. In

WWW’08.

T.-L. Wong, W. Lam, and B. Chen. Mining

employment market via text block detection and

adaptive cross-domain information extraction. In

Proc. SIGIR, pages 283–290, 2009.

X. Yu and H. Shi. Query segmentation using

conditional random fields. In Proceedings of KEYS

'09.

C. Zhai and J. Lafferty, Model-based feedback in the

language modeling approach to information

retrieval , In Proceedings of CIKM'01, pages 403-410,

2001.

C. Zhai and J. Lafferty, A study of smoothing methods

for language models applied to ad hoc information

retrieval, In Proceedings of SIGIR'01, pages 334-342,

2001.

Y. Zhai and B. Liu. Structured data extraction from the

Web based on partial tree alignment. IEEE Trans.

Knowl. Data Eng., 18(12):1614−1628, Dec. 2006.

H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu.

Fully automatic wrapper generation for search

engines. In Proceedings of WWW ’05.

S. Zheng, R. Song, J.-R. Wen, and D. Wu. Joint

optimization of wrapper generation and template

detection. In Proc. of SIGKDD'07.

478

