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Abstract

Attempts to profile authors according to their
characteristics extracted from textual data, in-
cluding native language, have drawn attention
in recent years, via various machine learn-
ing approaches utilising mostly lexical fea-
tures. Drawing on the idea of contrastive
analysis, which postulates that syntactic er-
rors in a text are to some extent influenced by
the native language of an author, this paper
explores the usefulness of syntactic features
for native language identification. We take
two types of parse substructure as features—
horizontal slices of trees, and the more gen-
eral feature schemas from discriminative parse
reranking—and show that using this kind of
syntactic feature results in an accuracy score
in classification of seven native languages of
around 80%, an error reduction of more than
30%.

1 Introduction

Inferring characteristics of authors from their tex-
tual data, often termed authorship profiling, has seen
a number of computational approaches proposed in
recent years. The problem is typically treated as a
classification task, where an author is classified with
respect to characteristics such as gender, age, native
language, and so on. This profile information is of-
ten of interest to marketing organisations for prod-
uct promotional reasons as well as governments or
law enforcements for crime investigation purposes.
The particular application that motivates the present
study is detection of phishing (Myers, 2007), the at-
tempt to defraud through texts that are designed to

deceive Internet users into giving away confidential
details. One class of countermeasures to phishing
consists of technical methods such as email authen-
tication; another looks at profiling of the text’s au-
thor(s) (Fette et al., 2007; Zheng et al., 2003), to
find any indications of the source of the text.

In this paper we investigate classification of a text
with respect to an author’s native language, where
this is not the language that that text is written in
(which is often the case in phishing); we refer to
this as native language identification. Initial work
by Koppel et al. (2005) was followed by Tsur and
Rappoport (2007), Estival et al. (2007), van Halteren
(2008), and Wong and Dras (2009). By and large,
the problem was tackled using various supervised
machine learning approaches, with mostly lexical
features over characters, words, and parts of speech,
as well as some document structure.

Syntactic features, in contrast, in particular those
that capture grammatical errors, which might po-
tentially be useful for this task, have received lit-
tle attention. Koppel et al. (2005) did suggest using
syntactic errors in their work but did not investigate
them in any detail. Wong and Dras (2009) noted
the relevance of the concept of contrastive analy-
sis (Lado, 1957), which postulates that native lan-
guage constructions lead to characteristic errors in a
second language. In their experimental work, how-
ever, they used only three manual syntactic construc-
tions drawn from the literature; an ANOVA analysis
showed a detectable effect, but they did not improve
classification accuracy over purely lexical features.

In this paper, we investigate syntactic features for
native language identification that are more general
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than, and that do not require the manual construction
of, the above approach. Taking the trees produced
by statistical parsers, we use tree cross-sections as
features in a machine learning approach to deter-
mine which ones characterise non-native speaker er-
rors. Specifically, we look at two types of parse
tree substructure to use as features: horizontal slices
of the trees—that is, characterising parse trees as
sets of context-free grammar production rules—and
the features schemas used in discriminative parse
reranking. The goal of the present study is therefore
to investigate the influence to which syntactic fea-
tures represented by parse structures would have on
the classification task of identifying an author’s na-
tive language relative to, and in combination with,
lexical features.

The remainder of this paper is structured as fol-
lows. In Section 2, we discuss some related work on
the two key topics of this paper: primarily on com-
parable work in native language identification, and
then on how the notion of contrastive analysis can be
applicable here. We then describe the models exam-
ined in Section 3, followed by experimental setup in
Section 4. Section 5 presents results, and Section 6
discussion of those results.

2 Related Work

2.1 Native Language Identification

The earliest work on native language identification
in this classification paradigm is that of Koppel et
al. (2005), in which they deployed a machine learn-
ing approach to the task, using as features func-
tion words, character n-grams, and part-of-speech
(PoS) bi-grams, as well as some spelling mistakes.
With five different groups of English authors (of na-
tive languages Bulgarian, Czech, French, Russian,
and Spanish) selected from the first version of In-
ternational Corpus of Learner English (ICLE), they
gained a relatively high classification accuracy of
80%. Koppel et al. (2005) also suggested that syn-
tactic features (syntactic errors) might be useful fea-
tures, but only investigated this idea at a shallow
level by treating rare PoS bigrams as ungrammati-
cal structures.

Tsur and Rappoport (2007) replicated the work
of Koppel et al. (2005) to investigate the hypothe-
sis that the choice of words in second language writ-

ing is highly influenced by the frequency of native
language syllables — the phonology of the native
language. Approximating this by character bi-grams
alone, they managed to achieve a classification accu-
racy of 66%.

Native language is also amongst the characteris-
tics investigated in the task of authorship profiling
by Estival et al. (2007), as well as other demographic
and personality characteristics. This study used a va-
riety of lexical and document structure features. For
the native language identification classification task,
their model yielded a reasonably high accuracy of
84%, but this was over a set of only three languages
(Arabic, English and Spanish) and against a most
frequent baseline of 62.9%.

Another related work is that of van Halteren
(2008), who used the Europarl corpus of parliamen-
tary speeches. In Europarl, one original language
is transcribed, and the others translated from it; the
task was to identify the original language. On the
basis of frequency counts of word-based n-grams,
surprisingly high classification accuracies within the
range of 87-97% were achieved across six languages
(English, German, French, Dutch, Spanish, and Ital-
ian). This turns out, however, to be significantly
influenced by the use of particular phrases used by
speakers of different languages in the parliamentary
context (e.g. the way Germans typically address the
chamber).

To our knowledge, Wong and Dras (2009) is the
only work that has investigated the usefulness of
syntactic features for the task of native language
identification. They first replicated the work of
Koppel et al. (2005) with the three types of lex-
ical feature, namely function words, character n-
grams, and PoS bi-grams. They then examined the
literature on contrastive analysis (see Section 2.2),
from the field of second language acquisition, and
selected three syntactic errors commonly observed
in non-native English users—subject-verb disagree-
ment, noun-number disagreement and misuse of
determiners—that had been identified as being in-
fluenced by the native language. An ANOVA anal-
ysis showed that the native language identification
constructions were identifiable; however, the over-
all classification was not improved over the lexi-
cal features by using just the three manually de-
tected syntactic errors. The best overall accuracy re-
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ported was 73.71%; this was on the second version
of ICLE, across seven languages (those of Koppel
et al. (2005), plus the two Asian languages Chinese
and Japanese).

As a possible approach that would improve the
classification accuracy over just the three manually
detected syntactic errors, Wong and Dras (2009)
suggested deploying (but did not carry out) an idea
put forward by Gamon (2004) (citing Baayen et al.
(1996)) for the related task of identifying the author
of a text: to use CFG production rules to characterise
syntactic structures used by authors.1 We note that
similar ideas have been used in the task of sentence
grammaticality judgement, which utilise parser out-
puts (both trees and by-products) as classification
features (Mutton et al., 2007; Sun et al., 2007; Fos-
ter et al., 2008; Wagner et al., 2009; Tetreault et al.,
2010; Wong and Dras, 2010). We combine this idea
with one we introduce in this paper, of using dis-
criminative reranking features as a broader charac-
terisation of the parse tree.

2.2 Contrastive analysis

Contrastive analysis (Lado, 1957) was an early at-
tempt in the field of second language acquisition
to explain the kinds and source of errors that non-
native speakers make. It arose out of behaviourist
psychology, and saw language learning as an issue
of habit formation that could be inhibited by previ-
ous habits inculcated in learning the native language.
The theory was also tied to structural linguistics:
it compared the syntactic structures of the native
and second languages to find differences that might
cause learning difficulties. The Lado work postu-
lated the Contrastive Analysis Hypothesis (CAH),
claiming that “those elements which are similar to
[the learner’s] native language will be simple for
him, and those elements that are different will be
difficult”; the consequence is that there will be more
errors made in those difficult elements.

While contrastive analysis was influential at first,
it was increasingly noticed that many errors were

1It is not entirely clear how this might work for author-
ship identification: would the Brontë sisters, the corpus Gamon
worked with, have used a significant number of different syntac-
tic constructions from each other? In the context of native lan-
guage identification, however, constrastive analysis postulates
that this is exactly the case for the different classes.

common across all language learners regardless of
native language, which could not be explained un-
der contrastive analysis. Corder (1967) then de-
scribed an alternative, error analysis, where con-
trastive analysis-style errors were seen as only one
type of error, ‘interlanguage’ or ‘interference’ er-
rors; other types were ‘intralingual’ and ‘develop-
mental’ errors, which are not specific to the native
language (Richards, 1971).

In an overview of contrastive analysis after the
emergence of error analysis, Wardhaugh (1970)
noted that there were two interpretations of the
CAH, termed the strong and weak forms. Under the
strong form, all errors were attributed to the native
language, and clearly that was not tenable in light of
error analysis evidence. In the weak form, these dif-
ferences have an influence but are not the sole deter-
minant of language learning difficulty. Wardhaugh
noted claims at the time that the hypothesis was no
longer useful in either the strong or the weak ver-
sion: “Such a claim is perhaps unwarranted, but a
period of quiescence is probable for CA itself”. This
appears to be the case, with the then-dominant error
analysis giving way to newer, more specialised theo-
ries of second language acquisition, such as the com-
petition model of MacWhinney and Bates (1989)
or the processability theory of Pienemann (1998).
Nevertheless, smaller studies specifically of inter-
language errors have continued to be carried out,
generally restricted in their scope to a specific gram-
matical aspect of English in which the native lan-
guage of the learners might have an influence. To
give some examples, Granger and Tyson (1996) ex-
amined the usage of connectors in English by a num-
ber of different native speakers – French, German,
Dutch, and Chinese; Vassileva (1998) investigated
the employment of first person singular and plural
by another different set of native speakers – Ger-
man, French, Russian, and Bulgarian; Slabakova
(2000) explored the acquisition of telicity marking
in English by Spanish and Bulgarian learners; Yang
and Huang (2004) studied the impact of the ab-
sence of grammatical tense in Chinese on the acqui-
sition of English tense-aspect system (i.e. telicity
marking); Franck et al. (2002) and Vigliocco et al.
(1996) specifically examined the usage of subject-
verb agreement in English by French and Spanish,
respectively. There are also a few teaching resources
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for English language teachers that collate such phe-
nomena, such as that of Swan and Smith (2001).

NLP techniques and a probabilistic view of na-
tive language identification now let us revisit and
make use of the weak form of the CAH. Interlan-
guage errors, as represented by differences in parse
trees, may be characteristic of the native language
of a learner; we can use the occurrence of these to
come up with a revised likelihood of the native lan-
guage. In this paper, we use machine learning in a
prediction task as our approach to this.

3 Models

This section describes the three basic models inves-
tigated: the lexical model, based on Koppel et al.
(2005), as the baseline; and then the two models that
exploit syntactic information. In Section 5 we look
at the performance of each model independently and
also in combination: to combine, we just concate-
nate feature vectors.

Lexical As Wong and Dras (2009), we replicate
the features of Koppel et al. (2005) to produce our
LEXICAL model. These are of three types: function
words,2 character n-grams, and PoS n-grams. We
follow Wong and Dras (2009) in resolving some un-
clear issues from Koppel et al. (2005). Specifically,
we use the same list of function words, left unspec-
ified in Koppel et al. (2005), that were empirically
determined by Wong and Dras (2009) to be the best
of three candidates; we used character bi-grams, as
the best performing n-grams, although this also had
been left unspecified by Koppel et al. (2005); and
we used the most frequently occurring PoS bi-grams
and tri-grams, obtained by using the Brill tagger pro-
vided in NLTK (Bird et al., 2009) being trained on
the Brown corpus. In total, there are 798 features
of this class with 398 function words, 200 most fre-
quently occurring character bi-grams, and 200 most
frequently occurring PoS bi-grams. Both function
words and PoS bi-grams have feature values of bi-
nary type; while for character bi-grams, the feature
value is the relative frequency. (These types of fea-
ture value are the best performing one for each lexi-

2As with most work in authorship profiling, only function
words are used, so that the result is not tied to a particular do-
main, and no clues are obtained from different topics that dif-
ferent authors might write about.

cal feature.)
We omitted the 250 rare bi-grams used by Koppel

et al. (2005), as an ablative analysis showed that they
contributed nothing to classification accuracy.

Production Rules Under this model (PROD-
RULE), we take as features horizontal slices of parse
trees, in effect treating them as sets of CFG produc-
tion rules. Feature values are binary. We look at
all possible rules as features, but also present results
for subsets of features chosen using feature selec-
tion. For each language in our dataset, we identify
the n rules most characteristic of the language using
Information Gain (IG). For m classes, we use the
formulation of Yang and Pedersen (1997):

IG(r) = −∑m
i=1 Pr (ci) log Pr (ci)

+Pr (r)
∑m

i=1 Pr (ci|r) log Pr (ci|r)
+Pr (r̄)

∑m
i=1 Pr (ci|r̄) log Pr (ci|r̄) (1)

We also investigated simple frequencies, fre-
quency ratios, and pointwise mutual information; as
in much other work, IG performed best, so we do not
present results for the others. Bi-normal separation
(Forman, 2003), often competitive with IG, is only
suitable for binary classification.

It is worth noting that the production rules being
used here are all non-lexicalised ones, except those
lexicalised with function words and punctuation, to
avoid topic-related clues.

Reranking Features As opposed to the horizontal
parse production rules, features used for discrimina-
tive reranking are cross-sections of parse trees that
might capture other aspects of ungrammatical struc-
tures. For these we use the 13 feature schemas de-
scribed in Charniak and Johnson (2005), which were
inspired by earlier work in discriminative estimation
techniques, such as Johnson et al. (1999) and Collins
(2000). Examples of these feature schemas include
tuples covering head-to-head dependencies, preter-
minals together with their closest maximal projec-
tion ancestors, and subtrees rooted in the least com-
mon ancestor.

These feature schemas are not the only possible
ones—they were empirically selected for the spe-
cific purpose of augmenting the Charniak parser.
However, much subsequent work has tended to use
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these same features, albeit sometimes with exten-
sions for specific purposes (e.g. Johnson and Ural
(2010) for the Berkeley parser (Petrov et al., 2006),
Ng et al. (2010) for the C&C parser (Clark and Cur-
ran, 2007)). We also use this standard set, specif-
ically the set of instantiated feature schemas from
the parser from Charniak and Johnson (2005) as
trained on the Wall Street Journal (WSJ), which
gives 1,333,837 potential features.

4 Experimental Setup

4.1 Data

We use the International Corpus of Learner English
(ICLE) compiled by Granger et al. (2009) for the
precise purpose of studying the English writings of
non-native English learners from diverse countries.
All the contributors to the corpus are claimed to
possess similar English proficiency levels (ranging
from intermediate to advanced learners) and are in
the same age group (all in their twenties at the time
of corpus collection.) This was also the data used by
Koppel et al. (2005) and Tsur and Rappoport (2007),
although where they used the first version of the cor-
pus, we use version 2.

Briefly, the first version contains 11 sub-corpora
of English essays contributed by second-year and
third-year university students of different native lan-
guage backgrounds (mostly European and Slavic
languages) — Bulgarian, Czech, Dutch, Finnish,
French, German, Italian, Polish, Russian, Spanish,
and Swedish; the second version has been extended
to additional 5 other native languages (including
Asian languages) — Chinese, Japanese, Norwegian,
Turkish, and Tswana.

As per Wong and Dras (2009), we examine seven
languages, namely Bulgarian, Czech, French, Rus-
sian, Spanish, Chinese, and Japanese. For each na-
tive language, we randomly select from amongst es-
says with length of 500-1000 words. For the purpose
of the present study, we have 95 essays per native
language. For the same reason as highlighted by
Wong and Dras (2009), we intentionally use fewer
essays as compared to Koppel et al. (2005)3 with a
view to reserving more data for future work. We
divide these into training sets of 70 essays per lan-

3Koppel et al. (2005) took all 258 texts per language from
ICLE Version 1 and evaluated using 10-fold cross valiadation.

guage, with a held-out test set of 25 essays per
language. There are 17,718 training sentences and
6,791 testing sentences.

4.2 Parsers

We use two parsers: the Stanford parser (Klein
and Manning, 2003) and the Charniak and John-
son (henceforth C&J) parser (Charniak and Johnson,
2005). Both are widely used, and produce relatively
accurate parses: the Stanford parser gets a labelled
f-score of 85.61 on the WSJ, and the C&J 91.09.

With the Stanford parser, there are 26,284 unique
parse production rules extractable from our ICLE
training set of 490 texts, while the C&J parser pro-
duces 27,705. For reranking, we use only the C&J
parser—since the parser stores these features during
parsing, we can use them directly as classification
features. On the ICLE training data, there are 6,230
features with frequency >10, and 19,659 with fre-
quency >5.

4.3 Classifiers

For our experiments we used a maximum entropy
(MaxEnt) machine learner, MegaM4 (fifth release)
by Hal Daumé III. (We also used an SVM for com-
parison, but the results were uniformly worse, and
degraded more quickly as number of features in-
creased, so we only report the MaxEnt results here).
The classifier is tuned to obtain an optimal classifi-
cation model.

4.4 Evaluation Methodology

Given our relatively small amount of data, we use k-
fold cross-validation, choosing k = 5. While testing
for statistical significance of classification results is
often not carried out in NLP, we do so here because
the quantity of data could raise questions about the
certainty of any effect. In an encyclopedic survey of
cross-validation in machine learning contexts, Re-
faeilzadeh et al. (2009) note that there is as yet no
universal standard for testing of statistical signifi-
cance; and that while more sophisticated techniques
have been proposed, none is more widely accepted
than a paired t-test over folds. We therefore use this
paired t-test over folds, as formulated of Alpaydin

4MegaM is available on http://www.cs.utah.edu/
∼hal/megam/.
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(2004). Under this cross-validation, 5 separate train-
ing feature sets are constructed, excluding the test
fold; 3 folds are used for training, 1 fold for tuning
and 1 fold for testing.

We also use a held-out test set for comparison,
as it is well-known that cross-validation can over-
estimate prediction error (Hastie et al., 2009). We
do not carry out significance testing here—with this
held-out test set size (n = 125), two models would
have to differ by a great deal to be significant. We
only use it as a check on the effect of applying to
completely new data.

5 Results

Table 1 presents the results for the three models in-
dividually under cross-validation. The first point
to note is that PROD-RULE, under both parsers,
is a substantial improvement over LEXICAL when
(non-lexicalised) parse rules together with rules lex-
icalised with function words are used (rows marked
with * in Table 1), with the largest difference as
much as 77.75% for PROD-RULE[both]* (n = all)
versus 64.29% for LEXICAL; these differences with
respect to LEXICAL are statistically significant. (To
give an idea, the paired t-test standard error for this
largest difference is 2.52%.) In terms of error reduc-
tion, this is over 30%.

There appears to be no difference according to the
parser used, regardless of their differing accuracy on
the WSJ. Using the selection metric for PROD-RULE

without rules lexicalised with function words pro-
duces results all around those for LEXICAL; using
fewer reranking features is worse as the quality of
RERANKING declines as feature cut-offs are raised.

Another, somewhat surprising point is that the
RERANKING results are also generally around those
of LEXICAL even though like PROD-RULE they are
also using cross-sections of the parse tree. We con-
sider there might be two possible reasons for this.
The first is that the feature schemas used were orig-
inally chosen for the specific purpose of augment-
ing the performance of the Charniak parser; perhaps
others might be more appropriate here. The second
is that we selected only those instantiated feature
schemas that occurred in the WSJ, and then applied
them to ICLE. As the WSJ is filled with predomi-
nantly grammatical text, perhaps those that were not

Features MaxEnt
LEXICAL (n = 798) 64.29

PROD-RULE[Stanford] (n = 1000) 65.72
PROD-RULE[Stanford]* (n = 1000) 74.08

PROD-RULE[Stanford]* (n = all) 74.49
PROD-RULE[C&J] (n = 1000) 62.25

PROD-RULE[C&J]* (n = 1000) 71.84
PROD-RULE[C&J]* (n = all) 71.63
PROD-RULE[both] (n = 2000) 67.96

PROD-RULE[both]* (n = 2000) 74.69
PROD-RULE[both]* (n = all) 77.75

RERANKING (all features) 67.96
RERANKING (>5 counts) 66.33

RERANKING (>10 counts) 64.90

Table 1: Classification results based on 5-fold cross vali-
dation with parse rules as syntactic features (accuracy %)

Features MaxEnt
Lexical features (n = 798) 75.43

PROD-RULE[Stanford] (n = 1000) 74.29
PROD-RULE[Stanford]* (n = 1000) 79.43

PROD-RULE[Stanford]* (n = all) 78.86
PROD-RULE[C&J] (n = 1000) 73.71

PROD-RULE[C&J] (n = 1000)* 79.43
PROD-RULE[C&J] (n = all)* 80.00
PROD-RULE[both] (n = 2000) 77.71

PROD-RULE[both] (n = 2000)* 78.85
PROD-RULE[both] (n = all)* 80.00

RERANKING (all features) 77.14
RERANKING (>5 counts) 76.57

RERANKING (>10 counts) 75.43

Table 2: Classification results based on hold-out valida-
tion with parse rules as syntactic features (accuracy %)

seen on the WSJ are precisely those that might indi-
cate ungrammaticality. In contrast, the production
rules of PROD-RULE were selected only from the
ICLE training data.

Table 2 presents the results for the individual
models on the held-out test set. The results are gen-
erally higher than for cross-validation—this is not
surprising, as the texts are of the same type, but all
the training data is used (rather than the 1−1/k pro-
portion for cross-validation). Overall, the pattern is
still the same, with PROD-RULE best, then RERANK-
ING and LEXICAL broadly similar; as expected, no
differences are significant with this smaller dataset.
The gap has narrowed, but without significance test-

1605



Features MaxEnt
LEXICAL (n = 798) 64.29

LEXICAL + PROD-RULE[both] (n = 2000) 63.06
LEXICAL + PROD-RULE[both]* (n = 2000) 72.45

LEXICAL + PROD-RULE[both]* (n = all) 70.82
LEXICAL + RERANKING (n = all) 68.17

Table 3: Classification results based on 5-fold cross vali-
dation for combined models (accuracy %)

Features MaxEnt
LEXICAL (n = 798) 75.43

LEXICAL + PROD-RULE[both] (n = 2000) 80.57
LEXICAL + PROD-RULE[both]* (n = 2000) 81.14

LEXICAL + PROD-RULE[both]* (n = all) 81.71
LEXICAL + RERANKING (n = all) 76.00

Table 4: Classification results based on hold-out valida-
tion for combined models (accuracy %)

ing it is difficult to say whether this is a genuine
phenomenon. The accuracy rate for LEXICAL here
is in line with Wong and Dras (2009); and given
the smaller dataset and larger set of languages, also
broadly in line with Koppel et al. (2005).

Tables 3 and 4 present results for model combina-
tions. It can be seen that the model combinations do
not produce results better than PROD-RULE alone.
Combining all features (results not presented here)
seems to degrade the overall performance even of
the MegaM: perhaps we need to derive feature vec-
tors more compactly than by feature concatenation.

6 Discussion

As illustrated in the confusion matrices (Table 5
for the PROD-RULE model, and Table 6 for the
LEXICAL model), misclassifications occur largely in
Spanish and Slavic languages, Bulgarian and Rus-
sian in particular. Unsurprisingly, Chinese is al-
most completely identified since it comes from a
entirely different language family, Sino-Tibetan, as
compared to the rest of the languages which are from
the branches of the Indo-European family (with
Japanese as the exception). Japanese and French
also appear to be easily distinguished, which could
probably be attributed to their word order or sen-
tence structure which are, to some extent, quite dif-
ferent from English. Japanese is a ‘subject-object-
verb’ language; and French, although having the
same word order as English, heads of phrases in

BL CZ FR RU SP CN JP
BL [14] 6 2 3 - - -
CZ 1 [20] - 3 1 - -
FR - - [25] - - - -
RU 1 4 3 [17] - - -
SP 2 1 3 1 [18] - -
CN - - - - - [24] 1
JP - - - - 1 2 [22]

Table 5: Confusion matrix based on all non-lexicalised
parse rules from both parsers on the held-out set
(BL:Bulgarian, CZ:Czech, FR:French, RU:Russian,
SP:Spanish, CN:Chinese, JP:Japanese)

BL CZ FR RU SP CN JP
BL [14] 3 2 4 2 - -
CZ 6 [16] - 2 1 - -
FR 1 - [24] - - - -
RU 3 2 3 [16] 1 - -
SP 1 2 3 1 [17] - 1
CN - - - - - [24] 1
JP - - - - 1 3 [21]

Table 6: Confusion matrix based on lexical features on
the held-out set (BL:Bulgarian, CZ:Czech, FR:French,
RU:Russian, SP:Spanish, CN:Chinese, JP:Japanese)

French typically come before modifiers as opposed
to English. Overall, the PROD-RULE model results
in fewer misclassifications compared to the LEXI-
CAL model; there are mostly only incremental im-
provements for each language, with perhaps the ex-
ception of the reduction in confusion in the Slavic
languages.

We looked at some of the data, to see what kind
of syntactic substructure is useful in classifying na-
tive language. Although using feature selection with
only 1000 features did not improve performance,
the information gain ranking does identify particu-
lar constructions as characteristic of one of the lan-
guages, and so are useful for inspection.

A phenomenon that the literature has noted as oc-
curring with Chinese speakers is that of the missing
determiner.5 This corresponds to a higher frequency
of NP rules without determiners. These rules may
be valid in other contexts, but are also used to de-
scribe ungrammatical constituents. One example is

5This does happen with native speakers of some other lan-
guages, such as Slavic ones, but not generally (from our knowl-
edge of the literature) with native speakers of others, such as
Romance ones.
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Rules Counts
BL CZ FR RU SP CN JP

NNP → <R> 0 0 3 0 0 67 0
: → - 55 51 23 39 10 9 4
PRN → -LRB- X -RRB- 0 1 7 2 0 42 0
SYM → * 0 1 7 3 1 42 0
: → : 30 39 58 46 47 11 6
X → SYM 0 2 7 4 4 42 6
NP → NNP NNP NNS 0 3 1 0 0 31 0
S → S : S . 36 34 53 39 41 5 9
PP → VBG PP 9 15 16 12 13 54 13
: → ... 16 13 39 11 24 1 3

Table 7: Top 10 rules for the Stanford parser according to Information Gain on the held-out set

(ROOT
(S

(NP
(NP (DT The) (NN development))
(PP (IN of)

(NP (NN country) (NN park))))
(VP (MD can)

(ADVP (RB directly))
(VP (VB elp)

(S
(VP (TO to)

(VP (VB alleviate)
(NP (NNS overcrowdedness)

(CC and)
(NN overpopulation))

(PP (IN in)
(NP (JJ urban)

(NN area))))))))
(. .)))

Figure 1: Parse from Chinese-speaking authors, illustrat-
ing missing determiner

(ROOT
(S

(PP (VBG According)
(PP (TO to)

(NP (NNP <R>))))
(, ,)
(NP

(NP (NN burning))
(PP (IN of)

(NP (JJ plastic)
(NN waste))))

(VP (VBZ generates)
(NP (JJ toxic)

(NNS by-products)))
(. .)))

Figure 2: Parse from Chinese-speaking authors, illustrat-
ing according to

NP → NN NN. In Figure 1 we give the parse (from
the Stanford parser) of the sentence The develop-
ment of country park can directly elp to alleviate
overcrowdedness and overpopulation in urban area.
The phrase country park should either have a deter-
miner or be plural (in which case the appropriate rule
would be NP → NN NNS). There is a similar phe-
nomenon with in urban area, although this is an in-
stance of the rule NP → JJ NN.

Another production rule that occurs typically—
in fact, almost exclusively—in the texts of native
Chinese speakers is PP → VBG PP (by the Stan-
ford parser), which almost always corresponds to the
phrase according to. In Figure 2 we give the parse
of a short sentence (According to <R>, burning of
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(S1
(S

(ADVP (RB Overall))
(, ,)
(NP (NNP cyber))
(VP (VBD cafeis)

(NP (DT a) (JJ good) (NN place))
(PP (IN as)

(NP (JJ recreational)
(NNP centre)))

(PP (IN with)
(NP

(NP
(DT a) (NN bundle))
(PP (IN of)

(NP (JJ up-to-dated)
(NN information))))))

(. .)))

Figure 3: Parse illustrating parser correction

plastic waste generates toxic by-products—<R>is
an in-text citation that was removed in the prepa-
ration of ICLE) that illustrates this particular con-
struction. It appears that speakers of Chinese fre-
quently use this phrase as a translation of gēn jù.
So in this case, what is identified is not the sort of
error that is of interest to contrastive analysis, but
just a particular construction that is characteristic of
a certain native speaker’s language, one that is per-
fectly grammatical but which is used relatively infre-
quently by others and has a slightly unusual analysis
by the parser.

We had expected to see more rules that displayed
obvious ungrammaticality, such as VP → DT IN.
However, both parsers appear to be good at ‘ig-
noring’ errors, and producing relatively grammati-
cal structures (albeit ones with different frequencies
for different native languages). Figure 3 gives the
C&J parse for Overall, cyber cafeis a good place as
recreational centre with a bundle of up-to-dated in-
formation. The correction of up-to-dated rather than
up-to-date is straightforward, but the simple typo-
graphical error of running together cafe and is leads
to more complex problems for the parser. Neverthe-
less, the parser produces a solid grammatical tree,
specifically assigning the category VBD to the com-
pound cafeis. This appears to be because both the
Stanford and C&J parsers have implicit linguistic

constraints such as assumptions about heads; these
are imposed even when the text does not provide ev-
idence for them.

We also present in Table 7 the top 10 rules chosen
under the IG feature selection for the Stanford parser
on the held-out set. A number of these, and those
ranked lower, are concerned with punctuation: these
seem unlikely to be related to native language, but
perhaps rather to how students of a particular lan-
guage background are taught. Others are more typi-
cal of the sorts of example we illustrated above: PP
→ VBG PP, for example, is typically connected to
the according to construction discussed in connec-
tion with Figure 2, and it can be seen that the dom-
inant frequency count there is for native Chinese
speakers (column 6 of the counts).

7 Conclusion

In this paper we have shown that, using cross-
sections of parse trees, we can improve above an al-
ready good baseline in the task of native language
identification. While we do not make any strong
claims for the Contrastive Analysis Hypothesis, the
usefulness of syntax in the context of this problem
does provide some support.

The best features arising from the classification
have been horizontal cross-sections of trees, rather
than the more general discriminative parse reranking
features that might have been expected to perform at
least as well. This relatively poorer performance by
the reranking features may be due to a number of
factors, all of which could be investigated in future
work. One is the use of feature schema instances that
did not appear in the largely grammatical WSJ; an-
other is the extension of feature schemas; and a third
is the use of a parser that does not enforce linguistic
constraints such as the Berkeley parser (Petrov et al.,
2006).

Examining some of the substructures showed
some errors that were expected; other constructions
that were grammatical, but were just characteris-
tic translations of constructions that were common
in the native language; and a large number where
grammatical errors were glossed over by the parser’s
linguistic constraints, suggesting another purpose
for further work with the Berkeley parser. Overall,
the use of these led to an error reduction in over 30%
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in the cross-validation evaluation with significance
testing.
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