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Abstract

An entity in a dialogue may be old, new,
or mediated/inferrable with respect to the
hearer’s beliefs. Knowing the information
status of the entities participating in a dia-
logue can therefore facilitate its interpreta-
tion. We address the under-investigated prob-
lem of automatically determining the informa-
tion status of discourse entities. Specifically,
we extend Nissim’s (2006) machine learning
approach to information-status determination
with lexical and structured features, and ex-
ploit learned knowledge of the information
status of each discourse entity for coreference
resolution. Experimental results on a set of
Switchboard dialogues reveal that (1) incor-
porating our proposed features into Nissim’s
feature set enables our system to achieve state-
of-the-art performance on information-status
classification, and (2) the resulting informa-
tion can be used to improve the performance
of learning-based coreference resolvers.

1 Introduction

Information statusis not a term unfamiliar to re-
searchers working on discourse processing prob-
lems. It describes the extent to which a discourse en-
tity, which is typically a noun phrase (NP), isavail-
able to the hearer given the speaker’s assumptions
about the hearer’s beliefs. According to Nissim et
al. (2004), a discourse entity can benew, old, or me-
diated. Informally, a discourse entity is (1)old to
the hearer if it is known to the hearer and has pre-
viously been referred to in the dialogue, (2)new if
it is unknown to her and has not been previously re-
ferred to; and (3)mediatedif it is newly mentioned
in the dialogue but she can infer its identity from

a previously-mentioned entity. Information status
is a subject that has received a lot of attention in
theoretical linguistics (Halliday, 1976; Prince, 1981;
Hajičová, 1984; Vallduvı́, 1992; Steedman, 2000).

Knowing the information status of discourse enti-
ties can potentially benefit many NLP applications.
One such task is anaphora resolution. While there is
general belief that definite descriptions are mostly
anaphoric, Vieira and Poesio (2000) empirically
show that only 30% of these NPs are anaphoric.
Without being able to determine whether an NP is
anaphoric, an anaphora resolver will attempt to re-
solve every NP, potentially damaging its precision.
Sincenewentities are by definition new to the hearer
and therefore cannot refer to a previously-introduced
NP, knowledge of information status could be used
to improve anaphora resolution.

Despite the potential usefulness of information
status in NLP tasks, there has been little work on
learning the information status of discourse entities.
To investigate the plausibility of learning informa-
tion status, Nissim et al. (2004) annotate a set of
Switchboard dialogues with such information1, and
subsequently present a rule-based approach and a
learning-based approach to acquiring such knowl-
edge from the manual annotations (Nissim, 2006).

Our goals in this paper are two-fold. First, we
describe a learning approach to the under-studied
problem of determining the information status of
discourse entities that extends Nissim’s (2006) fea-
ture set with two novel types of features: lexical
features and structured features based on syntactic
parse trees. Second, we employ the automatically

1These and other linguistic annotations on the Switchboard
dialogues were later released by the LDC as part of the NXT
corpus, which is described in detail in Calhoun et al. (2010).
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acquired knowledge of information status for coref-
erence resolution. Experimental results on Nissim et
al.’s (2004) corpus of Switchboard dialogues show
that (1) adding our linguistic features to Nissim’s
feature set enables our system to outperform her sys-
tem by 8.1% in F-measure, and (2) learned knowl-
edge of information status can be used to improve
coreference resolvers by 1.1–2.6% in F-measure.

The rest of this paper is organized as follows. We
first illustrate with examples the concepts ofnew,
old, andmediatedentities. Then, we describe the
dataset and the feature set that Nissim (2006) used
in her approach. After that, we introduce our lexi-
cal and structured features. Finally, we evaluate the
determination of information status as a standalone
task and in the context of coreference resolution.

2 Old, New, and Mediated Entities

Since the concepts ofold, new, andmediatedentities
are not widely known to researchers working outside
the area of discourse processing, in this section we
will explain them in more detail.

The termsold and new information have meant
a variety of things over the years (Allerton, 1978;
Prince, 1981; Horn, 1986). Since we use Nissim
et al.’s (2004) corpus for training and evaluation,
the definitions of these concepts we present here are
those that Nissim et al. used to annotate their cor-
pus. According to Nissim et al., their definitions are
built upon Prince’s (1981), and the categorization
into old, new, andmediatedentities resemble those
of Strube (1998) and Eckert and Strube (2001).

Old. As mentioned before, an entity isold if it is
both known to the hearer and has been mentioned in
the conversation. More precisely, an entity isold if
(1) it is coreferential with an entity introduced ear-
lier, (2) it is a generic pronoun, or (3) it is a personal
pronoun referring to the dialogue participants. To
exemplify, consider the following sentences.

(1) I was angry that he destroyedmy tent.
(2) You cannot leave until the test is over.

In Example 1,my is an old entity because it is
coreferent withI. In Example 2,Youis anold entity
because it is a generic pronoun.

Mediated. An entity ismediatedif it has not been
previously introduced in the conversation, but can be

inferred from already-mentioned entities or is gener-
ally known to the hearer. More specifically, an entity
is mediatedif (1) it is a generally known entity (e.g.,
the Earth, China, and most proper names), (2) it is
a bound pronoun, or (3) it is an instance ofbridging
(i.e., an entity that is inferrable from a related entity
mentioned earlier in the dialogue). As an example,
consider the following sentences.

(3a) He passed by the door of Mary’s house and
saw thatthe door was painted purple.

(3b) He passed by Mary’s house and saw that
the door was painted purple.

In Example 3a, by the time the hearer processes
the second occurrence ofthe door, she has already
had a mental entity corresponding tothe door(af-
ter processing the first occurrence). As a result, the
second occurrence ofthe door is anold entity. In
Example 3b, on the other hand, the hearer is not as-
sumed to have any mental representation of the door
in question, but she can infer that the door she saw
was part of Mary’s house. Hence, this occurrence of
the door is a mediatedentity. In general, an entity
that is related to an earlier entity via a part-whole
relation or a set-subset relation ismediated.

New. An entity isnewif it has not been introduced
in the dialogue and the hearer cannot infer it from
previously mentioned entities.

In case more than one class is appropriate for
a given entity, Nissim et al. employ additional tie-
breaking rules. Suppose, for instance, that we have
two occurrences ofChina in a dialogue. The second
occurrence can be labeled asold (because it is coref-
erential with an earlier entity) ormediated(because
it is a generally known entity). According to Nissim
et al.’s rules, the entity will be labeled asold.

3 Dataset

We employ Nissim et al.’s (2004) dataset, which
comprises 147 Switchboard dialogues. A total of
68,992 NPs are annotated with information status:
51.2% of them are labeled asold, 34.5% asmediated
(henceforthmed), and 14.3% asnew. Nissim (2006)
randomly split the instances created from these NPs
into a training set (for classifier training), a develop-
ment set (for feature development), and an evalua-
tion set (for testing). Hence, the NPs from the same
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Training Test
old 31358 (51.7%) 3931 (47.4%)
med 20778 (34.2%) 3036 (36.6%)
new 8567 (14.1%) 1322 (16.0%)
total 60703 (100%) 8289 (100%)

Table 1: Information status distribution of NPs.

document may be split across different sets.
Unlike Nissim (2006), we partition the 147 dia-

logues (rather than the instances) into a training set
(117 dialogues) and a test set (30 dialogues). In
other words, we donot randomize the instances, as
we believe that it represents an unrealistic evalua-
tion setting, for the following reasons. First, in prac-
tice, the test dialogues may not be available until test
time. Second, we may want to examine how a sys-
tem performs on a given dialogue. Finally, random-
izing the instances does not allow us to apply learned
knowledge of information status to coreference res-
olution, which needs to be performed for each dia-
logue. The information status distribution of the NPs
in the training and test sets are shown in Table 1.

4 Baseline System

In this section, we describe our baseline system,
which adopts a machine learning approach to deter-
mining the information status of a discourse entity.

Building SVM classifiers for information-status
determination. We employ the support vector
machine (SVM) learner as implemented in the
SVMlight package (Joachims, 1999) to train three
binary classifiers, one for predicting each of the
three possible classes (i.e.,new, old, andmed), us-
ing a linear kernel in combination with theone-
versus-alltraining scheme.2 Each training instance
represents a single NP and consists of the seven
morpho-syntactic features that Nissim (2006) used
in her learning-based approach (see Table 2 for an
overview). Following Nissim, we extract the NPs
directly from the gold-standard annotations, but the
features are computed entirely automatically.

2SVM was chosen because it provides the option to employ
kernels. The reason why we train three binary classifiers rather
than just one multi-class classifier (using SVMmulticlass) is that
SVMmulticlass does not permit the use of a non-linear kernel,
which we will need to incorporate structured features lateron.

Feature Values
full prev mention numeric
mention time {first,second,more}
partial prev mention {yes,no,NA}
determiner {bare,def,dem,indef,poss,NA}
NP type {pronoun,common,proper,other}
NP length numeric
grammatical role {subject,subjpass,pp,other}

Table 2: Nissim’s feature set.

The seven features are all intuitively useful for
determining information status. For instance, if an
NP, NPk, and a discourse entity that appears before
it have the same string (full prev mention), thenNPk
is likely to be anold entity. Mention time is the cat-
egorical version of full prev mention and therefore
serves to detectold entities. Partial prev mention
is useful for detecting mediated entities, especially
those that have a set-subset relation with a preceding
entity. For instance,your dogswould be considered
a partial previous mention ofmy dogsor my three
dogs. The value “NA” stands for “not applicable”,
and is used for pronouns. Determiners and NP type
are likely to be helpful for all three categories. For
instance, indefinite NPs and pronouns are likely to
benewandold, respectively. The “NP length” fea-
ture is motivated by the observation thatold entities
tend to contain less lexical materials thannewenti-
ties. For instance, subsequent references toBarack
Obamamay simply beObama.

Applying the classifiers. To determine the infor-
mation status of an NP in a test dialogue, we create
an instance for it as during training and present it
independently to the three binary SVM classifiers,
each of which returns a real value representing the
signed distance of the instance from the hyperplane.
We assign the instance to the class that is associated
with the most positive classification value.

5 Our Features

We propose to extend Nissim’s (2006) feature set
with two types of features.

5.1 Lexical Features

As discussed, an entity should be labeled asmedif it
has not been introduced in the dialogue but is gener-

1071



ally known to a human. Whether an entity is “gener-
ally known” may be easily determined by a human
but not by a machine, since world knowledge is in-
volved in the decision process. In particular, Nis-
sim’s feature set does not contain any features that
encode the notion of a “generally known” entity.

Hence, it would be desirable to augment Nissim’s
feature set with features that indicate whether an en-
tity is generally known or not. One way to do this is
to (1) create a list of generally known entities, and
then (2) create a binary feature that has the value
True if and only if the entity under consideration ap-
pears in this list. The question, then, is: how can
we obtain the list of generally known entities? We
may manually assemble this list, but this could be
a labor-intensive task. As a result, we propose to
acquirethis kind of world knowledge automatically
from annotated data.

Specifically, we augment Nissim’s feature set
with the set ofunigramsthat appear in the training
data. Given a training/test instance (i.e., discourse
entity), we compute the values of its unigram fea-
tures (henceforthlexical features) as follows. For
each unigram, we check if it appears in the string
representing the discourse entity. If so, its feature
value is 1; otherwise, its value is 0. For instance, if
the entity isthe red hat, then all of its lexical features
exceptthe, red, andhat will have a value of 0.

It should perhaps not be too difficult to see why
these lexical features are useful for the information-
status classifier: these features enable the SVM
learner to determine the extent to which a unigram
correlates with each class. For instance, from the an-
notated data, the learner will learn that any instance
of China cannot be labeled asnew, and the deci-
sion of whether it should be anold entity or amed
entity depends on whether it is coreferential with a
previously-mentioned entity. Hence, the use of lex-
ical features allows the learner to implicitly acquire
some world knowledge.

We believe that lexicalization is an important step
towards building high-performance text-processing
systems. In fact, lexicalized models have demon-
strated their effectiveness in other areas of language
processing, such as syntactic and semantic parsing.
While lexicalized models may be less portable to
new genres and domains than their unlexicalized
counterparts, we believe that this issue can be han-

dled via domain adaptation techniques and should
not be a reason against lexicalization.

5.2 Structured Features

In Nissim’s (2006) feature set, there are a couple of
features that capture NP-internal information, such
as determiner, NP length, and NP type. However,
there is only one feature that captures the syntactic
context of an NP, grammatical role, which is com-
puted based on the parse tree in which the NP re-
sides. This is arguably a very shallow representation
of its syntactic context. We hypothesize that we can
train more accurate information-status classifiers if
we have access to a richer representation of syntac-
tic context. This motivates us to employ syntactic
parse treesdirectly as features.

Before describing how this can be done, recall
that in a traditional learning setting, the feature set
employed by an off-the-shelf learning algorithm typ-
ically consists offlat features (i.e., features whose
values are discrete- or real-valued, as the ones de-
scribed in the previous section). Advanced machine
learning algorithms such as SVMs, on the other
hand, have enabled the use ofstructured features
(i.e., features whose values are structures such as
parse trees), owing to their ability to employker-
nels to efficiently compute the similarity between
two potentially complex structures.

Perhaps the main advantage of employing struc-
tured features issimplicity. To understand this ad-
vantage, consider learning in a setting where we can
only employ flat features. If we want to use informa-
tion from a parse tree as features in this setting, we
will need to design heuristics to extract the desired
parse-based features from parse trees. For certain
tasks, designing a good set of heuristics can be time-
consuming and sometimes difficult. On the other
hand, SVMs enable a parse tree to be employed di-
rectly as a structured feature, obviating the need to
design such heuristics.

Given two parse trees (as features), we com-
pute their similarity using a convolution tree ker-
nel (Collins and Duffy, 2001), which efficiently enu-
merates the number of common substructures in the
two trees via dynamic programming. Note, however,
that while we want to use a parse tree directly as a
feature, we donotwant to use theentireparse tree as
a feature. Specifically, while using the entire parse
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tree enables a richer representation of the syntactic
context than using apartial parse tree, the increased
complexity of the tree also makes it more difficult
for the SVM learner to make generalizations.

To strike a better balance between having a rich
representation of the context and improving the
learner’s ability to generalize, we extract a substruc-
ture from a parse tree and use it as the value of the
structured feature of an instance. Specifically, given
an instance corresponding to discourse entitye, we
extract the substructure from the parse tree contain-
ing e as follows. Letn(e) be the root of the sub-
tree that spans all and only the words ine, and let
Parent(n(e)) be its immediate parent node. We (1)
take the subtree rooted atParent(n(e)), (2) replace
each leaf node in this subtree with a node labeled
X, (3) replace the subtree rooted atn(e) with a leaf
node labeledY, and (4) use the subtree rooted at
Parent(n(e)) as the structured feature for the in-
stance corresponding toe. Intuitively, the first three
steps aim to provide generalizations by simplifying
the tree. For instance, step (1) allows us to focus on
using a small window as the context. Steps (2) and
(3) help generalization by ignoring the words within
e and its context. Note that using two labels,X and
Y, enables the kernel to distinguish the discourse en-
tity under consideration from its context within this
substructure. In addition, we simply use a single
node (Y) to represent the discourse entity, since any
NP-internal information has presumably been cap-
tured by the flat features. We compute these struc-
tured features using hand-annotated parse trees.

While structured features have been employed for
a multitude of tasks in syntax, semantics, and in-
formation extraction such as syntactic parsing (e.g.,
Collins (2002)), semantic parsing (e.g., Moschitti
(2004)), named entity recognition (e.g., Cumby and
Roth (2003), and relation extraction (e.g., Zelenko
et al. (2003)), the same is not true for discourse
processing tasks. We hope that our use of struc-
tured features for information-status classification
can promote their use in discourse processing.

5.3 Combining Kernels

Recall that the flat features are computed using a
linear kernel, while the structured features are com-
puted using a tree kernel. If we want our learner to
make use of more than one of these types of features,

we need to employ acompositekernel to combine
them. Specifically, we define and employ the fol-
lowing composite kernel:

Kc(F1, F2) = K1(F1, F2) +K2(F1, F2),

whereF1 andF2 are the full set of features that rep-
resent the two entities under consideration, andK1

andK2 are the kernels we are combining. To ensure
that both kernels contribute equally to the compos-
ite kernel, we normalize the values they return to the
range [0,1].

6 Evaluation

Next, we evaluate the effectiveness of our features
in improving information-status classification.

6.1 Results and Discussion

Results of four information-status classification sys-
tems are shown in Table 3. Under Original Nis-
sim, we have the results copied verbatim from Nis-
sim’s (2006) paper. Baseline is the aforementioned
baseline system, which is trained using Nissim’s fea-
ture set. Baseline+Lexical is the system trained us-
ing Nissim’s feature set augmented with lexical fea-
tures. Finally, Baseline+Both is the system trained
using Nissim’s feature set augmented with both lex-
ical and structured features. For each system, we
show the recall (R), precision (P), and F-measure (F)
of each of the three classes:old, new, andmed. Be-
fore we describe the results, two points deserve men-
tion. First, as noted earlier, Nissim partitioned the
dialogues into training and test folds in a different
way than us. In particular, Original Nissim and the
remaining three systems were not evaluated on the
same set of test instances. Hence, the Original Nis-
sim results are not directly comparable with those of
the other systems. We show them here just to pro-
vide another point of reference. Second, the results
of the remaining three systems were obtained by ag-
gregating the results of three binary SVM classifiers,
as described earlier.

Comparing Baseline and Baseline+Lexical, we
see that augmenting Nissim’s feature set with lexical
features improves the F-measure scores on all three
classes. In particular, the F-measure and recall for
medrise considerably by 3.0 and 7.8, respectively.
This provides indirect empirical support for our ear-
lier hypothesis that themedclass can benefit from
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Original Nissim Baseline Baseline+Lexical Baseline+Both
R P F R P F R P F R P F

old 91.5 94.1 92.8 91.2 85.8 88.5 88.7 91.7 90.2 93.0 95.2 94.1
med 87.6 68.1 76.6 84.7 62.7 72.1 92.5 63.2 75.1 89.1 70.9 79.0
new 22.3 56.3 32.0 30.2 66.4 41.5 32.1 68.3 43.7 34.4 71.5 46.5

Accuracy 79.5 74.1 76.3 82.2

Table 3: Per-class performance of four information-statusclassifiers.

the shallow world knowledge that these lexical fea-
tures help to “extract” from annotated data.

Comparing Baseline+Lexical and Baseline+Both,
we see that the addition of structured features en-
ables a further boost to performance: F-measure in-
creases by 2.8–3.9 for the three classes. These re-
sults substantiate our hypothesis that employing a
richer representation of syntactic context is benefi-
cial to information-status classification.

Comparing Baseline and Baseline+Both, we see
that F-measure improves considerably by 5–6.9 for
the three classes. Overall, these results provide sug-
gestive evidence that both types of features are ef-
fective at improving an information-status classifier
that employs Nissim’s features.

For further comparison, we show the classifica-
tion accuracies of the four systems in the last row
of Table 3. As we can see, adding lexical features
to the baseline features improves accuracy by 2.2%,
and adding structured features further improves ac-
curacy by 5.9%. Our two types of features, when
used in combination with Nissim’s features, improve
the baseline substantially by an accuracy of 8.1%.

Note that while our results and Original Nissim’s
are not directly comparable, the two systems are
consistent in terms of the relative performance for
the three classes: best forold and worst fornew. The
poor performance fornew is largely a consequence
of its low recall, which can in turn be attributed to its
lower representation in the dataset. Since manynew
instances are misclassified, a natural question is: are
these instances misclassified asold or med? Simi-
lar questions can be raised forold andmed, despite
their substantially higher recall values thannew.

To answer these questions, we need to better
understand the kind of errors made by our ap-
proach. Consequently, we show in Table 4 the con-
fusion matrix generated from the test set for our

C→ old med new
G ↓
old 3656 257 18
med 167 2706 163
new 17 850 455

Table 4: Confusion matrix for the Baseline+Both
classifier. C=Classifier tag; G=Gold tag

best-performing information-status classifier, Base-
line+Both. The rows and the columns correspond
to the gold tags and the classifier tags, respectively.
As we can see, these numbers seem to suggest the
“in-between” nature of mediated entities: when an
old or newentity is misclassified, it is typically mis-
classified asmed(rows 1 and 3); however, when a
medentity is misclassified, it is equally likely to be
misclassified asold andnew(row 2).

These results are perhaps not surprisingly, since
intuitively med entities bear some resemblance to
both old and new entities. For instance, the simi-
larity betweenmedandold stems from the fact that
different instances of the same entity (e.g.,China)
can receive one of these two labels, with the deci-
sion dependent on whether the entity was previously
mentioned in the dialogue. On the other hand,med
andneware similar in that it may sometimes be dif-
ficult even for a human to determine whether certain
entities should be labeled asmedor new, since the
decision depends on whether she believes these en-
tities aregenerally knownor not.

6.2 Relation to Anaphoricity Determination

Anaphoricity determination refers to the task of de-
termining whether an NP is anaphoric or not, where
an NP is considered anaphoric if it is part of a (non-
singleton) coreference chain but is not the head of
the chain (Ng and Cardie, 2002). In other words, an
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Anaphoricity Baseline+Ana Baseline+Lexical+Ana Baseline+Both+Ana
R P F R P F R P F R P F

old 91.4 86.6 88.9 91.3 87.3 89.3 90.8 91.7 91.3 92.8 94.9 93.9
med 84.3 63.1 72.2 84.9 64.1 73.1 92.3 64.7 76.1 88.7 71.1 78.9
new 30.8 66.4 42.1 31.1 66.9 42.5 32.9 68.7 44.5 34.1 71.7 46.2

Accuracy 74.7 75.1 77.6 82.0

Table 5: Impact of knowledge of anaphoricity on the information-status classifiers.

NP is anaphoric if and only if it has an antecedent.

Given this definition, anaphoricity determination
bears resemblance to information-status classifica-
tion. For instance, anold entity is anaphoric, since it
has been introduced earlier in the conversation and
therefore have an antecedent. Similarly, anew or
medentity is non-anaphoric, since the entity has not
been previously introduced in the conversation and
therefore cannot have an antecedent.

There has been a lot of recent work on anaphoric-
ity determination (e.g., Bean and Riloff (1999),
Uryupina (2003), Ng (2004), Denis and Baldridge
(2007), Versley et al. (2008), Ng (2009), Zhou and
Kong (2009)). Given the similarity between this task
and information-status classification, a natural ques-
tion is: will the anaphoricity features previously de-
veloped by coreference researchers be helpful for
information-status classification? To answer this
question, we (1) assemble a feature set composed
of the 26 anaphoricity features previously used by
Rahman and Ng (2009),3 and then (2) repeat the ex-
periments in Table 3, except that we augment the
feature set used in each of these experiments with
the anaphoricity features we assembled in step (1).

Results with the anaphoricity features are shown
in Table 5. Under Anaphoricity, we have the results
obtained using only the 29 anaphoricity features. As
we can see, these results are comparable to those
obtained using the Baseline features. Comparing
each of Baseline+Ana and Baseline+Lexical+Ana
with the corresponding experiments in Table 3, we
see that the addition of anaphoricity features yields
a mild performance improvement, which is consis-
tent over all three classes. However, comparing the
last column of the two tables, we can see that in the

3These 26 features are derived from those employed by Ng
and Cardie’s (2002) anaphoricity determination system. See
Footnote 2 of Rahman and Ng (2009) for details.

presence of the structured features, the anaphoricity
features do not contribute positively to overall per-
formance. Hence, in the coreference experiments in
the next section, we will not employ anaphoricity
features for information-status classification.

7 Application to Coreference Resolution

Since the significance of information-status classi-
fication stems in part from the potential benefits it
brings to higher-level NLP applications, we deter-
mine whether our information-status classification
systems can offer benefits to learning-based coref-
erence resolution. Since the 147 information-status
annotated dialogues are also coreference annotated,
we use them in our coreference evaluation. To our
knowledge, our work represents the first attempt to
report coreference results on this dataset.

7.1 Coreference Models

While the so-called mention-pair coreference model
has dominated coreference research for more than
a decade since its appearance in the mid-1990s, a
number of new coreference models have been pro-
posed in recent years. To investigate whether these
newer, presumably more sophisticated, coreference
models can better exploit the automatically acquired
information-status information, we will evaluate the
usefulness of information-status information when
used in combination with two different coreference
models, the aforementioned mention-pair model and
the recently-developed cluster-ranking model.

7.1.1 Mention-Pair Model

The mention-pair (MP) model, proposed by Aone
and Bennett (1995) and McCarthy and Lehnert
(1995), is a classifier that determines whether two
NPs are co-referring or not. Each instancei(NPj ,
NPk) corresponds to two NPs,NPj and NPk, and is
represented by 39 features. Table 1 of Rahman and
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Ng (2009) contains a detailed description of these
features. Linguistically, they can be divided into
four categories: string-matching, grammatical, se-
mantic, and positional. They can also be categorized
based on whether they are relational or not. Specifi-
cally, relational features capture the relationship be-
tweenNPj andNPk, whereas non-relational features
capture the linguistic property of one of these NPs.

We follow Soon et al.’s (2001) method for cre-
ating training instances. Specifically, we create (1)
a positive instance for each anaphoric NPNPk and
its closest antecedentNPj ; and (2) a negative in-
stance forNPk paired with each of the intervening
NPs, NPj+1, NPj+2, . . ., NPk−1. The classification
associated with a training instance is either positive
or negative, depending on whether the two NPs are
coreferent. To train the MP model, we use the SVM
learner from SVMlight (Joachims, 1999).4

After training, the classifier is used to identify an
antecedent for an NP in a test text. Specifically,
each NP,NPk, is compared in turn to each preced-
ing NP,NPj , from right to left, and selectsNPj as its
antecedent if the pair is classified as coreferent. The
process terminates as soon as an antecedent is found
for NPk or the beginning of the text is reached.

Despite its popularity, the MP model has two
major weaknesses. First, since each candidate an-
tecedent for an NP to be resolved (henceforth anac-
tive NP) is considered independently of the others,
this model only determines how good a candidate
antecedent is relative to the active NP, but not how
good a candidate antecedent is relative to other can-
didates. So, it fails to answer the critical question of
which candidate antecedent is most probable. Sec-
ond, it has limitations in its expressiveness: the in-
formation extracted from the two NPs alone may not
be sufficient for making a coreference decision.

7.1.2 Cluster-Ranking Model

The cluster-ranking (CR) model, proposed by
Rahman and Ng (2009), addresses the two weak-
nesses of the MP model by combining the strengths
of theentity-mentionmodel (e.g., Luo et al. (2004),
Yang et al. (2008)) and themention-rankingmodel
(e.g., Denis and Baldridge (2008)). Specifically,
the CR model ranks the preceding clusters for an

4For this and subsequent uses of the SVM learner in our
experiments, we set all parameters to their default values.

active NP so that the highest-ranked cluster is the
one to which the active NP should be linked. Em-
ploying a ranker addresses the first weakness, as
a ranker allows all candidates to be comparedsi-
multaneously. Considering preceding clusters rather
than antecedents as candidates addresses the second
weakness, ascluster-levelfeatures (i.e., features that
are defined over any subset of NPs in a preceding
cluster) can be employed.

Since the CR model ranks preceding clusters, a
training instancei(cj , NPk) represents a preceding
clustercj and an anaphoric NPNPk. Each instance
consists of features that are computed based solely
on NPk as well as cluster-level features, which de-
scribe the relationship betweencj and NPk. Mo-
tivated in part by Culotta et al. (2007), we create
cluster-level features from therelational features in
our feature set using four predicates:NONE, MOST-
FALSE, MOST-TRUE, andALL . Specifically, for each
relational featureX, we first convertX into an equiv-
alent set of binary-valued features if it is multi-
valued. Then, for each resulting binary-valued fea-
ture Xb, we create four binary-valued cluster-level
features: (1)NONE-Xb is true whenXb is false be-
tweenNPk and each NP incj ; (2) MOST-FALSE-Xb

is true whenXb is true betweenNPk and less than half
(but at least one) of the NPs incj ; (3) MOST-TRUE-
Xb is true whenXb is true betweenNPk and at least
half (but not all) of the NPs incj ; and (4)ALL -Xb is
true whenXb is true betweenNPk and each NP incj .

We train a cluster ranker to jointly learn
anaphoricity determination and coreference reso-
lution using SVMlight’s ranker-learning algorithm.
Specifically, for each NP,NPk, we create a train-
ing instance betweenNPk andeachpreceding clus-
ter cj using the features described above. Since we
are learning a joint model, we need to provide the
ranker with the option to start a new cluster by creat-
ing an additional training instance that contains fea-
tures that solely describesNPk. The rank value of
a training instancei(cj , NPk) created forNPk is the
rank of cj among the competing clusters. IfNPk is
anaphoric, its rank is HIGH if NPk belongs tocj , and
LOW otherwise. IfNPk is non-anaphoric, its rank is
LOW unless it is the additional training instance de-
scribed above, which has rank HIGH.

After training, the cluster ranker processes the
NPs in a test text in a left-to-right manner. For each
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active NP,NPk, we create test instances for it by pair-
ing it with each of its preceding clusters. To allow
for the possibility thatNPk is non-anaphoric, we cre-
ate an additional test instance that contains features
that solely describe the active NP (similar to what
we did in the training step above). All these test in-
stances are then presented to the ranker. If the addi-
tional test instance is assigned the highest rank value
by the ranker, thenNPk is classified as non-anaphoric
and will not be resolved. Otherwise,NPk is linked to
the cluster that has the highest rank.

7.2 Coreference Experiments

7.2.1 Experimental Setup

The training/test split we use in the coreference
experiments is the same as that in the information-
status experiments. Specifically, we use the train-
ing set to train both the information-status classifier
and our coreference models, apply the information-
status classifier to each discourse entity in the test
set, and have the coreference models resolve all
and only those NPs that are labeled asold by the
information-status classifier. Our decision to allow
the coreference models to resolve only theold enti-
ties is motivated by the fact thatmedandnewentities
havenotbeen previously introduced in the conversa-
tion and therefore do not have antecedents. The NPs
used by the coreference models are the same as those
accessible to the information-status classifier.

We employ two scoring programs, B3 (Bagga and
Baldwin, 1998) andφ3-CEAF (Luo, 2005), to score
the output of a coreference model. Given a gold-
standard (i.e., key) partition,KP , and a system-
generated (i.e., response) partition,RP , B3 com-
putes the recall and precision of each NP and av-
erages these values at the end. Specifically, for each
NP, NPj , B3 first computes the number of NPs that
appear in bothKPj andRPj, the clusters containing
NPj in KP andRP , respectively, and then divides
this number by|KPj| and |RPj| to obtain the re-
call and precision ofNPj , respectively. On the other
hand, CEAF finds the best one-to-one alignment
between the key clusters and the response clusters
using the Kuhn-Munkres algorithm (Kuhn, 1955),
where the weight of an edge connecting two clusters
is equal to the number of NPs that appear in both
clusters. Precision and recall are equal to the sum of

the weights of the edges in the alignment divided by
the total number of NPs in the response and the key,
respectively.

7.2.2 Results and Discussion

As our baseline, we employ our coreference mod-
els to generate NP partitions on the test documents
withoutusing any knowledge of information status.
Results, reported in terms of recall (R), precision
(P), and F-measure (F) using B3 andφ3-CEAF, are
shown in row 1 of Table 6.5 As we can see, the
baseline achieves B3 F-measures of 69.2 (MP) and
74.5 (CR) and CEAF F-measures of 61.6 (MP) and
68.5 (CR). These results suggest that the CR model
is stronger than the MP model, corroborating previ-
ous empirical findings (Rahman and Ng, 2009).

Next, we examine the impact of learned knowl-
edge of information status on the performance of a
coreference model. Since knowledge of information
status enables a coreference model to focus on re-
solving only theold entities, we hypothesize that the
resulting model will have a higher precision than one
that does not employ such knowledge. An equally
important question is: will the F-measure of the re-
sulting model improve? Since we are employing
knowledge of information status in apipelinecoref-
erence architecture where information-status classi-
fication is performed prior to coreference resolution,
errors made by the (upstream) information-status
classifier may propagate to the (downstream) coref-
erence system. Given this observation, we hypoth-
esize that the answer to the aforementioned ques-
tion depends in part on the accuracy of information-
status classification. In particular, the higher the
accuracy of information-status classification is, the
more likely the F-measure of the downstream coref-
erence model will improve. To test this hypothe-
sis, we conduct experiments where we employ the
knowledge provided by the three information-status
classifiers which, as discussed earlier, perform at
varying levels of accuracy — the first one using only
Nissim’s features, the second one using both lexical
and Nissim’s features, and the last one using Nis-
sim’s features in combination with lexical and parse-
based features — for our coreference models.

5Since gold-standard NPs are used in our experiments,
CEAF precision is always equal to CEAF recall. For brevity,
we only report F-measure scores for CEAF in the table.
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Mention-Pair Model Cluster-Ranking Model
B3 CEAF B3 CEAF

System R P F F R P F F
No knowledge of information status78.6 61.8 69.2 61.6 78.2 71.1 74.5 68.5
Nissim features only 73.4 67.3 70.2 62.1 73.6 77.4 75.4 69.7
Nissim+Lexical features 71.0 69.5 70.2 61.9 73.7 77.3 75.4 69.9
Nissim+Lexical+Parse features 74.1 66.8 70.3 62.3 77.3 74.0 75.6 71.1
Perfect information status 76.7 68.1 72.1 66.4 77.1 79.5 78.3 74.2

Table 6: B3 and CEAF coreference results.

Results of the coreference models employing
knowledge provided by the three information-status
classifiers are shown in rows 2–4 of Table 6. As ex-
pected, B3 precision increases in comparison to the
baseline, regardless of the coreference model and the
scoring program. In addition, employing knowledge
of information status always improves coreference
performance: F-measure scores increase by 1.0–
1.1% (B3) and 0.3–0.7% (CEAF) for the MP model,
and by 0.9–1.1% (B3) and 1.2–2.6% (CEAF) for
the CR model. These results suggest that the three
information-status classifiers have achieved the level
of accuracy needed for the coreference models to
improve. On the other hand, it is somewhat surpris-
ing that the three information-status classifiers have
yielded coreference systems that perform at essen-
tially the same level of performance.

To understand why better information-status clas-
sification results do not necessarily yield better
coreference performance, we take a closer look at
the results of the coreference resolver employing
Nissim’s features (henceforth NISSIM) and the re-
solver employing our Nissim+Lexical+Parse fea-
tures (henceforth FULL -FEATURE). Among theold
entities that were correctly classified using our fea-
tures and incorrectly classified by Nissim’s features,
we found that the precision of the FULL -FEATURE

system suffered (since in many cases the corefer-
ence models identified wrong antecedents for these
old entities) whereas the NISSIM system remained
unaffected (since the entities were misclassified and
would not be resolved by the models). In addition,
although manymedandnewentities were correctly
classified using our features and incorrectly classi-
fied (asold) using Nissim’s features, we found that
in many cases no antecedents were identified for
these misclassified entities and hence the precision

of the NISSIM system was not adversely affected.
Finally, we investigate whether our coreference

system could be improved if it had access to per-
fect knowledge of information status (taken directly
from the gold-standard annotations). This experi-
ment will allow us to determine whether the useful-
ness of knowledge of information status for coref-
erence resolution is limited by the accuracy in com-
puting such knowledge. Results are shown in the
last row of Table 6. As we can see, using per-
fect information-status knowledge yields a corefer-
ence system that improves those that employs auto-
matically acquired information-status knowledge by
1.8–4.1% (MP) and 2.7–3.1% (CR) in F-measure.
This indicates that the accuracy in computing such
knowledge does play a role in determining its use-
fulness for coreference resolution.

8 Conclusions

We examined the problem of automatically deter-
mining the information status of discourse entities in
spoken dialogues. In particular, we augmented Nis-
sim’s feature set with two types of features: lexical
features, which capture in a shallow manner world
knowledge implicitly encoded in the annotated data;
and syntactic parse trees, which provide a richer rep-
resentation of the syntactic context in which a dis-
course entity appears than grammatical roles. Re-
sults on 147 Switchboard dialogues demonstrated
the effectiveness of these features: we obtained a
significant improvement of 8.1% in accuracy over
a information-status classifier trained on Nissim’s
feature set. In addition, we evaluated information-
status classification in the context of coreference
resolution, and showed that automatically acquired
knowledge of information status can be profitably
used to improve coreference systems.
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