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Abstract

Existing techniques for disambiguating named
entities in text mostly focus on Wikipedia as
a target catalog of entities. Yet for many
types of entities, such as restaurants and
cult movies, relational databases exist that
contain far more extensive information than
Wikipedia. This paper introduces a new task,
called Open-Database Named-Entity Disam-
biguation (Open-DB NED), in which a system
must be able to resolve named entities to sym-
bols in an arbitrary database, without requir-
ing labeled data for each new database. We
introduce two techniques for Open-DB NED,
one based on distant supervision and the other
based on domain adaptation. In experiments
on two domains, one with poor coverage by
Wikipedia and the other with near-perfect cov-
erage, our Open-DB NED strategies outper-
form a state-of-the-art Wikipedia NED system
by over 25% in accuracy.

1 Introduction

Named-entity disambiguation (NED) is the task of
linking names mentioned in text with an established
catalog of entities (Bunescu and Pasca, 2006; Rati-
nov et al., 2011). It is a vital first step for se-
mantic understanding of text, such as in grounded
semantic parsing (Kwiatkowski et al., 2011), as
well as for information retrieval tasks like person
name search (Chen and Martin, 2007; Mann and
Yarowsky, 2003).

NED requires a catalog of symbols, called refer-
ents, to which named-entities will be resolved. Most
NED systems today use Wikipedia as the catalog of

referents, but exclusive focus on Wikipedia as a tar-
get for NED systems has significant drawbacks: de-
spite its breadth, Wikipedia still does not contain all
or even most real-world entities mentioned in text.
As one example, it has poor coverage of entities that
are mostly important in a small geographical region,
such as hotels and restaurants, which are widely dis-
cussed on the Web. 57% of the named-entities in
the Text Analysis Conference’s (TAC) 2009 entity
linking task refer to an entity that does not appear
in Wikipedia (McNamee et al., 2009). Wikipedia is
clearly a highly valuable resource, but it should not
be thought of as the only one.

Instead of relying solely on Wikipedia, we pro-
pose a novel approach to NED, which we refer to
as Open-DB NED: the task is to resolve an en-
tity to Wikipedia or to any relational database that
meets mild conditions about the format of the data,
described below. Leveraging structured, relational
data should allow systems to achieve strong accu-
racy, as with domain-specific or database-specific
NED techniques like Hoffart et al.’s NED system
for YAGO (Hoffart et al., 2011). And because of
the availability of huge numbers of databases on
the Web, many for specialized domains, a success-
ful system for this task will cover entities that a
Wikipedia NED or database-specific system cannot.

We investigate two complementary learning
strategies for Open-DB NED, both of which signifi-
cantly relax the assumptions of traditional NED sys-
tems. The first strategy, a distant supervision ap-
proach, uses the relational information in a given
database and a large corpus of unlabeled text to
learn a database-specific model. The second strat-
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egy, a domain adaptation approach, assumes a sin-
gle source database that has accompanying labeled
data. Classifiers in this setting must learn a model
that transfers from the source database to any new
database, without requiring new training data for the
new database. Experiments show that both strategies
outperform a state-of-the-art Wikipedia NED sys-
tem by wide margins without requiring any labeled
data from the test domain, highlighting the signifi-
cant advantage of having domain-specific relational
data.

The next section contrasts Open-DB NED with
previous work. Section 3 formalizes the task. Sec-
tions 4 and 5 present our distant supervision strategy
and domain-adaptation strategy, respectively. Sec-
tion 6 introduces a technique that is a hybrid of the
two learning strategies. Section 7 describes our ex-
periments, and Section 8 concludes.

2 Previous Work

As mentioned above, restricting the catalog of ref-
erents to Wikipedia, as most recent NED systems
do (Bunescu and Pasca, 2006; Mihalcea and Cso-
mai, 2007; Fader et al., 2009; Han and Zhao, 2009;
Kulkarni et al., 2009; Ratinov et al., 2011), can re-
strict the coverage of the system. Zhou et al. (2010)
estimate that 23% of names in Yahoo! news arti-
cles have no referent in Wikipedia, and Cucerzan
(2007) estimates the rate at 16% in MSNBC news
articles. There is reason to suspect that these esti-
mates are on the low side, however, as news tends to
cover popular entities, which are most likely to ap-
pear in Wikipedia; the mentions in TAC’s 2009 en-
tity linking task are drawn from both newswire and
blogs, and have a far higher rate (57%) of missing
Wikipedia entries. Lin et al. (2012) find that 33% of
mentions in a corpus of 500 million Web documents
cannot be linked to Wikipedia.

NED systems that are focused on specific do-
mains (or verticals) greatly benefit from reposito-
ries of domain-specific knowledge, only a subset
of which may be found in Wikipedia. For exam-
ple, Pantel and Fuxman (2011) use a query-click
graph to resolve names in search engine queries to a
large product catalog from a commercial search en-
gine, while Dalvi et al. (2009; 2012) focus on movie
and restaurant databases. Bellare and McCallum

(2009) use the sequence information available in ci-
tation text to link author, title, and venue names to a
publication database. Open-DB NED systems work
on any database, so they can serve as baselines for
domain-specific NED tasks, as well as provide dis-
ambiguation for domains where no domain-specific
NED system exists.

Numerous previous studies have considered dis-
tant or weak supervision from a single relational
database as an alternative to manual supervision for
information extraction (Hoffmann et al., 2011; Weld
et al., 2009; Bellare and McCallum, 2007; Bunescu
and Mooney, 2007; Mintz et al., 2009; Riedel et al.,
2010; Yao et al., 2010). In contrast to these sys-
tems, our distant supervision NED system provides
a meta-algorithm for generating an NED system for
any database and any entity type.

Existing domain adaptation or transfer learning
approaches are inappropriate for the Open-DB NED
task, either because they require labeled data in both
the source and target domains (Daumé III et al.,
2010; Ben-David et al., 2010), or because they lever-
age some notion of distributional similarity between
words in the source and target domains (Blitzer et
al., 2006; Huang and Yates, 2009), which does not
apply to the database symbols across the two do-
mains. Instead, our domain adaptation technique
uses domain-independent features of relational data,
which apply regardless of the actual contents of the
database, as explained further below.

3 The Open-DB NED Problem and
Assumptions

3.1 Problem Formulation

A mention is an occurrence of a named-entity
in a document. Formally, a mention m =
(d, start, end) is a triple consisting of a document
d, as well as a start and end position for the men-
tion within the document. We say that d is the
context of m. A relational database is a 2-tuple
(S,R). Here, S is a set of symbols for constants,
attributes, and relations in the database, and R =
{r1, . . . , rn} is a set of relation instances of the form
ri = {(c1,1, . . . , c1,ki

), . . . , (cni,1, . . . , cni,ki
)},

where each cj is taken from S, ki is the arity of re-
lation ri and ni is the number of known instances
of ri. We will write example database symbols in
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movie 

id title year 

1 Next Door 1975 

2 Next Door 2005 

3 Next Door 2008 

4 Next Door 2008 

5 Next Door 2010 

… … … 

actor 

id name 

1 Nicole Kreux 

2 Richard Ryan 

3 Kristoffer Joner 

4 Lee Perkins 

5 Carla Valentine 

… … 

acted_in 

movie_id actor_id role 

5 1 Evelyn 

5 2 Bruce 

2 3 John 

1 4 Kid 

3 5 Elana 

… … … 

player 

id name height position 

1 Carlos Lee 6’2” LF 

2 Rob Bironas 6’0” K 

3 Chris Johnson 6’3” 3B 

4 Chris Johnson 5’11” RB 

5 Chris Johnson 6’1” DB 

… … … 

team 

id name 

1 San Diego Padres 

2 Houston Texans 

3 Tennessee Titans 

4 Oakland Raiders 

5 Houston Astros 

… … 

plays_for 

player_id team_id 

4 3 

5 2 

3 5 

1 5 

2 3 

… … 

Figure 1: Example movie database (above) and sports
database (below) in BCNF.

teletype, and mentions in “quotations.” For a
particular database DB, we refer to its components
as DB.S and DB.R. For a set of databases D, de-
fine the set of referents as SD = (

⋃
DB∈DDB.S)∪

{OOD}, where OOD is a special symbol indicat-
ing something that is “out of database”, or not found
in any of the databases in D.

Given a corpus C, a set of mentions M that oc-
cur in C, and a set of databases D, the Open-DB
NED task is to produce a function f : M → SD,
which identifies an appropriate target symbol from
one of the databases in D, or determines that the
mention is OOD. Note that this problem formula-
tion assumes no labeled data. This is significantly
more challenging than traditional NED settings, but
allows the system to generalize easily to any new
database. In the domain adaptation section below,
we relax this condition somewhat, to allow labeled
data for a small number of initial databases; the sys-
tem must then transfer what it learns from the la-
beled domains to any new database. Also note that
the focus for this paper is disambiguation; we as-
sume that the set of mentions are correctly demar-
cated in the input text. Previous systems, such as
Lex (Downey et al., 2007), have investigated the task
of finding correct named-entity boundaries in text.

3.2 Assumptions

To allow our systems to handle arbitrary databases,
we need to make some assumptions about a standard
format for the data. We will assume that databases
are provided in a particular form, called Boyce-Codd

Normal Form (BCNF) (Silberschatz et al., 2010).
A relational schema is said to be in BCNF when
all redundancy based on functional dependency has
been removed, although other types of redundancy
may still exist. Formally, a schema R is said to
be in BCNF with respect to a set of functional de-
pendencies F if for every one of the dependencies
(X → Y ) ∈ F , either

1. Y ⊂ X , meaning this is a trivial functional de-
pendency, or

2. X is a superkey, meaning that X is a set of at-
tributes that together define a unique ID for the
relation.

In practice, this is a relatively safe assumption as
database designers often aim for even stricter normal
forms. For databases not in BCNF, such as tables
extracted from Web pages, standard algorithms ex-
ist for converting them into BCNF, given appropri-
ate functional dependencies, although there are sets
of functional dependencies for which BCNF is not
achievable. Figure 1 shows two example databases
in BCNF. We use these tables as examples through-
out the paper.

We will additionally assume that all attributes, in-
cluding names and nicknames, of entities that are
covered by the database are treated as functional de-
pendencies of the entity. Again, in practice, this
is a fairly safe assumption as this is part of good
database design, but if a database does not con-
form to this, then there will be some entities in the
database that our algorithms cannot resolve to. This
assumption implies that it is enough to use the set of
superkeys for relations as the set of possible refer-
ents; our algorithms make use of this fact.

Finally, we will assume the existence of a func-
tion µ(s, t) which indicates whether the text t is a
valid surface form of database symbol s. Our exper-
iments in Section 7.3 explore several possible simple
definitions for this function.

4 A Distant Supervision Strategy for
Open-DB NED

Our first approach to the Open-DB NED problem re-
lies on the fact that, while many mentions are indeed
ambiguous and difficult to resolve correctly, most
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mentions have only a very small number of possi-
ble referents in a given database. “Chris Johnson”
is the name of doubtless thousands of people, but
for articles that are reasonably well-aligned with our
sports database, most of the time the name will refer
to just three different people. Most sports names are
in fact less ambiguous still. Thus, taking a corpus of
unlabeled sports articles, we use the information in
the database to provide (uncertain) labels, and then
train a log-linear model from this probabilistically-
labeled data.

This strategy requires a set of features for the
model. Traditionally, such features would be hand-
crafted for a particular domain and database. As a
first step towards our Open-DB system, we present
a log-linear model for disambiguation, as well as a
simple feature-generation algorithm that produces a
large set of useful features from a BCNF database.
We then present a distant-supervision learning pro-
cedure for this model.

4.1 Disambiguation Model

Let SD be the set of possible referents. We construct
a vector of feature functions f(m, s) describing the
degree to which m and s ∈ SD appear to match
one another. The feature functions are described be-
low. The model includes a vector of weights w, one
weight per feature function, and sets the probability
of entity s given m and w as:

P (s|m,w) =
exp (w · f(m, s))∑

s′∈SD
exp (w · f(m, s′))

(1)

4.2 Database-driven Feature Generation

Figure 2 shows our algorithm for automatically gen-
erating feature functions fi(m, s) from a BCNF
database. As mentioned above, we only need to con-
sider resolving to database symbols s that are keys,
or unique IDs, for some tuple in a database. For
an entity in the database with key id, the feature
generation algorithm generates two types of feature
functions: attribute counts and similar entity counts.
Each of these features measures the similarity be-
tween the information stored in the database about
the entity id, and the information in the text in d sur-
rounding mention m.

An attribute count feature function fatti,j (m, id)
for the jth attribute of relation ri counts how many

Algorithm: Feature Generation

Input: DB, a database in BCNF
Output: F, a set of feature functions
Initialization: F← ∅
Attribute Count Feature Functions:
For each relation ri ∈ DB.R

For each j in {1, . . . , ki}
Define function fatti,j (m, id):
count← 0
Identify the tuple t ∈ ri containing id
val← tj
count← count +

ContextMatches(val,m)
return count

F← F ∪ {fatti,j }

Similar-Entity Count Feature Functions:
For each relation ri ∈ DB.R

For each j in {1, . . . , ki}
Define function fsimi,j (m, id):
count← 0
Identify the tuple t ∈ ri containing id
val← tj
Identify the set of similar tuples T ′:

T ′ = {t′|t′ ∈ ri, t′j = val}
For each tuple t′ ∈ T ′

For each j′ ∈ {1, . . . , ki}
val′ ← t′j
count← count +

ContextMatches(val′,m)
return count

F← F ∪ {fsimi,j }

Figure 2: Feature generation algorithm. The
ContextMatches(s,m) function counts how many
times a string that matches database symbol s appears
in the context of m. In our implementation, we use all
of d(m) as the context. Matching between strings and
database symbols is discussed in Sec. 7.3.

attributes of the entity id appear near m. For exam-
ple, if id is 5 in the movie relation in Figure 1, the
feature function for attribute yearwould count how
often 2010 matches the text surrounding mention
m. Defining precisely whether a database symbol
“matches” a word or phrase is a subtle issue; we ex-
plore several possibilities in Section 7.3. In addition

119



to attribute counts for attributes within a single rela-
tion, we also use attributes from relations that have
been inner-joined on primary key and foreign key
pairs. For example, for movies, we include attributes
such as director name, genre, and actor name. High
values for these attribute count features indicate that
the text around m closely matches the information
in the database about entity id, and therefore id is a
strong candidate for the referent of m. We use the
whole document as the context for finding matches,
although other variants are worth future investiga-
tion.

A similar entity count feature function
fsimi,j (m, id) for the jth attribute in relation ri
counts how many entities similar to id are men-
tioned in the neighborhood of m. As an example,
consider a mention of “Chris Johnson”, id = 3,
and the similar entity feature for the position
attribute of the players relation in the sports
database. The feature function would first identify
that 3B is the position of the player with id = 3. It
would then identify all players that had the same
position. Finally, it would count how often any
attributes of this set of players appear near “Chris
Johnson”. Likewise, the similar entity feature for
the team id attribute would count how many
teammates of the player with id = 3 appear near
“Chris Johnson”. A high count for this teammate
feature is a strong clue that id is the correct referent
for m, while a high count for players of the same
position is a weak but still valuable clue.

4.3 Parameter Estimation via Distant
Supervision

Using string similarity, we can heuristically deter-
mine that three IDs with name attribute Chris
Johnson are highly likely to be the correct target
for a mention of “Chris Johnson”. Our distant su-
pervision parameter estimation strategy is to move
as much probability mass as possible onto the set
of realistic referents obtained via string similarity.
Since our features rely on finding attributes and sim-
ilar entities, the side effect of this strategy is that
most of the probability mass for a particular mention
is moved onto the one target ID with high attribute
count and similar entity count features, thus disam-
biguating the entity. Although the string-similarity
heuristic is typically noisy, the strong information in

the database and the fact that many entity mentions
are typically not ambiguous allows the technique to
learn effectively from unlabeled text.

Let φ(m,DB) be a heuristic string-matching
function that returns a set of plausible ID values in
databaseDB for mentionm. The objective function
for this training procedure is a modified marginal log
likelihood (MLL) function that encourages probabil-
ity mass to be placed on the heuristically-matched
targets:

MLL(M,w) =
∑
m∈M

log
∑

id∈φ(m,DB)

P (id|m,w)

This objective is smooth but non-convex. We use
a gradient-based optimization procedure that finds a
local maximum. Our implementation uses an open-
source version of the LBFG-S optimization tech-
nique (Liu and Nocedal, 1989). The gradient of our
objective is given by

∂LL(M,w)

∂wi
=

∑
m∈M

Eid∈φ(m,DB) [fi(m, id)]

−Eid∈DB.S [fi(m, id)]

where the expectations are taken according to
P (id|m,w).

5 A Domain-Adaptation Strategy for
Open-DB NED

Our domain-adaptation strategy builds an Open-DB
NED system by training it on labeled examples from
an initial database or small set of initial databases.
Unlike traditional NED, however, the purpose in
Open-DB NED is to resolve to any database. Thus
the strategy must take care to build a model that
can transfer what it has learned to a new database,
without requiring additional labeled data for the new
database.

At first, the problem seems intractable — just
because a system can disambiguate between “Next
Door”, the 2005 Norwegian film, and “Next Door”,
the 1975 short film by director Andrew Silver, that
seems to provide little benefit for disambiguating be-
tween different athletes named “Andre Smith.” The
crux of the problem lies in the fact that database-
driven features are domain-specific. Counting how
many times the director of a movie appears is highly
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useful in the movie domain, but worthless in the
sports domain.

Our solution works by re-defining the problem in
such a way that we can define domain-independent
and database-independent features. For example,
rather than counting how often the director of
a movie appears in the context around a movie
mention, we create a domain-independent Count
Att(m, s) feature function that counts how often any
attribute of s appears in the context of m. For
movies, Count Att will add together counts for ap-
pearances of a movie’s production year and IMDB
rating, among other attributes. In the sports domain,
Count Att will add together counts for appearances
of a player’s height, position, salary, etc.. But in ei-
ther domain, the feature is well-defined, and in either
domain, larger values of the feature indicate a better
match between m and s. Thus there is a hope for
training a model with domain-independent features
like Count Att on labeled data from one domain, say
movies, and producing a model that has high accu-
racy on the sports domain.

We first formalize the notion of a domain adap-
tation NED model, and then describe our algorithm
for producing such a model. We say that a domain
consists of a database DB as well as a distribution
D(M), whereM is the space of mentions. For in-
stance, the movie domain might consist of the Inter-
net Movie Database (IMDB) and a distribution that
places most probability mass on documents about
movies and Hollywood stars. In domain adapta-
tion, a system observes a set of training examples
(m, s, g(m, s)), where instances m ∈ M are drawn
from a source domain’s distribution DS and refer-
ents s are drawn from the source domain’s database
DBS . The labels g(m, s) are boolean values in-
dicating a correct or incorrect match between the
mention and referent. The system must then learn
a hypothesis for classifying examples (m, s) drawn
from a target domain’s distributionDT and database
DBT . Note that for domain adaptation, we can-
not use the more traditional problem formulation in
which the referent s is a label (i.e., s = g(m)) for the
mention, since the set of possible referents changes
from domain to domain, and therefore the output of
g would be completely different from one domain to
the next.

Table 1 lists the domain-independent features

Domain-Independent Feature Functions

Count Att:
∑

i,j f
att
i,j (m, s)

Count Sim:
∑

i,j f
sim
i,j (m, s)

Count All: Count Att + Count Sim

Count Unique:
∑

i,j

{
0 if fatti,j (m, s) = 0,

1 if fatti,j (m, s) > 0.

Count Num:
∑

i,j|jis a numeric att. f
att
i,j (m, s)

Table 1: Primary feature functions for a domain adapta-
tion approach to NED. These features made the biggest
difference in our experiments, but we also tested varia-
tions such as counting unique numeric attribute appear-
ances, counting unique similar entities, counting relation
name appearances, counting extended attributed appear-
ances, and others.

used in our domain adaptation model. These fea-
tures use the attribute counts and similar entity
counts from the distant supervision model as subrou-
tines. By aggregating over those domain-dependent
feature functions, the domain adaptation system ar-
rives at feature functions that can be defined for any
database, rather than for a specific database.

Note that there is a tradeoff between the do-
main adaptation technique and the distant super-
vision technique. The domain adaptation model
has access to labeled data, unlike the distant su-
pervision model. In addition, the domain adapta-
tion model requires no text whatsoever from the tar-
get domain, not even an unlabeled corpus, to set
weights for the target domain. Once trained, it is
ready for NED over any database that meets our as-
sumptions, out of the box. However, because the
model needs to be able to transfer to arbitrary new
domains, the domain adaptation model is restricted
to domain-independent features, which are “coarser-
grained.” That is, the distant supervision model has
the ability to place more weight on attributes like
director rather than genre, or team rather than po-
sition, if those attributes are more discriminative.
The domain adaptation model cannot place differ-
ent weights on the different attributes, since those
weights would not transfer across databases.

As with distant supervision, the domain adapta-
tion strategy uses a log-linear model over these fea-
ture functions. We use standard techniques for train-
ing the model using labeled data from the source do-
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main: conditional log likelihood (CLL) as the objec-
tive function, and LBFG-S for convex optimization.

CLL(L,w) =
∑

(m,id,label)∈L

logP (label|m, id,w)

The training algorithm is guaranteed to converge to
the globally optimal parameter setting for this objec-
tive function over the training data. The manually
annotated data contains only positive examples; to
generate negative examples, we use the same name-
matching heuristic φ(m,DB) to identify a set of po-
tentially confusing bad matches. On test data, we
use the trained model to choose the id for a given m
with the highest probability of being correct.

6 A Hybrid Model

The distant supervision and domain adaptation
strategies use two very different sources of evidence
for training a disambiguation classifier: the string-
matching heuristic and unlabeled text from the target
domain for the the distant supervision model, and
aggregate features over labeled text from a separate
domain for domain adaptation. This begs the ques-
tion, do these sources of evidence complement one
another? To address this question, we design a Hy-
brid model with features and training strategies from
both distant supervision and domain adaptation.

The training data consists of a set LS of labeled
mentions from a source domain, a source database
DBS , a set of unlabeled mentions MT from the tar-
get domain, and the target-domain database DBT .
The full feature set of the Hybrid model is the union
of the distant supervision feature functions for the
target domain and the domain-independent domain
adaptation feature functions. Note that the distant
supervision feature functions are domain-specific,
so they almost always will be uniformly zero on LS ,
but the domain adaptation feature functions will be
activated on both LS and MT . The combined train-
ing objective for the Hybrid model is:

LL(LS ,MT ,w) = CLL(LS ,w) +MLL(MT ,w)

7 Experiments

Our experiments compare our strategies for Open-
DB NED against one another, as well as against a
Wikipedia NED system from previous work, on two
domains: sports and movies.

7.1 Data

For the movie domain, we collected a set of
156 cult movie titles from an online movie site
(www.olivefilms.com). For each movie title, we ex-
ecuted a Web search using a commercial search en-
gine, and collected the top five documents for each
title from the search engine’s results. Nearly all top-
five results included at least one mention of an en-
tity not found in Wikipedia; overall, only 16% of the
mentions could be linked to Wikipedia. After strip-
ping javascript and html annotations, we removed
documents with fewer than 50 words, leaving a to-
tal of 770 documents. We select one occurrence of
any of the 156 movie titles from each document as
our set of mentions. Many titles are ambiguous not
just among different movies with the same name, but
also among novels, plays, geographical entities, and
assorted other types of entities. To provide labels for
these mentions, we use both a movie database and
Wikipedia. We downloaded the complete data dump
from the online Internet Movie Database (IMDB,
www.imdb.com). For our set of possible referents,
we use the set of all key values in IMDB, and the set
of all Wikipedia articles. Annotators manually la-
beled each mention using this set of referents. Table
2 shows summary statistics about this labeled data.

For the sports domain, we downloaded all player
data from Yahoo!, Inc.’s sports database for the
years 2011-2012 and two American sports leagues,
the National Football League (NFL) and Major
League Baseball (MLB). From the database, we ex-
tracted ambiguous player names and team names,
including names like “Philadelphia” which may re-
fer to Philadelphia Eagles in the NFL data,
Philadelphia Phillies in the MLB data, or
the city of Philadelphia itself (in both types of
data). We then collected 1300 Yahoo! news arti-
cles which include a mention that partially matches
at least one of these database symbols. We manu-
ally labeled a random sample of 564 mentions from
this data, including 279 player name mentions and
285 city name mentions. Many player name and
place name mentions are ambiguous between the
two sports leagues, as well as with teams or play-
ers from other leagues. In order to focus on the
hardest cases, we specifically exclude mentions like
“Philadelphia” from the labeled data if any of their
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domain |M | E|φ(m,DB)| OOD Wiki

movies 770 2.6 13% 16%
sports 549 4.5 0% 100%

Table 2: Number of mentions, average number of refer-
ents per mention, % of mentions that are OOD, and %
of mentions that are in Wikipedia in our movie and sports
data.

unambiguous completions appears in the same arti-
cle (that is, if either of the team names “Philadelphia
Eagles” or “Philadelphia Phillies” appears in the
same article, we exclude the “Philadelphia” men-
tion). As before, the set of possible referents in-
cludes the symbol OOD, key values from the sports
database, and Wikipedia articles, and a given men-
tion may be labeled with both a sports entity and a
Wikipedia article, if appropriate. All of our data is
available from the last author’s website.

7.2 Evaluation Metric

We report on a version of exact-match accuracy. The
system chooses the most likely label ŝ for each m.
This is judged correct if ŝ matches the correct label
s exactly, or (in cases where both a Wikipedia and a
database entity are considered correct) if one of the
labels matches ŝ exactly. This metric allows systems
to resolve against either reference, Wikipedia or an-
other database, without requiring it to match both if
the same entity appears in both references.

7.3 Exact or Partial Matching?

One important question in the design of our systems
is how to determine the “match” between database
symbols and text. This question comes into play in
two components of our systems: it affects the com-
putation of feature functions that count how often a
match of some attribute is found in text, and it af-
fects which set of heuristically-determined database
entities are considered to be possible matches for a
given mention.

We experiment with two different matching
strategies between a symbol s and text t, exact
matching and partial matching. Exact matching
µexact(s, t) requires the sequence of characters in s
to appear exactly (modulo character encoding) in t.
For instance, the database value Chris Johnson

System Accuracy

No-Wikipedia Domain Adapt. 0.61
DocSim-Wikipedia Domain Adapt. 0.69

Table 3: Including a simple document-similarity feature
for comparing a mention’s context with a Wikipedia page
provides an 8% improvement over ignoring Wikipedia in-
formation.

would match “Chris Johnson”, but not “C. John-
son” or “Johnson” in text. For partial matching,
we used different tests for numeric and textual en-
tities. For numeric entities, µpartial matched s and
t if the numeric value of one was within 10% of
the other, so that 5312 would match “5,000.” We
made no attempt to convert numeric phrases, such
as “3.6 million”, into numeric values. For textual
entities, µpartial matched s and t if at least one
token from each matched exactly. Thus Chris
Johnson matches both “Chris” and “C. Johnson”.

We found µpartial to be consistently superior for
computing φ(m,DB), since it has much better re-
call for mentions like “Philadelphia”. On the other
hand, if we use µpartial for computing our models’
feature functions, like the Count Att(m, s) in the do-
main adaptation model, counts varied widely across
domains. A simple version of the domain adapta-
tion classifier (only the Count All and Count Unique
features) trained on sports data and tested on movies
achieved an accuracy of 24% using µpartial, com-
pared with 61% using µexact. For all remaining
tests, we used µexact for computing features, and
µpartial for computing φ(m,DB).

7.4 Incorporating Wikipedia referents

Thus far, all of our features work on relational data,
not Wikipedia. In order to allow our systems to link
to Wikipedia, we create a single “document simi-
larity” feature describing the similarity between the
text around a mention and the text appearing on a
Wikipedia page. We build a vector space model of
both the document containing the mention and the
Wikipedia page, remove stopwords, and use cosine
similarity to compute this feature.

To evaluate the effectiveness of this Wikipedia
feature, we tested two versions of our domain adap-
tation system, both trained on sports data and tested
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Figure 3: All three Open-DB NED strategies out-
perform a state-of-the-art Wikipedia NED system by
25% or more on sports and movies, and outperform
a Wikipedia NED system with oracle information by
14% or more on the movie data. Differences between
the Modified Zhou Wikifier and the Open-DB strategies
are statistically significant (p < 0.01, Fisher’s exact test)
on both domains.

on the movies domain. The first version involves
no Wikipedia information whatsoever, thus it has no
reason to select a Wikipedia article over OOD. The
second system includes the document similarity fea-
ture. Table 3 shows the results of these systems. En-
couragingly, our single document similarity feature
produces a significant improvement over the model
without Wikipedia information, so we use this fea-
ture in all of our systems tested below. More so-
phisticated use of Wikipedia is certainly possible,
and an important question for future work is how
to combine Open-DB NED more seamlessly with
Wikipedia NED.

7.5 Comparing Open-DB NED Strategies

For each domain, we compare our domain-
adaptation strategy, distant supervision, and hy-
brid strategies. The domain-adaptation model is
trained on the labeled data for sports when testing
on movies, and vice versa. We use a movies test set
of 180 mentions that is separate from the develop-
ment data used for the above tests. For the distant
supervision strategy, we use the entire collection of
texts from each domain as input (1300 articles for
sports, 770 articles for movies), with the labels re-
moved during training.

We compare against a state-of-the-art Wikipedia

NED system used in production by a major Web
company. This system is a modified version of the
system described by Zhou et al. (2010), where cer-
tain features have been removed for efficiency. We
refer to this as the Modified-Zhou Wikifier. This
system uses a gradient-boosted decision tree and
multiple local and global features for computing
the similarity between a mention’s context and a
Wikipedia article. We also test a hypothetical sys-
tem, Oracle Wikifier, which is given no information
about entities in IMDB, but is assumed to be able
to correctly resolve any mention that refers to an
entity found in Wikipedia. Thus, this system has
perfect accuracy on mentions that can be found in
Wikipedia, and accuracy similar to a baseline that
predicts randomly on all mentions that fall outside
of Wikipedia1. Oracle-Wikifier serves as an upper
bound on systems that have no access to a domain-
specific database. In addition, we compare against
two standard baselines: a classifier that always pre-
dicts OOD, and a classifier that chooses randomly.
Finally, we compare against a system that trains the
domain adaptation model using distant supervision
(“DA Trained with DS”).

Figure 3 shows our results. All three Open-DB
approaches outperform the baseline techniques on
this test by wide margins, with the Hybrid model in-
creasing by 30% or more over the random baseline.
On the movie domain, the Hybrid model outper-
forms the Oracle Wikifier by nearly 20%. Encour-
agingly, the Hybrid model consistently outperforms
both distant supervision and domain adaptation, sug-
gesting that the two sources of evidence are partially
complementary. Distant supervision performs better
on the movies test, whereas domain adaptation has
the advantage on sports. The differences among all
three Open-DB approaches is relatively small, com-
pared with the difference between these approaches
and Oracle Wikifier on the movie data.

The domain adaptation system outperforms DA
Trained with DS on both domains, suggesting
that labeled data from a separate domain is bet-
ter evidence for parameter estimates than unlabeled
data from the same domain. The distant super-
vision system also outperforms DA Trained with

1Alternatively, one could make the oracle system predict
OOD on all mentions that fall outside of Wikipedia. Random
predictions perform better on our data.

124



DS on both domains, suggesting that the fine-
grained, domain-specific features do in fact provide
more helpful information than the coarser-grained,
domain-independent features of the domain adapta-
tion model.

All of the Open-DB NED systems outperform the
Modified Zhou Wikifier on both data sets by a wide
margin. In fact the Modified Zhou Wikifier has sim-
ilar results on both domains, despite the fact that
Wikipedia has far greater coverage on sports than
movies. In part, the poor performance of the Modi-
fied Zhou Wikifier reflects the difficult nature of the
task. In previous experiments on an MSNBC news
test set it reached 85% accuracy, but a random clas-
sifier there achieved 60% accuracy compared with
21% on our sports data. Another difficulty with
the Modified Zhou Wikifier is its strong preference
for globally common entities. It consistently clas-
sifies mentions that are ambiguous between a city
and a team (like “Chicago” in “Chicago sweeps the
Red Sox”) as cities when they should be resolved
to teams, in large part because Chicago is a more
common referent in general text than either of the
baseball teams that play in that city. In sports arti-
cles, however, both meanings are common, and only
the surrounding context can help determine the cor-
rect referent.

Besides wikifiers, NED systems may also be
compared with dictionary-based word sense disam-
biguation techniques like the Lesk algorithm2 (Lesk,
1986). The Lesk algorithm is “open” in the sense
that it works for arbitrary dictionaries, and it defines
a vector space model of the dictionary definitions
that may be likened to the attribute-value model in
our representation of entities in the database. Our
approach, however, estimates parameters for a sta-
tistical model from data, whereas the Lesk algorithm
uses an equal weight for all attributes. To make an
empirical comparison, we created a variant of the
Lesk algorithm for relational data: we took the dis-
ambiguation model from Eqn. 1, supplied all of
the features from the distant supervision model, and
manually set w = 1. This “relational Lesk” model
achieves an accuracy of 0.11 on movies, and 0.15
on sports, significantly below the random baseline.
Giving equal weight to noisy attributes like genre

2We thank the reviewers for making this connection.

and more discriminative attributes like director
significantly hurts the performance.

For both the movie and sports domain, approx-
imately 80% of the Hybrid model’s errors are be-
cause of predicting database symbols, when the cor-
rect referent is a Wikipedia page or OOD. This
nearly always occurs because some words in the
context of a mention match an attribute of an in-
correct database referent. For instance, the crime
genre is an attribute for several movies, but it also
matches in contexts surrounding book titles and nu-
merous other entities. In the movie domain, most of
the remaining errors are incorrect OOD predictions
for mentions that should resolve to the database, but
the article contains no attributes or similar entities
to the database entity. In the sports domain, many
of the remaining errors were due to predicting in-
correct player referents. Quite often, this was be-
cause the document discusses a fantasy sports league
or team, where players from different professional
sports teams are mixed together on a “fantasy team”
belonging to a fan of the sport. Since players in the
fantasy leagues have different teammates than they
do in the database, these articles consistently con-
fuse our methods.

8 Conclusion and Future Work

This paper introduces the task of Open-DB Named
Entity Disambiguation, and presents two distinct
strategies for solving this task. Experiments indicate
that a mixture of the two strategies significantly out-
performs a state-of-the-art Wikipedia NED system,
on a dataset where Wikipedia has good coverage and
on another dataset where Wikipedia has poor cover-
age. The results indicate that there is a significant
benefit to leveraging other sources of knowledge in
addition to Wikipedia, and that it is possible to lever-
age this knowledge without requiring labeled data
for each new source. The initial success of these
Open-DB NED approaches indicates that this task is
a promising area for future research, including ex-
citing extensions that link large numbers of domain-
specific databases to text.
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