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Abstract

This paper presents a comparative study
of graph-based approaches for cross-domain
sentiment classification. In particular, the
paper analyses two existing methods: an
optimisation problem and a ranking algorithm.
We compare these graph-based methods with
each other and with the other state-of-
the-art approaches and conclude that graph
domain representations offer a competitive
solution to the domain adaptation problem.
Analysis of the best parameters for graph-
based algorithms reveals that there are no
optimal values valid for all domain pairs
and that these values are dependent on the
characteristics of corresponding domains.

1 Introduction

The sentiment classification (SC) is an active area
of research concerned automatic identification of
sentiment strength or valence of texts. SC of
product reviews is commercially important and
widely researched but it typically needs to be
optimised separately for each type of product (i.e.
domain). When domain-specific data are absent
or insufficient the researchers usually seek solution
in semi-supervised, unsupervised or cross-domain
approaches. In this paper, we focus on cross-domain
methods in order to take advantage of the huge
amount of annotated sentiment data available on the
Internet. Our aim is to find out to what extent it is
possible to learn sentiment phenomena from these
data and transfer them to new domains rather than
induce them from scratch for each new domain.

Previous research has shown that models trained on
one data usually give much worse results on another,
especially when both data sets belong to completely
different domains. This is largely because the
sentiment words and their valences depend a lot
on the domain where they are expressed. The
first problem concerns the words that can convey
opposite sentiments with respect to the context or
domain. For example, a word “ridiculous” in
book reviews may express a negative meaning when
talking about a book content, however for reviews
on electronics this word can bear a positive meaning
when talking about prices. Another and more
common problem is related to sentiment words that
are specific for each domain. For instance, words
like “boring”, “inspiring”, “engaging” are very
common in book reviews but it is almost impossible
to find them in reviews on electronics. At the same
time, the electronics domain can contain words like
“defective”, “refund”, “return”, “customer service”,
which are very unusual for book reviews.

Several cross-domain approaches have been
suggested recently to solve the problem of accuracy
loss in cross-domain sentiment classification,
namely Structural Correspondence Learning (SCL)
(Blitzer et al., 2007), the graph-based approach
(Wu et al., 2009) and Spectral Feature Alignment
(SFA) (Pan et al., 2010). In this paper, we explore
graph-based algorithms which refer to a group of
techniques that model data as a graph of documents.
This data representation takes into account not only
document contents but also document connectivity
which is modeled as document sentiment similarity
rather than content similarity. Our interest in graph
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algorithms is two-fold. First, graph-based domain
representations can benefit from two independent
sources of information: scores given by a machine
learning technique which indicate the probability
of a document to belong to a sentiment class and
similarity relations between documents. Second,
unlike other suggested methods, this approach can
be easily adapted to multiple classes, which makes
it possible to classify documents using finer-grained
sentiment scales.

Different graph-based algorithms have been
applied to several SA tasks (Pang and Lee, 2005;
Goldberg and Zhu, 2006; Wu et al., 2009), but
no comparison has been made to find the most
appropriate one for SC. Moreover, in the framework
of the domain adaption task, we come across the
problem of choosing the best set of parameters,
which, as we further demonstrate, depends on
the characteristics of a corresponding domain
pair. Unfortunately, no study has investigated this
problem. (Pang and Lee, 2005; Goldberg and
Zhu, 2006) exploited the graph-based approach for
a semi-supervised task and experimented with data
belonging to one domain and, therefore did not
come across this issue. The work of (Wu et al.,
2009) lacks any discussion about the choice of
the parameter values; the authors set some values
equal for all domains without mentioning how they
obtained these numbers.

The present research brings several contributions.
First, we compare two graph-based algorithms
in cross-domain SC settings: the algorithm
exploited in (Goldberg and Zhu, 2006), which
seeks document sentiments as an output of an
optimisation problem (OPTIM) and the algorithm
adopted by (Wu et al., 2009), that uses ranking
to assign sentiment scores (RANK). Second,
as document similarity is a crucial factor for
satisfactory performance of graph-based algorithms,
we suggest and evaluate various sentiment similarity
measures. Sentiment similarity is different from
topic similarity as it compares documents with
respect to the sentiment they convey rather than
their topic. Finally, we discover the dependency
of algorithm parameter values on domain properties
and, subsequently, the impossibility to find universal
parameter values suitable for all domain pairs.
We discuss a possible strategy for choosing the

best set of parameters based on our previous
study (Ponomareva and Thelwall, 2012), where
we introduced two domain characteristics: domain
similarity and domain complexity and demonstrated
their strong correlation with cross-domain accuracy
loss.

The rest of the paper is structured as follows.
In Section 2 we give a short overview of related
works on cross-domain SC. Section 3 describes and
compares the OPTIM and RANK algorithms. In
Section 4 we discuss an issue of document similarity
and select document representation that correlates
best with document sentiments. Experimental
results are described in Section 5 followed by a
discussion on the strategy for choosing the best
parameter values of the algorithms (Section 6).
Finally, in Section 7 we summarise our contributions
and discuss further research.

2 Related work

Cross-domain sentiment analysis has received
considerable attention during the last five years
and, since then, several approaches to tackle this
problem have emerged. The most straightforward
approach is to use an ensemble of classifiers as
tested in several works (Aue and Gamon, 2005; Li
and Zong, 2008). It is a well-explored technique in
machine learning concerned with training classifiers
on domains where annotated data are available
and then, combining them in ensembles for the
classification of target data. Aue and Gamon (2005)
studied several possibilities to combine data from
domains with known annotations and came up with
the conclusion that an ensemble of classifiers in
a meta-classifier gives higher performance than a
simple merge of all features.

Structural Correspondence Learning (SCL)
(Blitzer et al., 2007) is another domain transfer
approach, which was also tested on parts of speech
(PoS) tagging (Blitzer et al., 2006). Its underlying
idea is to find correspondences between features
from source and target domains through modeling
their correlations with pivot features. Pivot features
are features occurring frequently in both domains,
which, at the same time, serve as good predictors
of document classes, like the general sentiment
words “excellent” and “awful”. The extraction
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of pivot features was made on the basis of their
frequency in source and target corpora and their
mutual information with positive and negative
source labels. The correlations between the pivot
features and all other features were modeled using
a supervised learning of linear pivot predictors to
predict occurrences of each pivot in both domains.
The proposed approach was tested on review data
from 4 domains (books, DVDs, kitchen appliances
and electronics) and demonstrated a significant
gain of accuracy for most domain pairs compared
to the baseline. However, for a few domains the
performance degraded due to feature misalignment:
the narrowness of the source domain and diversity
of the target domain created false projections of
features in the target domain. The authors proposed
to correct this misalignment with a small amount of
annotated in-domain data.

Spectral Feature Alignment (SFA), introduced by
Pan et al. (2010), holds the same idea as SCL,
i.e., an alignment of source and target features
through their co-occurrences with general sentiment
words. But instead of learning representations of
pivots in source and target domains the authors
used spectral clustering to align domain-specific and
domain-independent words into a set of feature-
clusters. The constructed clusters were then used for
the representation of all data examples and training
the sentiment classifier. This new solution yields a
significant improvement on cross-domain accuracy
compared with SCL for almost all domain pairs.

The method suggested by Bollegala et al. (2011)
also relies on word co-occurrences. In particular,
the authors presented a method for automatic
construction of a sentiment-sensitive thesaurus
where each lexical element (either unigram or
bigram) is connected to a list of related lexical
elements which most frequently appear in the
context expressing the same sentiment. This
thesaurus is then used on the training step to
expand feature vectors with related elements to
overcome the feature mismatch problem. The
method was tested on the same data set as SCL
and SFA but unlike previous works the authors
used a combination of domains to create sentiment-
sensitive thesauri and to train the cross-domain
classifier. They compare the accuracy of their
approach with an average accuracy over the results

with the same target domain given by SCL and
SFA, and concluded that their method surpasses all
existing approaches. However, we think that such
a comparison is not optimal. Indeed, using the
approach described in (Ponomareva and Thelwall,
2012) we can choose the most appropriate data
for training our classifier rather than averaging the
results given by all data sets. Therefore, instead of
average accuracies, the best accuracies with respect
to the same target domain should be compared. This
comparison leads to opposite conclusions, namely
that SCL and SFA significantly outperform the
sentiment-sensitive thesaurus-based method.

Unlike the approaches mentioned above,
graph-based algorithms exploit relations between
documents for finding the correct document scores.
We describe them in more details in the next section.

3 Graph-based algorithms

In this section we present and compare 2 graph-
based algorithms which use similar graph structures
but completely different methods to infer node
scores. The RANK algorithm (Wu et al.,
2009) is based on node ranking, while OPTIM
(Goldberg and Zhu, 2006) determines solution of
graph optimisation problem. Initially OPTIM was
applied for the rating-inference problem in a semi-
supervised setting. This study, for the first time,
analyses its behaviour for cross-domain SC and
compares its performance with a similar approach.

3.1 OPTIM algorithm
The OPTIM algorithm represents graph-based
learning as described in (Zhu et al., 2003). Let us
introduce the following notation:

• G = (V,E) is an undirected graph with 2n
nodes V and weighted edges E.

• L stands for labeled data (source domain data)
and U for unlabeled data (target domain data).

• xi is a graph node which refers to a document,
f(xi) is a true label of a document which is
supposed to be unknown even for annotated
documents, allowing for noisy labels. Each
xi ∈ L is connected to yi which represents
a given rating of a document. The edge
weight between x − i and yi is a large number
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Figure 1: Graph models for the OPTIM (A) and RANK (B) algorithms

M introducing the hard constraints between
labeled documents and their ratings. Each xi ∈
U is connected to ŷi that stands for predicted
rating of a document. The edge weight between
xi and ŷi is equal to 1.

• Each unlabeled document xi is connected to its
k nearest labeled documents kNNL(i) (source
domain neighbours). The weight between xi

and xj ∈ kNNL(i) is measured by a given
similarity w and denoted a · wij .

• Each unlabeled document xi is connected to
its k′ nearest unlabeled documents k′NNU (i)
(target domain neighbours). The weight
between xi and xj ∈ k′NNU (i) is denoted by
b · wij .

Figure 1A illustrates the graph structure
described. The algorithm is based on the assumption
that the rating function f(x) is smooth with respect
to the graph, so there are no harsh jumps of
sentiment between nearest neighbours. To satisfy
the smoothness condition sentiment variability
between the closest nodes should be minimised.
Another requirement is to minimise the difference
between each initial node rating and its final value,
although in the case of unlabeled nodes this is
optional. Taking into consideration the conditions
mentioned the sentiment-inference problem can be
formulated as an optimisation problem:

L(f) =∑
i∈L

M(f(xi)− yi)
2 +

∑
i∈U

(f(xi)− ŷi)
2+∑

i∈U

∑
j∈kNNL(i)

awij(f(xi)− f(xj))
2+

∑
i∈U

∑
j∈k′NNU (i)

bwij(f(xi)− f(xj))
2 → min (1)

After the substitutions α = ak + bk′ and β = b
a the

final optimisation problem can be written as:

L(f) =∑
i∈L

M(f(xi)− yi)
2 +

∑
i∈U

[(f(xi)− ŷi)
2+

α

k + βk′
(

∑
j∈kNNL(i)

wij(f(xi)− f(xj))
2+

∑
j∈k′NNU (i)

βwij(f(xi)− f(xj))
2)]→ min (2)

where β defines the relative weight between
labeled and unlabeled neighbours, while α controls
the weight of the graph-based solution with respect
to the primarily obtained supervised sentiment
scores.
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The minimum-loss function which gives the
solution of the optimisation problem can be found
by setting the gradient to zero. For more details on
the problem solution see (Goldberg and Zhu, 2006).

3.2 RANK algorithm

The RANK algorithm has a similar graph structure
(Figure 1B): nodes represent labeled and unlabeled
documents and there is a parameter (in this case
γ) that controls the relative importance of labeled
data over unlabeled data and is an analogue
of β in OPTIM. The weight of edges between
different nodes is also measured by document
similarity. However, there are no edges between
nodes and their initial sentiments because RANK
is an iterative algorithm and each iteration gives
new scores to unlabeled nodes while labeled
nodes remain constant. More precisely, on each
iteration sentiment scores of unlabeled documents
are updated on the basis of the weighted sum of
sentiment scores of the nearest labeled neighbours
and the nearest unlabeled neighbours. The process
stops when convergence is achieved, i.e. the
difference in sentiment scores is less than a
predefined tolerance.

Using the same notation as for OPTIM we can
formulate the iterative procedure in the following
way:

fk(xi) =
∑

j∈kNNL(i)

γwijf(xj)+∑
j∈k′NNU (i)

(1− γ)wijfk−1xj) (3)

where fk(xi) is the node sentiment score on the
k-th iteration. Document scores are normalised
after each iteration to ensure convergence (Wu et
al., 2009). It is worth noting that initially the
authors did not consider having a different number
of neighbours for the source and target domains.

Analysing differences in the graph structures and
assumptions of both models we can say that they
are almost identical. Even the smoothness condition
holds for the RANK algorithm as the score of a
node is an averaged sum of the neighbours. The
only principal difference concerns the requirement
of closeness of initial and final sentiment scores for

OPTIM. This condition gives more control on the
stability of the algorithm performance.

4 Measure of document similarity

A good measure of document similarity is a key
factor for the successful performance of graph-based
algorithms. In this section we propose and evaluate
several measures of document similarity based on
different vector representations and the cosine of
document vectors.

Following (Goldberg and Zhu, 2006) and (Pang
and Lee, 2005) we consider 2 types of document
representations:

- feature-based: this involves weighted
document features. The question here concerns the
features to be selected. When machine learning
is employed the answer is straightforward: the
most discriminative features are the best ones for
our task. However, we assume that we do not
know anything about the domain when measuring
sentiment similarity and, thus, we should establish
the appropriate set of features only relying on our
prior knowledge about sentiment words. According
to previous studies, adjectives, verbs and adverbs are
good indicators of sentiment (Pang and Lee, 2008),
therefore, we keep only unigrams and bigrams that
contain these PoS. We test two feature weights - tfidf
and idf (Ftfidf and Fidf in Table1 respectively). The
evident drawback of such a vector representation
concerns the discarding of nouns, which in many
cases also bear sentiments. To overcome this issue
we introduce a new measure that uses sentiment
dictionaries to add nouns expressing sentiments
(Fidf+SOCAL).

- lexicon-based: uses sentiment dictionaries to
assign scores to lexical elements of two types: words
or sentences. The dimension of the corresponding
document vector representation conforms with the
granularity of the sentiment scale. For example,
in case of binary sentiment scales, a document
vector consists of two dimensions, where first
component corresponds to the percentage of positive
words (sentences) and the second component -
to the percentage of negative words (sentences).
To assign sentiment scores to lexical elements
we exploit different sentiment resources, namely
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domain Ftfidf Fidf Fidf+SOCAL W2 W10 S2

BO 0.61 0.62 0.64 0.49 0.50 0.44
DV 0.61 0.61 0.64 0.56 0.56 0.51
EL 0.62 0.66 0.68 0.47 0.49 0.46
KI 0.65 0.67 0.68 0.51 0.54 0.53

Table 1: Correlation for various similarity measures with sentiment scores of documents across different domains.

SentiWordNet (Esuli and Sebastiani, 2006), SO-
CAL (Taboada et al., 2010) and SentiStrength
(Thelwall et al., 2012). The scores of sentences
are averaged by the number of their positive and
negative words. Preliminary experiments show a big
advantage of SO-CAL-dictionaries comparing with
other resources. SentiWordNet demonstrates quite
an unsatisfactory performance, while SentiStrength,
being very precise, has an insufficient scope and,
therefore, finds no sentiment in a substantial number
of documents.

The best document representation is selected
on the basis of its correlation with the sentiment
scores of documents. To compute correlations
for feature-based measures, we take 1000 features
with highest average tfidf weights. Table 1 gives
the results of a comparison for two document
representations and their different settings. Here
W2 and S2 stand for word-based and sentence-
based representations of dimension 2 and W10 -
for word-based representation of dimension 10.
All use SO-CAL-dictionaries to assign scores to
words or sentences. Feature-based representations
demonstrate significantly better correlations with
document sentiments although for some domains,
like DV, the lexical element-based representation
produces a similar result. Integration of SO-CAL-
dictionaries gives insignificant contribution into the
overall correlation, which maybe due to the limited
number of features participated in the analysis.
In our further experiments we use both Fidf and
Fidf+SOCAL document representations.

5 Experimental results

Our data comprises Amazon product reviews on 4
topics: books (BO), electronics (EL), kitchen (KI)
and DVDs (DV), initially collected and described
by Blitzer et al. (2007). Reviews are rated using
a binary scale, 1-2 star reviews are considered as

negative and 4-5 star reviews as positive. The data
within each domain are balanced: they contain 1000
positive and 1000 negative reviews.

First, we compute a baseline for each domain
pair by training a Support Vector Machines (SVMs)
classifier using one domain as training data and
another as test data. We choose SVMs as our
main learning technique because they have proved
to be the best supervised algorithm for SC (Pang
and Lee, 2008). In particular, we use the LIBSVM
library (Chang and Lin, 2011) and a linear kernel
function to train the classifier. For the feature
set we experiment with different features and
feature weights and conclude that unigrams and
bigrams weighted with binary values yield the best
performance.

Figure 2: Baseline accuracy for cross-domain SC.
(x-axis - source domains, y-axis - target domains).

Figure 2 presents an isoline image of cross-
domain accuracies for all domain pairs.1 Products
on the x-axis represent source domains and products

1We should point out that in the images the shading between
points is not intended to suggest interpolation but is used to
highlight the overall pattern. Of course the pattern depends on a
domain order on the axes, therefore, similar domains are placed
together to make the regions with high and low accuracies
evident.
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on the y-axis represent target domains. The isolines
image of the baseline accuracy delivers a good
representation of domain relations. In particular, we
can observe two regions with the highest accuracy
(EL-KI, KI-EL) and (BO-DV, DV-BO) and two
regions with a big performance drop (EL-BO, EL-
DV, KI-BO, KI-DV) and (BO-EL, BO-KI, DV-
EL, DV-KI). As shown in our previous study
(Ponomareva and Thelwall, 2012) the first two
regions conform with the most similar domain pairs
BO, DV and EL, KI.

OPTIM and RANK require the setting of several
parameters: (k, k′, α, β) for OPTIM and (k, k′, γ)
for RANK. As it is computationally expensive to
iterate over all possible values of parameters we first
run the algorithms on a small matrix of parameters
and then apply the gradient descent method which
takes the values with highest accuracy as its starting
points. We execute both algorithms with different
similarity measures, Fidf and Fidf+SOCAL. In
Table 2 OPTIM and RANK run with Fidf , while
OPTIM+SOCAL and RANK+SOCAL run with
Fidf+SOCAL. We give the best accuracies achieved
by these algorithms for each domain pair. Unlike
the correlations, the accuracies increase significantly
with the integration of SO-CAL-dictionaries, the
average improvement is about 3% for RANK and
1.5% for OPTIM. In general, RANK consistently
outperforms OPTIM for all domain pairs, OPTIM
shows competitive performance only for the pairs
of similar domains BO-DV, KI-EL and EL-KI.
We should also point out that OPTIM is more
time-consuming as it requires expensive matrix
operations. Due to these advantages of the RANK
algorithm, we mostly focus on its analysis in the rest
of the paper.

It is interesting to examine the performance of
RANK on the basis of the 3D isolines image (Figure
3B). The isolines stretch from left to right indicating
that accuracy is almost independent of the source
domain. Such behaviour for RANK suggests a
positive answer to our question stated in the title:
even if domains are quite different, neighbours from
the same domain will fix these discrepancies. This
property is definitely a big advantage of the RANK
algorithm in the context of the cross-domain task as
it minimises the importance of the source domain.
Obviously more experiments with different data

must be accomplished to prove this conclusion with
a higher level of confidence.

We also compare graph-based algorithms with
other state-of-the-art approaches, such as SCL and
SFA (Table 2, Figure 3). The best results in Table 2
are highlighted and if the difference is statistically
significant with α = 0.05 the corresponding
accuracy is underlined. Note that we compare
graph-based approaches against the others but not
each other, therefore, if the result given by RANK is
underlined it means that it is statistically significant
only in comparison with SCL and SFA and not with
OPTIM. According to Table 2, RANK surpasses
SCL for almost all domain pairs with an average
difference equal to 2%. Interestingly, without
using SO-CAL-dictionaries RANK loses to both
SCL and SFA for almost all domain pairs. The
advantage of RANK over SFA is disputable as
there is not much consistency about when one
algorithm outperforms another, except that SFA is
better overall for close domains. However Figure
3 suggests an interesting finding: that for domains
with different complexities swapping source and
target also changes the method that produces the
best performance. A comparison of RANK and SCL
on the Chinese texts given by (Wu et al., 2009)
shows the same phenomenon. It seems that RANK
works better when the target domain is simpler,
maybe because it can benefit more from in-domain
neighbours of the less rich and ambiguous domain.
In the future, we plan to increase the impact of
lexically different but reliably labeled source data
by implementing the SFA algorithm and measuring
document similarity between feature clusters rather
than separate features.

6 Strategy for choosing optimal
parameters

The results of the RANK and OPTIM algorithms
presented in the previous section represent the
highest accuracies obtained after running gradient
descent method. Table 3 lists the best parameter
values of the RANK algorithm over several domain
pairs. Our attempt to establish some universal values
valid for all domain pairs was not successful as the
choice of the parameters depends upon the domain
properties. Of course, in real life situations we do
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source-target baseline OPTIM RANK OPTIM+ RANK+ SCL SFA
SOCAL SOCAL

BO-EL 70.0 74.0 77.2 74.4 79.8 77.5 72.5
BO-DV 76.5 78.6 77.4 79.9 79.8 75.8 81.4
BO-KI 69.5 74.6 78.6 77.3 82.8 78.9 78.8
DV-BO 74.4 78.8 78.9 80.5 82.1 79.7 77.5
DV-EL 67.2 73.6 78.8 74.4 80.9 74.1 76.7
DV-KI 70.2 75.6 80.4 77.3 83.2 81.4 80.8
EL-BO 65.5 67.8 69.9 69.5 73.6 75.4 75.7
EL-DV 71.3 74.2 72.6 75.6 77.0 76.2 77.2
EL-KI 81.6 83.6 83.2 85.7 85.3 85.9 86.8
KI-BO 64.7 68.4 70.9 69.7 74.8 68.6 74.8
KI-DV 70.1 72.3 72.4 73.4 78.4 76.9 77.0
KI-EL 79.7 82.6 81.9 83.7 83.7 86.8 85.1
average 71.7 75.3 76.9 76.8 80.1 78.1 78.7

Table 2: Comparison of different cross-domain algorithms

Figure 3: Accuracy obtained with different cross-domain algorithms over various domains: A) OPTIM, B) RANK,
C) SCL, D) SFA. (x-axis - source domains, y-axis - target domains).
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parameter BO-EL BO-DV BO-KI EL-BO EL-DV EL-KI
γ 0.34 0.78 0.30 0.50 0.55 0.9
k 50 100 25 75 50 200
k′ 220 50 40 100 150 10

Table 3: Best number of labeled and unlabeled neighbours for the RANK algorithm over various domain pairs

source- similarity complexity γ
target variance

BO-EL 1.23 -1.93 0.34
BO-DV 1.75 0.06 0.76
BO-KI 1.17 -1.26 0.48
DV-BO 1.75 -0.06 0.75
DV-EL 1.22 -1.99 0.52
DV-KI 1.18 -1.32 0.44
EL-BO 1.23 1.93 0.62
EL-DV 1.22 1.99 0.68
EL-KI 1.87 0.67 0.75
KI-BO 1.17 1.26 0.64
KI-DV 1.18 1.32 0.54
KI-EL 1.87 -0.67 0.76

Table 4: Similarity, complexity variance and γ averaged
over the best results (confidence level of 95%) of the
RANK algorithm. The values are given on various
domain pairs

not have a knowledge of the parameter values which
produce the best performance and, therefore, it
would be useful to elaborate a strategy for choosing
the optimal values with respect to a corresponding
domain pair. In our previous work (Ponomareva
and Thelwall, 2012) we introduced two domain
characteristics: domain similarity and domain
complexity variance and proved their impact into
the cross-domain accuracy loss. Domain similarity
and complexity are independent properties of a
domain pair as the former measures similarity of
data distributions for frequent words, while the latter
compares the tails of distributions. In Ponomareva
and Thelwall (2012), we tested various metrics
to estimate these domain characteristics. As a
result, inversed χ2 was proved to be the best
measure of domain similarity as it gave the highest
correlation with the cross-domain accuracy drop.
The percentage of rare words (words that occur
less than 3 times) was found to be the closest
approximation to domain complexity as it showed

the highest correlation with the in-domain accuracy
drop.

It is naturally to assume that if domain similarity
and complexity are responsible for the cross-domain
accuracy loss, they might influence on the parameter
values of domain adaptation algorithms. This is
proved to be true for the γ parameter, whose values
averaged over the top results of the RANK algorithm
are listed in Table 4. We use the confidence
interval of 95% to select the top values of γ.
Table 4 shows that γ is the lowest for dissimilar
domains with a simpler target (negative values of
domain complexity variance), which means that the
RANK algorithm benefits the most from unlabeled
but simpler data. γ grows to values close to 0.6
for dissimilar domains with more complex target
(positive values of domain complexity variance),
which shows that the impact of simpler source data,
though different from target, increases. Finally γ
reaches its maximum for similar domains with the
same level of complexity. Unfortunately, due to
comparable amount of data for each domain, no
cases of similar domains with different complexity
are observed. We plan to study these particular cases
in the future.

High dependency of γ on both domain
characteristics is proved numerically. The
correlation between γ and domain similarity and
complexity reaches 0.91, and decreases drastically
when one of these characteristics is ignored.

Concerning the optimal number of labeled and
unlabeled neighbours, no regularity is evident
(Table 3). In our opinion, that is an effect
of choosing the neighbours on the basis of the
quantitative threshold. Nevertheless, different
domains have distinct pairwise document similarity
distributions. Figure 4 demonstrates similarity
distributions for BO, EL and DV inside and across
domains. Therefore, taking into account only
the quantitative threshold we ignore discrepancies
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Figure 4: Pairwise document similarity distributions inside domains (A) and across domains (B)

in graph connectivities inside and across domains
and may bring “bad” neighbours to participate in
decision-making. In our further research we plan
to explore the idea of a qualitative threshold, which
chooses neighbours according to their similarity and
uses the same similarity levels for in-domain and
cross-domain graphs.

7 Conclusions and future work

This paper has studied the performance of two
graph-based algorithms, OPTIM and RANK when
applied to cross-domain sentiment classification.
Comparison on their performance on the same data
has revealed that, in spite of the similar graph
structures, RANK consistently produces better
results than OPTIM. We also have compared the
graph-based algorithms with other cross-domain
methods, including SCL and SFA, and concluded
that RANK considerably outperforms SCL and
obtains better results than SFA for half of the
cases. Given that we consider only the best
accuracies obtained with RANK, such comparison
is not completely fair but it shows the potential of
the RANK algorithm once the strategy for choosing
its optimal parameters is established. In this paper,
we also discuss some ideas about how to infer
optimal parameter values for the algorithms on the
basis of domain characteristics. In particular, the
strong correlation for γ with domain similarity and
complexity has been observed. Unfortunately we
are not able to find any regularity in the number
of source and target domain neighbours, which we
think is the result of the qualitative approach to

selecting the closest neighbours.
As a result of this research we have identified

the following future directions. First, we plan
to improve the RANK performance by choosing
the number of neighbours on the basis of the
document similarity threshold which we set equal
for both in-domain and cross-domain neighbours.
We expect that this modification will diminish the
number of “bad” neighbours and allow us to reveal a
dependency of similarity threshold on some domain
properties. Another research direction will focus on
the integration of SFA into the similarity measure
to overcome the problem of lexical discrepancy in
the source and target domains. Finally, as all our
conclusions have been drawn on a data set of 12
domain pairs, we plan to increase a number of
domains to verify our findings on larger data sets.
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