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Abstract

We propose an architecture for expressing
various linguistically-motivated features that
help identify multi-word expressions in nat-
ural language texts. The architecture com-
bines various linguistically-motivated clas-
sification features in a Bayesian Network.
We introduce novel ways for computing
many of these features, and manually de-
fine linguistically-motivated interrelationships
among them, which the Bayesian network
models. Our methodology is almost en-
tirely unsupervised and completely language-
independent; it relies on few language re-
sources and is thus suitable for a large num-
ber of languages. Furthermore, unlike much
recent work, our approach can identify ex-
pressions of various types and syntactic con-
structions. We demonstrate a significant im-
provement in identification accuracy, com-
pared with less sophisticated baselines.

1 Introduction

Multi-word Expressions (MWEs) are lexical items
that consist of multiple orthographic words (e.g.,
ad hoc, by and large, New York, kick the bucket).
MWEs are numerous and constitute a significant
portion of the lexicon of any natural language (Jack-
endoff, 1997; Erman and Warren, 2000; Sag et
al., 2002). They are a heterogeneous class of con-
structions with diverse sets of characteristics, dis-
tinguished by their idiosyncratic behavior. Mor-
phologically, some MWEs allow some of their con-
stituents to freely inflect while restricting (or pre-
venting) the inflection of other constituents. In
some cases MWEs may allow constituents to un-
dergo non-standard morphological inflections that

they would not undergo in isolation. Syntactically,
some MWEs behave like words while other are
phrases; some occur in one rigid pattern (and a fixed
order), while others permit various syntactic trans-
formations. Semantically, the compositionality of
MWEs is gradual, ranging from fully compositional
to idiomatic (Bannard et al., 2003).

Because of their prevalence and irregularity,
MWEs must be stored in lexicons of natural lan-
guage processing applications. Correct handling of
MWEs has been proven beneficial for various ap-
plications, including information retrieval, building
ontologies, text alignment, and machine translation.

We propose a novel architecture for identifying
MWEs of various types and syntactic categories in
monolingual corpora. Unlike much existing work,
which focuses on a particular syntactic construction,
our approach addresses MWEs of all types by focus-
ing on the general idiosyncratic properties of MWEs
rather than on specific properties of each sub-class
thereof. While we only evaluate our methodol-
ogy on bi-grams, it can in principle be extended
to longer MWEs. The architecture uses Bayesian
Networks (BN) to express multiple interdependent
linguistically-motivated features.

First, we automatically generate a small (training)
set of MWE and non-MWE bi-grams (positive and
negative instances, respectively). We then define a
set of linguistically-motivated features that embody
observed characteristics of MWEs. We augment
these by features that reflect collocation measures.
Finally, we define dependencies among these fea-
tures, expressed in the structure of a Bayesian Net-
work model, which we then use for classification.
This is a directed graph, whose nodes express the
features used for classification, and whose edges de-
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fine causal relationships among these features. In
this architecture, learning does not result in a black
box, expressed solely as feature weights. Rather, the
structure of the BN allows us to learn the impact of
different MWE features on the classification. The
result is a new unsupervised method for identifying
MWEs of various types in text corpora. It com-
bines statistics with a large array of linguistically-
motivated features, organized in an architecture that
reflects interdependencies among the features.

The contribution of this work is manifold. First,
we show how to generate training material (al-
most) automatically, so the method is almost com-
pletely unsupervised. The methodology we advo-
cate is thus language-independent, requiring rela-
tively few language resources, and is therefore op-
timal for medium-density languages (Varga et al.,
2005). Second, we propose several linguistically-
motivated features that can be computed from data
and that are demonstrably productive for improv-
ing the accuracy of MWE identification. These fea-
ture focus on the expression of linguistic idiosyn-
crasies of various types, a phenomenon typical of
MWEs. We propose novel computational model-
ing of many of these features; in particular, we ac-
count for the morphological idiosyncrasy of MWEs
using a histogram of the number of inflected forms,
in a technique that draws from image processing.
Third, we advocate the use of Bayesian Networks
as a mechanism for expressing manually-crafted de-
pendencies among features; the use of BN signifi-
cantly improves the classification accuracy. Finally,
we demonstrate the utility of our methodology by
applying it to Hebrew.1 Our evaluation shows that
the use of linguistically-motivated features results in
reduction of 23% of the errors compared with a col-
location baseline; organizing the knowledge in a BN
reduces the error rate by additional 8.7%.

After discussing related work in the next section,
we describe in Section 3 the methodology we pro-
pose, including a detailed discussion of the features
and their implementation. Section 4 provides a thor-
ough evaluation of the results. We conclude with
suggestions for future research.

1To facilitate readability we use a transliteration of Hebrew
using Roman characters; the letters used, in Hebrew lexico-
graphic order, are abgdhwzxTiklmns‘pcqršt.

2 Related Work

Early approaches to MWEs identification concen-
trated on their collocational behavior (Church and
Hanks, 1990). Pecina (2008) compares 55 differ-
ent association measures in ranking German Adj-
N and PP-Verb collocation candidates. He shows
that combining different collocation measures using
standard statistical classification methods improves
over using a single collocation measure. Other re-
sults (Chang et al., 2002; Villavicencio et al., 2007)
suggest that some collocation measures (especially
PMI and Log-likelihood) are superior to others for
identifying MWEs.

Soon, however, it became clear that mere co-
occurrence measurements are not enough to identify
MWEs, and their linguistic properties should be ex-
ploited as well (Piao et al., 2005). Hybrid methods
that combine word statistics with linguistic informa-
tion exploit morphological, syntactic and semantic
idiosyncrasies to extract idiomatic MWEs.

Ramisch et al. (2008) evaluate a number of asso-
ciation measures on the task of identifying English
Verb-Particle Constructions and German Adjective-
Noun pairs. They show that adding linguistic infor-
mation (mostly POS and POS-sequence patterns) to
the association measure yields a significant improve-
ment in performance over using pure frequency.

Several works address the lexical fixedness or syn-
tactic fixedness of (certain types of) MWEs in order
to extract them from texts. An expression is con-
sidered lexically fixed if replacing any of its con-
stituents by a semantically (and syntactically) sim-
ilar word generally results in an invalid or literal
expression. Syntactically fixed expressions prohibit
(or restrict) syntactic variation. For example, Van de
Cruys and Villada Moirón (2007) use lexical fixed-
ness to extract Dutch Verb-Noun idiomatic com-
binations (VNICs). Bannard (2007) uses syntac-
tic fixedness to identify English VNICs. Another
work uses both the syntactic and the lexical fixed-
ness of VNICs in order to distinguish them from
non-idiomatic ones, and eventually to extract them
from corpora (Fazly and Stevenson, 2006).

While these approaches are in line with ours, they
require lexical semantic resources (e.g., a database
that determines semantic similarity among words)
and syntactic resources (parsers) that are unavail-
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able for Hebrew (and many other languages). Our
approach only requires morphological processing
and a bilingual dictionary, which are more readily-
available for several languages. Note also that
these approaches target a specific syntactic construc-
tion, whereas ours is adequate for various types of
MWEs.

Several properties of Hebrew MWEs are de-
scribed by Al-Haj (2010); Al-Haj and Wintner
(2010) use them in order to construct an SVM-based
classifier that can distinguish between MWE and
non-MWE noun-noun constructions in Hebrew. The
features of the SVM reflect several morphological
and morpho-syntactic properties of such construc-
tions. The resulting classifier performs much bet-
ter than a naı̈ve baseline, reducing over one third of
the errors. We rely on some of these insights, as
we implement more of the linguistic properties of
MWEs. Again, our methodology is not limited to a
particular construction: indeed, we demonstrate that
our general methodology, trained on automatically-
generated, general training data, performs almost as
well as the noun-noun-specific approach of Al-Haj
and Wintner (2010) on the very same dataset.

Recently, Tsvetkov and Wintner (2010b) intro-
duced a general methodology for extracting MWEs
from bilingual corpora, and applied it to Hebrew.
The results were a highly accurate set of Hebrew
MWEs, of various types, along with their English
translations. A major limitation of this work is that
it can only be used to identify MWEs in the bilingual
corpus, and is thus limited in its scope. We use this
methodology to extract both positive and negative
instances for our training set in the current work; but
we extrapolate the results much further by extend-
ing the method to monolingual corpora, which are
typically much larger than bilingual ones.

Bayesian Networks have only scarcely been used
for classification in natural language applications.
For example, BN were used for POS tagging of un-
known words (Peshkin et al., 2003); dependency
parsing (Savova and Peshkin, 2005); and docu-
ment classification (Lam et al., 1997; Calado et al.,
2003; Denoyer and Gallinari, 2004). Very recently,
Ramisch et al. (2010) have used BN for Portuguese
MWE identification. The features used for classi-
fication were of two kinds: (1) various collocation
measures; (2) bi-grams aligned together by an auto-

matic word aligner applied to a parallel (Portuguese-
English) corpus. A BN was used to combine the pre-
dictions of the various features on the test set, but
the structure of the network is not described. The
combined classifier resulted in a much higher accu-
racy than any of the two methods alone. However,
the BN does not play any special role in this work,
and its structure does not reflect any insights or intu-
itions on the structure of the problem domain or on
interdependencies among features.

We, too, acknowledge the importance of combin-
ing different types of knowledge in the hard task of
MWE identification. In particular, we also believe
that collocation measures are highly important for
this task, but cannot completely solve the problem:
linguistically-motivated features are mandatory in
order to improve the accuracy of the classifier. In
this work we focus on various properties of different
types of MWEs, and define general features that may
accurately apply to some, but not necessarily all of
them. An architecture of Bayesian Networks is op-
timal for this task: it enables us to define weighted
dependencies among features, such that certain fea-
tures are more significant for identifying some class
of MWEs, whereas others are more prominent in
identifying other classes. As we show below, this ar-
chitecture results in significant improvements over a
more naı̈ve combination of features.

3 Methodology

3.1 Motivation

The task we address is identification of MWEs, of
various types and syntactic constructions, in mono-
lingual corpora.2 Several properties of MWEs make
this task challenging: MWEs exhibit idiosyncrasies
on a variety of levels, orthographic, morphological,
syntactic and of course semantic (Al-Haj, 2010).
They are also extremely diverse: for example, on
the semantic dimension alone, MWEs cover an en-
tire spectrum, ranging from frozen, fixed idioms to
free combinations of words (Bannard et al., 2003).

Such a complex task calls for a combination of
multiple approaches, and much research indeed sug-
gests “hybrid” approaches to MWE identification

2For simplicity, we focus on bi-grams of tokens (MWEs of
length 2) in this work; the methodology, however, is easily ex-
tensible to longer n-grams.
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(Duan et al., 2009; Weller and Fritzinger, 2010;
Ramisch et al., 2010; Hazelbeck and Saito, 2010).
We believe that Bayesian Networks provide an op-
timal architecture for expressing various pieces of
knowledge aimed at MWE identification, for the fol-
lowing reasons (Heckerman, 1995):

• In contrast to many other classification meth-
ods, BN can learn (and express) causal relation-
ships between features. This facilitates better
understanding of the problem domain.

• BN can encode not only statistical data, but also
prior domain knowledge and human intuitions,
in the form of interdependencies among fea-
tures. We do indeed use this possibility here.

3.2 Linguistically-motivated Features
Based on the observations of Al-Haj (2010), we
define several linguistically-motivated features that
are aimed at capturing some of the unique proper-
ties of MWEs. While many idiosyncratic properties
of MWEs have been previously studied, we intro-
duce novel ways to express those properties as com-
putable features informing a classifier. Note that
many of the features we describe below are com-
pletely language-independent; others are applicable
to a wide range of languages, while few are specific
to morphologically-rich languages, and can be ex-
hibited in different ways in different languages. The
methodology we advocate, however, is completely
universal.

A common theme for all these features is idiosyn-
cracy: they are all aimed at locating some linguis-
tic property on which MWEs may differ from non-
MWEs. Below we detail these properties, along
with the features that we define to reflect them. In
all cases, the feature is applied to a candidate MWE,
defined here as a bi-gram of tokens (all possible bi-
grams are potential candidates). To compute the fea-
tures, we use a 46M-token monolingual Hebrew cor-
pus (Itai and Wintner, 2008), which we pre-process
as in Tsvetkov and Wintner (2010b). All statistics
are computed from this large corpus. Likewise, we
compute these features on a small training corpus,
which we generate automatically (see Section 3.4).

Orthographic variation Sometimes, MWEs are
written with dashes instead of inter-token spaces.

We define a binary feature, DASH, whose value is 1
iff the dash character appears in some surface form
of the candidate MWE. For example, xd-cddi (one
sided ) “unilateral”.

Hapax legomena MWEs sometimes include con-
stituents that have no usage outside the particular
expression, and are hence not included in lexicons.
We define a feature, HAPAX, whose value is a binary
vector with 1 in the i-th place iff the i-th word of the
candidate is not in the lexicon, and does not occur
in other bi-grams at the same location. For exam-
ple, hwqws pwqws “hocus-pocus”. In order to filter
out potential errors, candidates must occur at least 5
times in the corpus in order for this feature to fire.

Frozen form MWE constituents sometimes occur
in one fixed, frozen form. We define a feature,
FROZEN, whose value is a binary vector with 1 in the
i-th place iff the i-th word of the candidate never in-
flects in the context of this expression. Example: bit
xwlim (house-of sick-people) “hospital”; the noun
xwlim must be in the plural in this MWE.

Partial morphological inflection In some cases,
MWE constituents undergo a (strict but non-empty)
subset of the full inflections that they would undergo
in isolation. We capture this property with a tech-
nique that has been proven useful in the area of im-
age processing (Jain, 1989, Section 7.3). We com-
pute a histogram of the distribution in the corpus of
all the possible surface forms of each constituent of
an MWE candidate. Such histograms can compactly
represent distributional information on morphologi-
cal behavior, in the same way that histograms of the
distribution of gray levels in a picture are used to
represent the picture itself.

Our assumption is that the inflection histograms
of non-MWEs are more uniform than the histograms
of MWEs, in which some inflections may be more
frequent and others may be altogether missing. Of
course, restrictions on the histogram may stem from
the part of speech of the expression; such constraints
are captured by dependencies in the BN structure.

Since each MWE is idiosyncratic in its own
way, we do not expect the histograms of MWEs to
have some specific pattern, except non-uniformity.
We therefore sort the columns of each histogram,
thereby losing information pertaining to the specific
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inflections, and retaining only information about the
idiosyncrasy of the histogram. Offline, we compute
the average histogram for positive and negative ex-
amples: The average histogram of MWEs is shorter
and less uniform than the average histogram of non-
MWEs. We define as feature, HIST, the L1 (Manhat-
tan) distance between the histogram of the candidate
and the closest average histogram.

For example, the MWE bit mepv (house-of law)
“court” occurs in the following inflected forms:
bit hmepv “the court” (75%); bit mepv “a court”
(15%); bti hmepv “the courts” (8%); and bti mepv
“courts” (2%). The histogram for this candidate
is thus (75, 15, 8, 2). In contrast, the non-MWE
txwm mepv (domain-of law) “domain of the law”,
which is syntactically identical, occurs in nine dif-
ferent inflected forms, and its sorted histogram is
(59, 14, 7, 7, 5, 2, 2, 2, 2).

Context We hypothesize that MWEs tend to con-
strain their (semantic) context more strongly than
non-MWEs. We expect words that occur imme-
diately after MWEs to vary less freely than words
that immediately follow other expressions. One mo-
tivation for this hypothesis is the observation that
MWEs tend to be less polysemous than free com-
binations of words, thereby limiting the possible se-
mantic context in which they can occur.

We define a feature, CONTEXT, as follows. We
first compute a histogram of the frequencies of
words following each candidate MWE. We trim the
tail of the histogram by removing words whose fre-
quency is lower than 0.1% (the expectation is that
non-MWEs would have a much longer tail). Off-
line, we compute the same histograms for positive
and negative examples and average them as above.
The value of CONTEXT is 1 iff the histogram of the
candidate is closer (in terms of L1 distance) to the
positive average.

For example, the histogram of bit mepv “court”
includes 15 values, dominated by bit mepv yliwn
“supreme court” (20%) and bit mepv mxwzi “dis-
trict court” (13%), followed by contexts whose fre-
quency ranges between 5% and 0.6%. In con-
trast, the non-MWE txwm mepv “domain-of law”
has a much shorter histogram, namely (12, 11, 6):
over 70% of the words following this expression oc-
cur less than 0.1% and are hence in the trimmed tail.

Syntactic diversity MWEs can belong to various
part of speech categories. We define as feature, POS,
the category of the candidate, with values obtained
by selecting frequent tuples of POS tags. For exam-
ple, Noun-Noun, PropN-PropN, Noun-Adj, etc.

Translational equivalents Since MWEs are of-
ten idiomatic, they tend to be translated in a non-
literal way, sometimes to a single word. We use
a dictionary to generate word-by-word translations
of candidate MWEs to English, and check the num-
ber of occurrences of the English literal translation
in a large English corpus.3 Due to differences in
word order between the two languages, we create
two variants for each translation, corresponding to
both possible orders. We expect non-MWEs to have
some literal translational equivalent (possibly with
frequency that correlates with their frequency in He-
brew), whereas for MWEs we expect no (or few) lit-
eral translations. We define a binary feature, TRANS,
whose value is 1 iff some literal translation of the
candidate occurs more than 5 times in the corpus.

For example, the MWE htxtn ym (marry with )
“marry” is literally translated as with marry, marry
with, together marry and marry together, none of
which occurs in the corpus.

Collocation As a baseline, statistical association
measure, we use a heuristic variant of pointwise mu-
tual information (PMI), promoting also collocations
whose constituents are frequent (Tsvetkov and Wint-
ner, 2010b). We define a binary feature, PMI, with
values (low and high) reflecting the threshold that
maximizes the accuracy of MWE classification in
Tsvetkov and Wintner (2010b).

3.3 Feature Interdependencies Expressed as a
Bayesian Network

A Bayesian Network (Jensen and Nielsen, 2007) is
organized as a graph whose nodes are random vari-
ables and whose edges represent interdependencies
among those variables. We use a particular type
of BN, known as causal networks, in which di-
rected edges lead to a variable from each of its direct
causes. This facilitates the expression of domain
knowledge (and intuitions, beliefs, etc.) as struc-
tural properties of the network. We use the BN as

3We use a 120M-token newspaper corpus.
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a classification device: training amounts to comput-
ing the joint probability distribution of the training
set, whereas classification maximizes the posterior
probability of the particular node (variable) being
queried.

For MWE identification we define a BN whose
nodes correspond to the features described in Sec-
tion 3.2. In addition, we define a node MWE for
the complete classification task. Over these nodes
we impose the structure depicted graphically in Fig-
ure 1. This structure, which we motivate below, is
manually defined: it reflects our understanding of
the problem domain and is a result of thorough ex-
perimentations. That said, it can of course be mod-
ified in various ways, and in particular, new nodes
can be easily added to reflect additional features.

MWE

HAPAXDASH CNTXT

POS

HIST

PMI

TRANS

FRZN

Figure 1: Bayesian Network for MWE identification

All nodes depend on MWE, as all are affected
by whether or not the candidate is a MWE. The
POS of an expression influences its morphological
inflection, hence the edges from POS to HIST and
to FROZEN. For example, Hebrew noun-noun con-
structions allow their constituents to undergo the full
inflectional paradigm, but when such a construction
is a MWE, inflection is severely constrained (Al-Haj
and Wintner, 2010); similarly, when one of the con-
stituents of a MWE is a conjunction, the entire ex-
pression is very likely to be frozen.

Hapaxes clearly affect all statistical metrics,
hence the edge from HAPAX to PMI, and also the
existence of literal translation, since if a word is not
in the lexicon, it does not have a translation, hence
the edge from HAPAX to TRANS. Also, we assume
that there is a correlation between the frequency (and
PMI) of a candidate and whether or not a literal
translation of the expression exists, hence the edge
from PMI to TRANS. The edges from PMI and HIST

to CONTEXT are justified by the correlation between
the frequency and variability of an expression and
the variability of the context in which it occurs.

Once the structure of the network is established,
the conditional probabilities of each dependency
have to be determined. We compute the conditional
probability tables from our training data (see below)
using Weka (Hall et al., 2009), and obtain values
for P (X | X1, . . . , Xk) for each variable X and all
variables Xi, 1 ≤ i ≤ k, such that the graph in-
cludes an edge from Xi to X (parents of X). We
then perform inference on the network in order to
compute P (Xmwe | X1, . . . , Xk), where Xmwe
corresponds to the node MWE, and X1, . . . , Xk are
the variables corresponding to all other nodes in the
network. Using Bayes Rule,

P (Xmwe | X1, . . . , Xk) ∝
P (X1, . . . , Xk | Xmwe)× P (Xmwe)

We define the prior, P (Xmwe), to be 0.41:
this is the percentage of MWEs in WordNet 1.7
(Fellbaum, 1998). The conditional probabilities
P (X1, . . . , Xk | Xmwe) are determined by Weka
from the conditional probability tables:

P (X1, . . . , Xk | Xmwe) = Πk
i=1P (Xi | pai)

where k is the number of nodes in the BN (other than
Xmwe) and pai is the set of parents of Xi.

3.4 Automatic Generation of Training Data
For training we need samples of positive and nega-
tive instances of MWEs, each associated with a vec-
tor of the values of all features discussed in Sec-
tion 3.2. We generate this training material auto-
matically. We use a small Hebrew-English bilin-
gual corpus (Tsvetkov and Wintner, 2010a). We
word-align the corpus with Giza++ (Och and Ney,
2003), and then apply the (completely unsupervised)
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algorithm of Tsvetkov and Wintner (2010b), which
extracts MWE candidates from the aligned corpus
and re-ranks them using statistics computed from a
large monolingual corpus. The core idea behind this
method is that MWEs tend to be translated in non-
literal ways; in a parallel corpus, words that are 1:1
aligned typically indicate literal translations and are
hence unlikely constituents of MWEs.

The result is a set of 134,001 Hebrew bi-gram
types (from the bilingual corpus), classified as either
1:1 aligned (implying they are likely not MWEs)
or unaligned (in which case they may or may not
be MWEs). In addition, for each bi-gram we
have a PMI score; naturally, higher PMI scores
are indicative of MWEs. We thus divide the set
into four classes: aligned bi-grams with high PMI
score, aligned bi-grams with low PMI score, mis-
aligned with high PMI and misaligned with low
PMI. Aligned bi-grams, independently of their PMI
score, are more likely non-MWEs; high-PMI mis-
aligned bi-grams are very likely MWEs; and the sta-
tus of low-PMI misaligned bi-grams is unclear, and
must be further investigated. This is summarized in
Table 1.

Misaligned Aligned
High PMI MWE non-MWE
Low PMI unclear non-MWE

Table 1: Classification of bi-grams

We set the threshold that separates low PMI from
high PMI as in Tsvetkov and Wintner (2010b). The
results of this classification is depicted in Table 2.

Misaligned Aligned Total
High PMI 2,203 493 2,696
Low PMI 61,314 69,991 131,305
Total 63,517 70,484 134,001

Table 2: Statistics of the sample space from which the
training set is generated

We assume that all bi-grams in the ‘Aligned’ col-
umn are non-MWEs. Additionally, we assume that
the 2,203 misaligned bi-grams with high PMI scores
are likely MWEs. As for the set of over 61,000 mis-
aligned low-PMI bi-grams, certainly many of them
are non-MWEs, but some may be MWEs, and we

are interested in including them as positive examples
of MWEs with low PMI scores. We therefore manu-
ally annotate a sample of 50 MWEs from this partic-
ular set (we had to manually go over a few thousands
of bi-grams to select this sample). This is the only
supervision provided in this work.

The remaining question is how to determine the
sizes of samples from each of the other three classes.
We use two guidelines: first, we would like the ra-
tio of MWEs to non-MWEs in the training set to be
41 : 59, reflecting the ratio in WordNet (the prior
MWE probability). Second, we would like classifi-
cation by PMI score only to yield a reasonable base-
line; the baseline is defined as the ratio of the sum of
high-PMI MWEs plus low-PMI non-MWEs to the
size of the training set. We choose 67%, the PMI
baseline reported by Al-Haj and Wintner (2010). As
a result of these two considerations, we end up with
training sets whose sizes are depicted in Table 3. We
randomly select from the sample space this many in-
stances for each class. Since much of the procedure
of preparing training data is automatic, the results
may be somewhat noisy. As Bayesian Network are
known to be robust to noisy data, we expect the BN
to compensate for this problem.

MWE non-MWE Total
High PMI 300 232 532
Low PMI 50 272 322
Total 350 504 854

Table 3: Sizes of each training set

4 Results and Evaluation

We use the training set described above for train-
ing and evaluation: we perform 10-fold cross vali-
dation experiments, reporting Precision, Recall, Ac-
curacy and F-measure in three setups: one (SVM)
in which we train an SVM classifier4 with the
features described in Section 3.2; one (BN-auto)
in which we train a BN but let Weka determine
its structure (using the K2 algorithm); and one
(BN) in which we train a Bayesian Network whose
structure reflects manually-crafted linguistically-
motivated knowledge, as depicted in Figure 1. The

4We use Weka SMO with the PolyKernel setup; experimen-
tation with several other kernels yielded worse results.
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results, along with the PMI baseline figures, are
listed in Table 4.

Accuracy Prec. Recall F-score
PMI 66.98% 0.73 0.67 0.67
BN-auto 71.19% 0.71 0.71 0.71
SVM 74.59% 0.75 0.75 0.75
BN 76.82% 0.77 0.77 0.77

Table 4: 10-fold cross validation evaluation results

The linguistically-motivated features defined in
Section 3.2 are clearly helpful in the classification
task: the accuracy of the SVM, informed by these
features, is close to 75%, reducing the error rate
of the PMI baseline by 23%. The contribution
of the Bayesian Network is also highly significant,
reducing almost 7% more errors (8.7% of the er-
rors made by the SVM classifier), or a total of al-
most 30% error-rate reduction with respect to the
baseline. Interestingly, a BN whose structure does
not reflect prior knowledge, but is rather learned au-
tomatically, performs poorly. It is the combination
of linguistically-motivated features with feature in-
terdependencies reflecting domain knowledge that
contribute to the best performance.

As a further demonstration of the utility of our
approach, we evaluate the algorithm on an addi-
tional test set that was used for evaluation in the past
(Tsvetkov and Wintner, 2010b; Al-Haj and Wintner,
2010). This is a small annotated corpus, NN, of He-
brew noun-noun constructions. The corpus consists
of 413 high-frequency bi-grams of the same syntac-
tic construction; of those, 178 are tagged as MWEs
(in this case, noun compounds) and 235 as non-
MWEs. This corpus consolidates the annotation of
three annotators: only instances on which all three
agreed were included. Since it includes both posi-
tive and negative instances, this corpus facilitates a
robust evaluation of precision and recall.

We train a Bayesian Network on the training set
described in Section 3.4 and use it to classify the set
NN. We compare the results of this classifier with a
PMI baseline (using the same threshold as above),
and also with the classification results reported by
Al-Haj and Wintner (2010) (AW); the latter reflects
10-fold cross-validation evaluation using the entire
set, so it should be considered an upper bound for

any classifier that uses a general training corpus.
The results are depicted in Table 5. They clearly

demonstrate that the linguistically-motivated fea-
tures we define provide a significant improvement in
classification accuracy over the baseline PMI mea-
sure. Note that our F-score, 0.77, is very close to
the best result of 0.79 obtained by Al-Haj and Wint-
ner (2010) as the average of 10-fold cross valida-
tion runs, using only high-frequency noun-noun con-
structions for training. We interpret this result as a
further proof of the robustness of our architecture.

Accuracy Precision Recall F-score
PMI 71.43% 0.71 0.71 0.71
BN 77.00% 0.77 0.77 0.77
AW 80.77% 0.77 0.81 0.79

Table 5: Evaluation results: noun-noun constructions

Finally, we have used the trained BN to classify
the entire set of bi-grams present in the (Hebrew
side of the) parallel corpus described in Tsvetkov
and Wintner (2010a). Of the 134,000 candidates,
only 4,000 are classified as MWEs. We sort this
list of potential MWEs by the probability assigned
by the BN to the positive value of the variable
Xmwe. The resulting sorted list is dominated by
high-PMI bi-grams, especially proper names, all of
which are indeed MWEs. The first non-MWE (false
positive) occurs in the 50th place on the list; it is
crpt niqwla “France Nicolas”, which is obviously a
sub-sequence of the larger MWE, neia crpt niqwla
srqwzi “French president Nicolas Sarkozy”. Simi-
lar sub-sequences are also present, but only five are
in the top-100. Such false positives can be reduced
when longer MWEs are extracted, as it can be as-
sumed that a sub-sequence of a longer MWE does
not have to be identified. Other false positives in the
top-100 include some highly frequent expressions,
but over 85 of the top-100 are clearly MWEs.

While more careful evaluation is required in order
to estimate the rate of true positives in this list, we
trust that the vast majority of the positive results are
indeed MWEs.

5 Conclusions and future work

We presented a novel architecture for identifying
MWEs in text corpora. The main insights we em-
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phasize are sophisticated computational encoding of
linguistic knowledge that focuses on the idiosyn-
cratic behavior of such expressions. This is reflected
in two ways in our work: by defining computable
features that reflect different facets of irregulari-
ties; and by framing the features as part of a larger
Bayesian Network that accounts for interdependen-
cies among them. We also introduce a method for
automatically generating a training set for this task,
which renders the classification almost entirely un-
supervised. The result is a nearly-unsupervised,
language-independent classification method that can
identify MWEs of various lengths, types and con-
structions. Evaluation on Hebrew shows significant
improvement in the accuracy of the classifier com-
pared with the state of the art.

The modular architecture of BN facilitates easy
exploration with more features. We are currently in-
vestigating the contribution of various other sources
of information to the classification task. For exam-
ple, Hebrew lacks large-scale lexical semantic re-
sources. However, it is possible to literally trans-
late a MWE candidate to English and rely on the
English WordNet for generating synonyms of the lit-
eral translation. Such “literal synonyms” can then be
back-translated to Hebrew. The assumption is that
if a back-translated expression has a high PMI, the
original candidate is very likely not a MWE. While
such a feature may contribute little on its own, in-
corporating it in a well-structured BN may improve
performance.

While our methodology is applicable to MWEs
of any length, we have so far only evaluated it on bi-
grams. In the future, we intend to extend the evalu-
ation to longer n-grams. We also plan to apply the
methodology to languages other than Hebrew.
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cos André Gonçalves. 2003. Combining link-based
and content-based methods for web document classifi-
cation. In Proceedings of CIKM-03, 12th ACM Inter-
national Conference on Information and Knowledge
Management, pages 394–401, New Orleans, US. ACM
Press, New York, US.

Baobao Chang, Pernilla Danielsson, and Wolfgang Teu-
bert. 2002. Extraction of translation unit from
Chinese-English parallel corpora. In Proceedings of
the first SIGHAN workshop on Chinese language pro-
cessing, pages 1–5, Morristown, NJ, USA. Associa-
tion for Computational Linguistics.

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicogra-
phy. Computational Linguistics, 16(1):22–29.

Ludovic Denoyer and Patrick Gallinari. 2004. Bayesian
network model for semi-structured document classi-
fication. Information Processing and Management,
40(5):807–827.

Jianyong Duan, Mei Zhang, Lijing Tong, and Feng Guo.
2009. A hybrid approach to improve bilingual mul-
tiword expression extraction. In Thanaruk Theera-
munkong, Boonserm Kijsirikul, Nick Cercone, and
Tu-Bao Ho, editors, Advances in Knowledge Discov-
ery and Data Mining, volume 5476 of Lecture Notes
in Computer Science, pages 541–547. Springer, Berlin
and Heidelberg.

Britt Erman and Beatrice Warren. 2000. The idiom prin-
ciple and the open choice principle. Text, 20(1):29–62.

Afsaneh Fazly and Suzanne Stevenson. 2006. Automat-
ically constructing a lexicon of verb phrase idiomatic
combinations. In Proceedings of the 11th Conference
of the European Chapter of the Association for Com-
putational Linguistics (EACL), pages 337–344.

844



Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Lexical Database. Language, Speech and Com-
munication. MIT Press.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The WEKA data mining software: an update.
SIGKDD Explorations, 11(1):10–18.

Gregory Hazelbeck and Hiroaki Saito. 2010. A hybrid
approach for functional expression identification in a
japanese reading assistant. In Proceedings of the 2010
Workshop on Multiword Expressions: from Theory to
Applications, pages 81–84, Beijing, China, August.
Coling 2010 Organizing Committee.

David Heckerman. 1995. A tutorial on learning with
Bayesian networks. Technical Report MSR-TR-95-
06, Microsoft Research, March.

Alon Itai and Shuly Wintner. 2008. Language resources
for Hebrew. Language Resources and Evaluation,
42(1):75–98, March.

Ray Jackendoff. 1997. The Architecture of the Language
Faculty. MIT Press, Cambridge, USA.

Anil K. Jain. 1989. Fundamentals of digital image pro-
cessing. Prentice-Hall, Inc., NJ, USA.

Finn V. Jensen and Thomas D. Nielsen. 2007. Bayesian
Networks and Decision Graphs. Springer, 2nd edition.

Wai Lam, Kon F. Low, and Chao Y. Ho. 1997. Using a
bayesian network induction approach for text catego-
rization. In Martha E. Pollack, editor, Proceedings of
IJCAI-97, 15th International Joint Conference on Ar-
tificial Intelligence, pages 745–750, Nagoya, JP. Mor-
gan Kaufmann Publishers, San Francisco, US.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51.

Pavel Pecina. 2008. A machine learning approach to
multiword expression extraction. In Proceedings of
the LREC Workshop Towards a Shared Task for Multi-
word Expressions.

Leonid Peshkin, Avi Pfeffer, and Virginia Savova. 2003.
Bayesian nets in syntactic categorization of novel
words. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for Com-
putational Linguistics on Human Language Technol-
ogy: companion volume of the Proceedings of HLT-
NAACL 2003–short papers - Volume 2, NAACL ’03,
pages 79–81, Morristown, NJ, USA. Association for
Computational Linguistics.

Scott Songlin Piao, Paul Rayson, Dawn Archer, and Tony
McEnery. 2005. Comparing and combining a se-
mantic tagger and a statistical tool for mwe extraction.
Computer Speech and Language, 19(4):378–397.

Carlos Ramisch, Paulo Schreiner, Marco Idiart, and
Alline Villavicencio. 2008. An evaluation of meth-
ods for the extraction of multiword expressions. In

Proceedings of the LREC Workshop Towards a Shared
Task for Multiword Expressions.

Carlos Ramisch, Helena de Medeiros Caseli, Aline
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