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Abstract

We present a method for exact optimization
and sampling from high order Hidden Markov
Models (HMMs), which are generally han-
dled by approximation techniques. Motivated
by adaptive rejection sampling and heuris-
tic search, we propose a strategy based on
sequentially refining a lower-order language
model that is an upper bound on the true
model we wish to decode and sample from.
This allows us to build tractable variable-order
HMMs. The ARPA format for language mod-
els is extended to enable an efficient use of the
max-backoff quantities required to compute
the upper bound. We evaluate our approach
on two problems: a SMS-retrieval task and a
POS tagging experiment using 5-gram mod-
els. Results show that the same approach can
be used for exact optimization and sampling,
while explicitly constructing only a fraction of
the total implicit state-space.

1 Introduction

In NLP, sampling is important for many real tasks,
such as: (i) diversity in language generation or
machine translation (proposing multiple alternatives
which are not clustered around a single maximum);
(ii) Bayes error minimization, for instance in Statis-
tical Machine Translation (Kumar and Byrne, 2004);
(iii) learning of parametric and non-parametric
Bayesian models (Teh, 2006).

However, most practical sampling algorithms are
based on MCMC, i.e. they are based on local moves

∗This work was conducted during an internship at XRCE.

starting from an initial valid configuration. Often,
these algorithms are stuck in local minima, i.e. in
a basin of attraction close to the initialization, and
the method does not really sample the whole state
space. This is a problem when there are ambiguities
in the distribution we want to sample from: by hav-
ing a local approach such as MCMC, we might only
explore states that are close to a given configuration.

The necessity of exact sampling can be ques-
tioned in practice. Approximate sampling tech-
niques have been developed over the last century
and seem sufficient for most purposes. However,
the cases where one actually knows the quality of
a sampling algorithm are very rare, and it is com-
mon practice to forget about the approximation and
simply treat the result of a sampler as a set of i.i.d.
data. Exact sampling provides a de-facto guarantee
that the samples are truly independent. This is par-
ticularly relevant when one uses a cascade of algo-
rithms in complex NLP processing chains, as shown
by (Finkel et al., 2006) in their work on linguistic
annotation pipelines.

In this paper, we present an approach for exact
decoding and sampling with an HMM whose hid-
den layer is a high-order language model (LM),
which innovates on existing techniques in the fol-
lowing ways. First, it is a joint approach to sam-
pling and optimization (i.e. decoding), which is
based on introducing a simplified, “optimistic”, ver-
sion q(x) of the underlying language model p(x),
for which it is tractable to use standard dynamic pro-
gramming techniques both for sampling and opti-
mization. We then formulate the problem of sam-
pling/optimization with the original model p(x) in
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terms of a novel algorithm which can be viewed
as a form of adaptive rejection sampling (Gilks
and Wild, 1992; Gorur and Teh, 2008), in which
a low acceptance rate (in sampling) or a low ratio
p(x∗)/q(x∗) (in optimization, with x∗ the argmax
of q) leads to a refinement of q, i.e., a slightly more
complex and less optimistic q but with a higher ac-
ceptance rate or ratio.

Second, it is the first technique that we are aware
of which is able to perform exact sampling with such
models. Known techniques for sampling in such
situations have to rely on approximation techniques
such as Gibbs or Beam sampling (see e.g. (Teh et
al., 2006; Van Gael et al., 2008)). By contrast, our
technique produces exact samples from the start, al-
though in principle, the first sample may be obtained
only after a long series of rejections (and therefore
refinements). In practice, our experiments indicate
that a good acceptance rate is obtained after a rel-
atively small number of refinements. It should be
noted that, in the case of exact optimization, a sim-
ilar technique to ours has been proposed in an im-
age processing context (Kam and Kopec, 1996), but
without any connection to sampling. That paper,
written in the context of image processing, appears
to be little known in the NLP community.

Overall, our method is of particular interest be-
cause it allows for exact decoding and sampling
from HMMs where the applications of existing dy-
namic programming algorithms such as Viterbi de-
coding (Rabiner, 1989) or Forward-Backward sam-
pling (Scott, 2002) are not feasible, due to a large
state space.

In Section 2, we present our approach and
describe our joint algorithm for HMM sam-
pling/optimization, giving details about our exten-
sion of the ARPA format and refinement proce-
dure. In Section 3 we define our two experimental
tasks, SMS-retrieval and POS tagging, for which we
present the results of our joint algorithm. We finally
discuss perspectives and conclude in Section 4.

2 Adaptive rejection sampling and
heuristic search for high-order HMMs

Notation Let x = {x1, x2, ...x�} be a given hid-
den state sequence (e.g. each xi is an English word)
which takes values in X = {1, · · · , N}� where �

is the length of the sequence and N is the number
of latent symbols. Subsequences (xa, xa+1, · · · , xb)
are denoted by xb

a, where 1 ≤ a ≤ b ≤ �. Let
o = {o1, o2, ...o�} be the set of observations asso-
ciated to these words (e.g. oi is an acoustic realiza-
tion of xi). The notations p, q and q� refer to un-
normalized densities, i.e. non-negative measures on
X . Since only discrete spaces are considered, we
use for short p(x) = p({x}). When the context
is not ambiguous, sampling according to p means
sampling according to the distribution with density
p̄(x) = p(x)

p(X ) , where p(X ) =
�
X p(x)dx is the total

mass of the unnormalized distribution p.

Sampling The objective is to sample a se-
quence with density p̄(x) proportional to p(x) =
plm(x)pobs(o|x) where plm is the probability of the
sequence x under a n-gram model and pobs(o|x)
is the probability of observing the noisy sequence
o given that the correct/latent sequence is x. As-
suming the observations depend only on the current
state, this probability becomes

p(x) =
��

i=1

plm(xi|x
i−1
i−n+1)pobs(oi|xi) . (1)

To find the most likely sequence given an ob-
servation, or to sample sequences from Equa-
tion 1, standard dynamic programming techniques
are used (Rabiner, 1989; Scott, 2002) by expand-
ing the state space at each position. However, as
the transition order n increases, or the number of la-
tent tokens N that can emit to each observation ol

increases, the dynamic programming approach be-
comes intractable, as the number of operations in-
creases exponentially in the order of O(�Nn).

If one can find a proposal distribution q which is
an upper bound of p — i.e such that q(x) ≥ p(x) for
all sequences x ∈ X — and which it is easy to sam-
ple from, the standard rejection sampling algorithm
can be used:

1. Sample x ∼ q/q(X ), with q(X ) =
�
X q(x)dx;

2. Accept x with probability p(x)/q(x), other-
wise reject x;

To obtain multiple samples, the algorithm is re-
peated several times. However, for simple bounds,
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Figure 1: An example of an initial q-automaton (a), and the refined q-automaton (b) Each state corresponds
to a context (only state 6 has a non-empty context) and each edge represents the emission of a symbol.
Thick edges are representing the path for the sampling/decoding of two dog(s) barked, thin edges
corresponding to alternative symbols. By construction, w1(dog) ≥ w2(dog|two) so that the total weight
of (b) is smaller than the total weight of (a).

the average acceptance rate — which is equal to
p(X )/q(X ) — can be so large that rejection sam-
pling is not practical. In adaptive rejection sampling
(ARS), the initial bound q is incrementally improved
based on the values of the rejected elements. While
often based on log-concave distributions which are
easy to bound, ARS is valid for any type of bound,
and in particular can be applied to the upper bounds
on n-gram models introduced by (Kam and Kopec,
1996) in the context of optimization. When a sam-
ple is rejected, our algorithm assumes that a small
set of refined proposals is available, say q�1, · · · , q�m,
where m is a small integer value. These refinements
are improved versions of the current proposal q in
the sense that they still upper-bound the target dis-
tribution p, but their mass is strictly smaller than the
mass of q, i.e. q�(X ) < q(X ). Thus, each such re-
finement q�, while still being optimistic relative to
the target distribution p, has higher average accep-
tance rate than the previous upper bound q. A bound
on the n-gram LM will be presented in Section 2.1.

Optimization In the case of optimization, the ob-
jective is to find the sequence maximizing p(x).
Viterbi on high-order HMMs is intractable but we
have access to an upper bound q, for which Viterbi
is tractable. Sampling from q is then replaced by
finding the maximum point x of q, looking at the ra-
tio r(x) = p(x)/q(x), and accepting x if this ratio is
equal to 1, otherwise refining q into q� exactly as in
the sampling case. This technique is able to find the
exact maximum of p, similarly to standard heuristic
search algorithms based on optimistic bounds. We
stop the process when q and p agree at the value
maximizing q which implies that we have found the
global maximum.

2.1 Upper bounds for n-gram models
To apply ARS on the target density given by
Equation 1 we need to define a random se-
quence of proposal distributions {q(t)}∞t=1 such that
q(t)(x) ≥ p(x), ∀x ∈ X , ∀t ∈ {0, 1, · · · }.
Each n-gram xi−n+1, ..., xi in the hidden layer con-
tributes an n-th order factor wn(xi|x

i−1
i−n+1) ≡

plm(xi|x
i−1
i−n+1)pobs(oi|xi). The key idea is that

these n-th order factors can be upper bounded by
factors of order n− k by maximizing over the head
(i.e. prefix) of the context, as if part of the con-
text was “forgotten”. Formally, we define the max-
backoff weights as:

wn−k(xi|x
i−1
i−n+1+k) ≡ max

xi−n+k
i−n+1

wn(xi|x
i−1
i−n+1),

(2)
By construction, the max-backoff weights wn−k are
factors of order n− k and can be used as surrogates
to the original n-th order factors of Equation (1),
leading to a nested sequence of upper bounds until
reaching binary or unary factors:

p(x) = Π�
i=1wn(xi|x

i−1
i−n+1) (3)

≤ Π�
i=1wn−1(xi|x

i−1
i−n+2) (4)

· · ·

≤ Π�
i=1w2(xi|xi−1) (5)

≤ Π�
i=1w1(xi) := q(0)(x) . (6)

Now, one can see that the loosest bound (6) based
on unigrams corresponds to a completely factorized
distribution which is straightforward to sample and
optimize. The bigram bound (5) corresponds to a
standard HMM probability that can be efficiently de-
coded (using Viterbi algorithm) and sampled (using
backward filtering-forward sampling). 1 In the con-
text of ARS, our initial proposal q(0)(x) is set to

1Backward filtering-forward sampling (Scott, 2002) refers
to the process of running the Forward algorithm (Rabiner,

1127



the unigram bound (6). The bound is then incre-
mentally improved by adaptively refining the max-
backoff weights based on the values of the rejected
samples. Here, a refinement refers to the increase
of the order of some of the max-backoff weights in
the current proposal (thus most refinements consist
of n-grams with heterogeneous max-backoff orders,
not only those shown in equations (3)-(6)). This
operation tends to tighten the bound and therefore
increase the acceptance probability of the rejection
sampler, at the price of a higher sampling complex-
ity. The are several possible ways of choosing the
weights to refine; in Section 2.2 different refinement
strategies will be discussed, but the main technical
difficulty remains in the efficient exact optimization
and sampling of a HMM with n-grams of variable
orders. The construction of the refinement sequence
{q(t)}t≥0 can be easily explained and implemented
through a Weighted Finite State Automaton (WFSA)
referred as a q-automaton, as illustrated in the fol-
lowing example.

Example We give now a high-level description of
the refinement process to give a better intuition of
our method. In Fig. 1(a), we show a WFSA rep-
resenting the initial proposal q(0) corresponding to
an example with an acoustic realization of the se-
quence of words (the, two, dogs, barked). The
weights on edges of this q-automaton correspond to
the unigram max-backoffs, so that the total weight
corresponds to Equation (6). Considering sampling,
we suppose that the first sample from q(0) produces
x1 = (the, two, dog, barked), marked
with bold edges in the drawing. Now, computing the
ratio p(x1)/q(0)(x1) gives a result much below 1,
because from the viewpoint of the full model p, the
trigram (the two dog) is very unlikely; in other
words the ratio w3(dog|the two)/w1(dog) (and,
in fact, already the ratio w2(dog|two)/w1(dog))
is very low. Thus, with high probability, x1 is re-
jected. When this is the case, we produce a re-
fined proposal q(1), represented by the WFSA in
Fig. 1(b), which takes into account the more real-

1989), which creates a lattice of forward probabilities that con-
tains the probability of ending in a latent state at a specific time
t, given the subsequence of previous observations ot

1, for all the
previous latent sub-sequences xt−1

1 , and then recursively mov-
ing backwards, sampling a latent state based on these probabil-
ities.

Algorithm 1 ARS for HMM algorithm.
1: while not Stop(h) do
2: if Optimisation then
3: Viterbi x ∼ q
4: else
5: Sample x ∼ q
6: r ← p(x)/q(x)
7: Accept-or-Reject(x, r)
8: Update(h, x)
9: if Rejected(x) then

10: for all i ∈ {2, · · · , �} do
11: q← UpdateHMM (q, x, i)
12: return q along with accepted x’s in h

Algorithm 2 UpdateHMM
Input: A triplet (q, x, i) where q is a WFSA, x is a se-

quence determining a unique path in the WFSA and
i is a position at which a refinement must be done.

1: n :=ORDERi(xi
1) + 1 #implies xi−1

i−n+2 ∈ Si−1

2: if xi−1
i−n+1 /∈ Si−1 then

3: CREATE-STATE(xi−1
i−n+1, i− 1)

4: #move incoming edges, keeping WFSA determin-
istic

5: for all s ∈ SUFi−2(x
i−2
i−n+1) do

6: e := EDGE(s, xi−1)
7: MOVE-EDGE-END(e,xi−1

i−n+1)
8: #create outgoing edges
9: for all (s, l, ω) ∈ Ti(x

i−1
i−n+2) do

10: CREATE-EDGE(xi−1
i−n+1,s,l,ω)

11: #update weights
12: for all s ∈ SUFi−1(x

i−1
i−n+1) do

13: weight of EDGE(s, xi) := wn(xi|x
i−1
i−n+1)

14: return

istic weight w2(dog|two) by adding a node (node
6) for the context two. We then perform a sampling
trial with q(1), which this time tends to avoid produc-
ing dog in the context of two; if the new sample
is rejected, the refinement process continues until
we start observing that the acceptance rate reaches
a fixed threshold value. The case of optimization is
similar. Suppose that with q(0) the maximum is x1,
then we observe that p(x1) is lower than q(0)(x1),
reject suboptimal x1 and refine q(0) into q(1).

2.2 Algorithm

We describe in detail the algorithm and procedure
for updating a q-automaton with a max-backoff of
longer context.

Algorithm 1 gives the pseudo-code of the sam-
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pling/optimization strategy. On line 1, h represents
the history of all trials so far, where the stopping cri-
terion for decoding is whether the last trial in the
history has been accepted, and for sampling whether
the ratio of accepted trials relative to all trials ex-
ceeds a certain threshold. The WFSA is initial-
ized so that all transitions only take into account
the w1(xi) max-backoffs, i.e. the initial optimistic-
bound ignores all contexts. Then depending on
whether we are sampling or decoding, in lines 2-5,
we draw an event from our automaton using either
the Viterbi algorithm or Forward-Backward sam-
pling. If the sequence is rejected at line 7, then the
q-automaton is updated in lines 10 and 11. This is
done by expanding all the factors involved in the
sampling/decoding of the rejected sequence x to a
higher order. That is, while sampling or decoding
the automaton using the current proposal q(t), the
contexts used in the path of the rejected sequence
are replaced with higher order contexts in the new
refined proposal qt+1(x).

The update process of the q-automaton repre-
sented as a WFSA is described in Algorithm 2. This
procedure guarantees that a lower, more realistic
weight is used in all paths containing the n-gram
xi

i−n+1 while decoding/sampling the q-automaton,
where n is the order at which xi

i−n+1 has been ex-
panded so far. The algorithm takes as input a max-
backoff function, and refines the WFSA such that
any paths that include this n-gram have a smaller
weight thanks to the fact that higher-order max-
backoff have automatically smaller weights.

The algorithm requires the following functions:

• ORDERi(x) returns the order at which the n-
gram has been expanded so far at position i.

• Si returns the states at a position i.

• Ti(s) returns end states, labels and weights of
all edges that originate from this state.

• SUFi(x) returns the states at i which have a suf-
fix matching the given context x. For empty
contexts, all states at i are returned.

• EDGE(s, l) returns the edge which originates
from s and has label l. Deterministic WFSA,
such as those used here, can only have a single
transition with a label l leaving from a state s.

• CREATE-STATE(s, i) creates a state
with name s at position i, CREATE-
EDGE(s1, s2, l, ω) creates an edge (s1, s2)
between s1 and s2 with weight ω and label
l, and MOVE-EDGE-END(e, s) sets the end
of edge e to be the state s, keeping the same
starting state, weight and label.

At line 1, the expansion of the current n-gram is
increased by one so that we only need to expand con-
texts of size n − 2. Line 2 checks whether the con-
text state exists. If it doesn’t it is created at lines 3-
10. Finally, the weight of the edges that could be in-
volved in the decoding of this n-gram are updated to
a smaller value given by a higher-order max-backoff
weight.

The creation of a new state in lines 3-10 is
straightforward: At lines 5-7, incoming edges are
moved from states at position i − 2 with a match-
ing context to the newly created edge. At lines 9-
10 edges heading out of the context state are cre-
ated. They are simply copied over from all edges
that originate from the suffix of the context state, as
we know these will be legitimate transitions (i.e we
will always transition to a state of the same order or
lower).

Note that we can derive many other variants of
Algorithm 2 which also guarantee a smaller total
weight for the q-automaton. We chose to present this
version because it is relatively simple to implement,
and numerical experiments comparing different re-
finement approaches (including replacing the max-
backoffs with the highest-possible context, or pick-
ing a single “culprit” to refine) showed that this ap-
proach gives a good trade-off between model com-
plexity and running time.

2.3 Computing Max-Backoff Factors
An interesting property of the max-backoff weights
is that they can be computed recursively; taking a
3-gram LM as an example, we have:

w1(xi) = max
xi−1

w2(xi|xi−1)

w2(xi|xi−1) = max
xi−2

w3(xi|x
i−1
i−2)

w3(xi|x
i−1
i−2) = p(xi|x

i−1
i−2) p(oi|xi).

The final w3(xi|x
i−1
i−2) upper bound function is sim-

ply equal to the true probability (multiplied by the

1129



conditional probability of the observation), as any
extra context is discarded by the 3-gram language
model. It’s easy to see that as we refine q(t) by
replacing existing max-backoff weights with more
specific contexts, the q(t) tends to p at t tends to in-
finity.

In the HMM formulation, we need to be able
to efficiently compute at run-time the max-backoffs
w1(the), w2(dog|the), · · · , taking into account
smoothing. To do so, we present a novel method for
converting language models in the standard ARPA
format used by common toolkits such as (Stolcke,
2002) into a format that we can use. The ARPA file
format is a table T composed of three columns: (1)
an n-gram which has been observed in the training
corpus, (2) the log of the conditional probability of
the last word in the n-gram given the previous words
(log f(.)), and (3) a backoff weight (bow(.)) used
when unseen n−grams ’backoff’ to this n-gram. 2

The probability of any n-gram xi
i−n (in the pre-

vious sense, i.e. writing p(xi
i−n) for p(xi|x

i−1
i−n)) is

then computed recursively as:

p(xi
i−n) =

�
f(xi

i−n) if xi
i−n ∈ T

bow(xi−1
i−n) p(xi

i−n+1) otherwise.
(7)

Here, it is understood that if xi−1
i−n is in T , then its

bow(.) is read from the table, otherwise it is taken to
be 1.

Different smoothing techniques will lead to dif-
ferent calculations of f(xi

i−n) and bow(xi−1
i−n), how-

ever both backoff and linear-interpolation methods
can be formulated using the above equation.

Starting from the ARPA format, we pre-compute
a new table MAX-ARPA, which has the same lines
as ARPA, each corresponding to an n-gram xi

i−n ob-
served in the corpus, and the same f and bow, but
with two additional columns: (4) a max log prob-
ability (log mf(xi

i−n)), which is equal to the maxi-
mum log probability over all the n-grams extending
the context of xi

i−n, i.e. which have xi
i−n as a suffix;

(5) a “max backoff” weight (mbow(xi
i−n)), which is

a number used for computing the max log probabil-
ity of an n-gram not listed in the table. From the
MAX-ARPA table, the max probability w of any n-

2See www.speech.sri.com/projects/srilm/
manpages/ngram-format.5.html, last accessed at
1/3/2012, for further details.

gram xi
i−n, i.e the maximum of p(xi

i−n−k) over all
n-grams extending the context of xi

i−n, can then be
computed recursively (again very quickly) as:

w(xi
i−n) =

�
mf(xi

i−n) if xi
i−n ∈ T

mbow(xi−1
i−n) p(xi

i−n) otherwise.
(8)

Here, if xi−1
i−n is in T , then its mbow(.) is read

from the table, otherwise it is taken to be 1. Also
note that the procedure calls p, which is computed
as described in Equation 7. 3

3 Experiments

In this section we empirically evaluate our joint, ex-
act decoder and sampler on two tasks; SMS-retrieval
(Section 3.1), and supervised POS tagging (Sec-
tion 3.2).

3.1 SMS-Retrieval
We evaluate our approach on an SMS-message re-
trieval task. A latent variable x ∈ {1, · · · , N}�

represents a sentence represented as a sequence of
words: N is the number of possible words in the
vocabulary and � is the number of words in the
sentence. Each word is converted into a sequence
of numbers based on a mobile phone numeric key-
pad. The standard character-to-numeric function
num : {a,b, · · · ,z, ., · · · , ?}→{1, 2, · · · , 9, 0} is
used. For example, the words dog and fog
are represented by the sequence (3, 6, 4) because
num(d)=num(f)=3, num(o)=6 and num(g)=4.
Hence, observed sequences are sequences of nu-
meric strings separated by white spaces. To take
into account typing errors, we assume we observe
a noisy version of the correct numeric sequence
(num(xi1), · · · , num(xi|xi|) that encodes the word
xi at the i-th position of the sentence x. The noise
model is:

p(oi|xi) ∝

|xi|�

t=1

1

k ∗ d(oit, num(xit)) + 1
, (9)

where d(a, b) is the physical distance between the
numeric keys a and b and k is a user provided con-

3In this discussion of the MAX-ARPA table we have ignored
the contribution of the observation p(oi|xi), which is a constant
factor over the different max-backoffs for the same xi and does
not impact the computation of the table.
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Figure 2: On the left we report the average #
of iterations taken to decode given different LMs
over input sentences of different lengths, and on the
right we show the average # of states in the final q-
automaton once decoding is completed.

stant that controls the ambiguity in the distribution;
we use 64 to obtain moderately noisy sequences.

We used the English side of the Europarl cor-
pus (Koehn, 2005). The language model was trained
using SRILM (Stolcke, 2002) on 90% of the sen-
tences. On the remaining 10%, we randomly se-
lected 100 sequences for lengths 1 to 10 to obtain
1000 sequences from which we removed the ones
containing numbers, obtaining a test set of size 926.

Decoding Algorithm 1 was run in the optimization
mode. In the left plot of Fig. 2, we show the number
of iterations (running Viterbi then updating q) that
the different n-gram models of size 3, 4 and 5 take
to do exact decoding of the test-set. For a fixed sen-
tence length, we can see that decoding with larger
n-gram models leads to a sub-linear increase w.r.t.
n in the number of iterations taken. In the right plot
of Fig. 2, we show the average number of states in
our variable-order HMMs.

To demonstrate the reduced nature of our q-
automaton, we show in Tab. 1 the distribution of
n-grams in our final model for a specific input sen-
tence of length 10. The number of n-grams in the
full model is∼3.0×1015. Exact decoding here is not
tractable using existing techniques. Our HMM has
only 9008 n-grams in total, including 118 5-grams.

n: 1 2 3 4 5
q: 7868 615 231 176 118

Table 1: # of n-grams in our variable-order HMM.

Finally, we show in Tab. 2 an example run of
our algorithm in the optimization setting for a given

input. Note that the weight according to our q-
automaton for the first path returned by the Viterbi
algorithm is high in comparison to the true log prob-
ability according to p.

Sampling For the sampling experiments, we limit
the number of latent tokens to 100. We refine our q-
automaton until we reach a certain fixed cumulative
acceptance rate (AR). We also compute a rate based
only on the last 100 trials (AR-100), as this tends to
better reflect the current acceptance rate.

In Fig. 3a, we plot a running average of the ratio
at each iteration over the last 10 trials, for a single
sampling run using a 5-gram model for an example
input. The ratios start off at 10−20, but gradually in-
crease as we refine our HMM. After ∼ 500 trials,
we start accepting samples from p. In Fig. 3b, we
show the respective ARs (bottom and top curves re-
spectively), and the cumulative # of accepts (middle
curve), for the same input. Because the cumulative
accept ratio takes into account all trials, the final AR
of 17.7% is an underestimate of the true accept ra-
tio at the final iteration; this final accept ratio can be
better estimated on the basis of the last 100 trials, for
which we read AR-100 to be at around 60%.

We note that there is a trade-off between the time
needed to construct the forward probability lattice
needed for sampling, and the time it takes to adapt
the variable-order HMM. To resolve this, we pro-
pose to use batch-updates: making B trials from the
same q-automaton, and then updating our model in
one step. By doing this, we noted significant speed-
ups in sampling times. In Tab. 3, we show various

input: 3637 843 66639 39478 *
oracle: does the money exist ?
best: does the money exist .
Viterbi paths log q(x) log p(x)
q1 does the money exist ) -0.11 -17.42
q50 does the owned exist . -11.71 -23.54
q100 ends the money exist . -12.76 -17.09
q150 does vis money exist . -13.45 -23.74
q170 does the money exist . -13.70 -13.70

Table 2: Viterbi paths given different qt. Here, for
the given input, it took 170 iterations to find the best
sequence according to p, so we only show every 50th
path.
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Figure 3: In 3a, we plot the running average over the last 10 trials of the ratio. In 3b, we plot the cumulative
# of accepts (middle curve), the accept rate (bottom curve), and the accept rate based on the last 100
samples (top curve). In 3c, we plot the average number of iterations needed to sample up to an AR of 20%
for sentences of different lengths in our test set, and in 3d, we show the average number of states in our
HMMs for the same experiment.

B: 1 10 20 30 40 50 100
time: 97.5 19.9 15.0 13.9 12.8 12.5 11.4
iter: 453 456 480 516 536 568 700

Table 3: In this table we show the average amount of
time in seconds and the average number of iterations
(iter) taken to sample sentences of length 10 given
different values of B.

statistics for sampling up to AR-100 = 20 given dif-
ferent values for B. We ran this experiment using
the set of sentences of length 10. A value of 1 means
that we refine our automaton after each rejected trial,
a value of 10 means we wait until rejecting 10 trials
before updating our automaton in one step. We can
see that while higher values of B lead to more iter-
ations, as we do not need to re-compute the forward
trellis needed for sampling, the time needed to reach
the specific AR threshold actually decreases, from
97.5 seconds to 11.4 seconds, an 8.5% speedup. Un-
less explicitly stated otherwise, further experiments
use a B = 100.

We now present the full sampling results on our
test-set in Fig. 3c and 3d, where we show the aver-
age number of iterations and states in the final mod-
els once refinements are finished (AR-100=20%) for
different orders n over different lengths. We note
a sub-linear increase in the average number of tri-
als and states when moving to higher n; thus, for
length=10, and for n = 3, 4, 5, # trials: 3-658.16,
4-683.3, 5-700.9, and # states: 3-1139.5, 4-1494.0,
5-1718.3.

Finally, we show in Tab. 4, the ranked samples
drawn from an input sentence, according to a 5-gram
LM. After refining our model up to AR-100 = 20%,

input: 3637 843 66639 39478 *
oracle: does the money exist ?
best: does the money exist .
samples # log q(x) log p(x)
does the money exist . 429 -13.70 -13.70
does the money exist ? 211 -14.51 -14.51
does the money exist ! 72 -15.49 -15.49
does the moody exist . 45 -15.70 -15.70
does the money exist : 25 -16.73 -16.73

Table 4: Top-5 ranked samples for an example in-
put. We highlight in bold the words which are differ-
ent to the Viterbi best of the model. The oracle and
best are not the same for this input.

we continued drawing samples until we had 1000
exact samples from p (out of ∼ 4.7k trials). We
show the count of each sequence in the 1000 sam-
ples, and the log probability according to p for that
event. We only present the top-five samples, though
in total there were 90 unique sequences sampled, 50
of which were only sampled once.

3.2 POS-tagging

Our HMM is the same as that used in (Brants, 2001);
the emission probability of a word given a POS
tag xi is calculated using maximum likelihood tech-
niques. That is, p(oi|xi) = c(oi,xi)

c(xi)
. Unseen words

are handled by interpolating longer suffixes with
shorter, more general suffixes. To train our language
model, we use the SRILM toolkit (Stolcke, 2002)
We build LMs of up to size 9. We present results
on the WSJ Penn Treebank corpus (Marcus et al.,
1993). We use sections 0-18 to train our emission
and transitions probabilities, and report results on
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Figure 4: In 4a, we report the accuracy results given different n-gram models on the WSJ test-set. In 4b, we
show the time taken (seconds) to decode the WSJ test-set given our method (ARS), and compare this to the
full model (F). In 4c, the average number of iterations needed to sample the test-set given different n-gram
language models is given, and 4d shows the average number of states in the variable-order HMMs.

sections 22-24.
We first present results for our decoding experi-

ments. In Fig. 4a we show the accuracy results of
our different models on the WSJ test-set. We see
that the best result is achieved with the 5-gram LM
giving an accuracy of 95.94%. After that, results
start to drop, most likely due to over-fitting of the
LM during training and an inability for the smooth-
ing technique to correctly handle this.

In Fig. 4b, we compare the time it takes in seconds
to decode the test-set with the full model at each n-
gram size; that is a WFSA with all context states
and weights representing the true language model
log probabilities. We can see that while increas-
ing the n-gram model size, our method (ARS) ex-
hibits a linear increase in decoding time, in contrast
to the exponential factor exhibited when running the
Viterbi algorithm over the full WFSA (F). Note for
n-gram models of order 7 and higher, we could not
decode the entire test set as creating the full WFSA
was taking too long.

Finally in both Figs 4c and 4d, we show the aver-
age number of iterations taken to sample from the
entire test-test, and the average number of states
in our variable-order HMMs, with AR-100=60%.
Again we note a linear increase in both Fig., in con-
trast to the exponential nature of standard techniques
applied to the full HMM.

4 Conclusion and Perspectives

We have presented a dual-purpose algorithm that can
be used for performing exact decoding and sampling
on high-order HMMs. We demonstrated the valid-
ity of our method on SMS-retrieval and POS exam-
ples, showing that the “proposals” that we obtain re-

quire only a fraction of the space that would result
from explicitly representing the HMM. We believe
that this ability to support exact inference (both ap-
proximation and sampling) at a reasonable cost has
important applications, in particular when moving
from inference to learning tasks, which we see as a
natural extension of this work.

By proposing a common framework for sampling
and optimization our approach has the advantage
that we do not need separate skills or expertise to
solve the two problems. In several situations, we
might be interested not only in the most probable se-
quence, but also in the distribution of the sequences,
especially when diversity is important or in the pres-
ence of underlying ambiguities.

The interplay between optimization and sampling
is a fruitful area of research that can lead to state-
of-the art performances on inference and decod-
ing tasks in the special case of high-order HMM
decoding, but the method is generic enough to
be generalized to many others models of interest
for NLP applications. One family of models is
provided by agreement-based models, for example
HMM+PCFG, where distribution p takes the form
of a product: p(x) = pHMM(x)pPCFG(x). Even
if the factors pHMM(x) and pPCFG(x) can be de-
coded and sampled efficiently, the product of them
is intractable. Dual decomposition is a generic
method that has been proposed for handling decod-
ing (i.e. optimization) with such models, by decou-
pling the problem into two alternating steps that can
each be handled by dynamic programming or other
polynomial-time algorithms (Rush et al., 2010), an
approach that has been applied to Statistical Ma-
chine Translation (phrase-based (Chang and Collins,
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2011) and hierarchical (Rush and Collins, 2011))
among others. However, sampling such distributions
remains a difficult problem. We are currently ex-
tending the approach described in this paper to han-
dle such applications. Again, using ARS on a se-
quence of upper bounds to the target distribution,
our idea is to express one of the two models as a con-
text free grammar and incrementally compute the
intersection with the second model, maintaining a
good trade-off between computational tractability of
the refinement and a reasonable acceptance rate.
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