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Abstract

This paper examines tagging models for spon-
taneous English speech transcripts. We ana-
lyze the performance of state-of-the-art tag-
ging models, either generative or discrimi-
native, left-to-right or bidirectional, with or
without latent annotations, together with the
use of ToBI break indexes and several meth-
ods for segmenting the speech transcripts (i.e.,
conversation side, speaker turn, or human-
annotated sentence). Based on these studies,
we observe that: (1) bidirectional models tend
to achieve better accuracy levels than left-to-
right models, (2) generative models seem to
perform somewhat better than discriminative
models on this task, and (3) prosody improves
tagging performance of models on conversa-
tion sides, but has much less impact on smaller
segments. We conclude that, although the use
of break indexes can indeed significantly im-
prove performance over baseline models with-
out them on conversation sides, tagging ac-
curacy improves more by using smaller seg-
ments, for which the impact of the break in-
dexes is marginal.

1 Introduction

Natural language processing technologies, such as
parsing and tagging, often require reconfiguration
when they are applied to challenging domains that
differ significantly from newswire, e.g., blogs, twit-
ter text (Foster, 2010), or speech. In contrast to
text, conversational speech represents a significant
challenge because the transcripts are not segmented
into sentences. Furthermore, the transcripts are of-

ten disfluent and lack punctuation and case informa-
tion. On the other hand, speech provides additional
information, beyond simply the sequence of words,
which could be exploited to more accurately assign
each word in the transcript a part-of-speech (POS)
tag. One potentially beneficial type of information
is prosody (Cutler et al., 1997).

Prosody provides cues for lexical disambigua-
tion, sentence segmentation and classification,
phrase structure and attachment, discourse struc-
ture, speaker affect, etc. Prosody has been found
to play an important role in speech synthesis sys-
tems (Batliner et al., 2001; Taylor and Black, 1998),
as well as in speech recognition (Gallwitz et al.,
2002; Hasegawa-Johnson et al., 2005; Ostendorf et
al., 2003). Additionally, prosodic features such as
pause length, duration of words and phones, pitch
contours, energy contours, and their normalized val-
ues have been used for speech processing tasks like
sentence boundary detection (Liu et al., 2005).

Linguistic encoding schemes like ToBI (Silver-
man et al., 1992) have also been used for sentence
boundary detection (Roark et al., 2006; Harper et al.,
2005), as well as for parsing (Dreyer and Shafran,
2007; Gregory et al., 2004; Kahn et al., 2005). In
the ToBI scheme, aspects of prosody such as tone,
prominence, and degree of juncture between words
are represented symbolically. For instance, Dreyer
and Shafran (2007) use three classes of automati-
cally detected ToBI break indexes, indicating major
intonational breaks with a 4, hesitation with a p, and
all other breaks with a 1.

Recently, Huang and Harper (2010) found that
they could effectively integrate prosodic informa-
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tion in the form of this simplified three class ToBI
encoding when parsing spontaneous speech by us-
ing a prosodically enriched PCFG model with latent
annotations (PCFG-LA) (Matsuzaki et al., 2005;
Petrov and Klein, 2007) to rescore n-best parses
produced by a baseline PCFG-LA model without
prosodic enrichment. However, the prosodically en-
riched models by themselves did not perform sig-
nificantly better than the baseline PCFG-LA model
without enrichment, due to the negative effect that
misalignments between automatic prosodic breaks
and true phrase boundaries have on the model.

This paper investigates methods for using state-
of-the-art taggers on conversational speech tran-
scriptions and the effect that prosody has on tagging
accuracy. Improving POS tagging performance of
speech transcriptions has implications for improving
downstream applications that rely on accurate POS
tags, including sentence boundary detection (Liu
et al., 2005), automatic punctuation (Hillard et al.,
2006), information extraction from speech, parsing,
and syntactic language modeling (Heeman, 1999;
Filimonov and Harper, 2009). While there have
been several attempts to integrate prosodic informa-
tion to improve parse accuracy of speech transcripts,
to the best of our knowledge there has been little
work on using this type of information for POS tag-
ging. Furthermore, most of the parsing work has
involved generative models and rescoring/reranking
of hypotheses from the generative models. In this
work, we will analyze several factors related to ef-
fective POS tagging of conversational speech:

• discriminative versus generative POS tagging
models (Section 2)

• prosodic features in the form of simplified ToBI
break indexes (Section 4)

• type of speech segmentation (Section 5)

2 Models

In order to fully evaluate the difficulties inherent in
tagging conversational speech, as well as the possi-
ble benefits of prosodic information, we conducted
experiments with six different POS tagging mod-
els. The models can be broadly separated into two
classes: generative and discriminative. As the first
of our generative models, we used a Hidden Markov

Model (HMM) trigram tagger (Thede and Harper,
1999), which serves to establish a baseline and to
gauge the difficulty of the task at hand. Our sec-
ond model, HMM-LA, was the latent variable bi-
gram HMM tagger of Huang et al. (2009), which
achieved state-of-the-art tagging performance by in-
troducing latent tags to weaken the stringent Markov
independence assumptions that generally hinder tag-
ging performance in generative models.

For the third model, we implemented a bidirec-
tional variant of the HMM-LA (HMM-LA-Bidir)
that combines evidence from two HMM-LA tag-
gers, one trained left-to-right and the other right-to-
left. For decoding, we use a product model (Petrov,
2010). The intuition is that the context information
from the left and the right of the current position
is complementary for predicting the current tag and
thus, the combination should serve to improve per-
formance over the HMM-LA tagger.

Since prior work on parsing speech with prosody
has relied on generative models, it was necessary
to modify equations of the model in order to incor-
porate the prosodic information, and then perform
rescoring in order to achieve gains. However, it is
far simpler to directly integrate prosody as features
into the model by using a discriminative approach.
Hence, we also investigate several log-linear mod-
els, which allow us to easily include an arbitrary
number and varying kinds of possibly overlapping
and non-independent features.

First, we implemented a Conditional Random
Field (CRF) tagger, which is an attractive choice due
to its ability to learn the globally optimal labeling
for a sequence and proven excellent performance on
sequence labeling tasks (Lafferty et al., 2001). In
contrast to an HMM which optimizes the joint like-
lihood of the word sequence and tags, a CRF opti-
mizes the conditional likelihood, given by:

pλ(t|w) =
exp

∑
j λjFj(t, w)∑

t exp
∑

j λjFj(t, w)
(1)

where the λ’s are the parameters of the model to es-
timate and F indicates the feature functions used.
The denominator in (1) is Zλ(x), the normalization
factor, with:

Fj(t, w) =
∑
i

fj(t, w, i)
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Class Model Name Latent Variable Bidirectional N-best-Extraction Markov Order

Generative
Trigram HMM

√
2nd

HMM-LA
√ √

1st
HMM-LA-Bidir

√ √
1st

Discriminative
Stanford Bidir

√
2nd

Stanford Left5 2nd
CRF 2nd

Table 1: Description of tagging models

The objective we need to maximize then becomes :

L =
∑
n

∑
j

λjFj(tn, wn)− logZλ(xn)

−‖λ‖2
2σ2

where we use a spherical Gaussian prior to pre-
vent overfitting of the model (Chen and Rosen-
feld, 1999) and the wide-spread quasi-Newtonian
L-BFGS method to optimize the model parame-
ters (Liu and Nocedal, 1989). Decoding is per-
formed with the Viterbi algorithm.

We also evaluate state-of-the-art Maximum En-
tropy taggers: the Stanford Left5 tagger (Toutanova
and Manning, 2000) and the Stanford bidirectional
tagger (Toutanova et al., 2003), with the former us-
ing only left context and the latter bidirectional de-
pendencies.

Table 1 summarizes the major differences be-
tween the models along several dimensions: (1) gen-
erative versus discriminative, (2) directionality of
decoding, (3) the presence or absence of latent anno-
tations, (4) the availability of n-best extraction, and
(5) the model order.

In order to assess the quality of our models, we
evaluate them on the section 23 test set of the stan-
dard newswire WSJ tagging task after training all
models on sections 0-22. Results appear in Ta-
ble 2. Clearly, all the models have high accuracy
on newswire data, but the Stanford bidirectional tag-
ger significantly outperforms the other models with
the exception of the HMM-LA-Bidir model on this
task.1

1Statistically significant improvements are calculated using
the sign test (p < 0.05).

Model Accuracy
Trigram HMM 96.58
HMM-LA 97.05
HMM-LA-Bidir 97.16
Stanford Bidir 97.28
Stanford Left5 97.07
CRF 96.81

Table 2: Tagging accuracy on WSJ

3 Experimental Setup

In the rest of this paper, we evaluate the tag-
ging models described in Section 2 on conver-
sational speech. We chose to utilize the Penn
Switchboard (Godfrey et al., 1992) and Fisher tree-
banks (Harper et al., 2005; Bies et al., 2006) because
they provide gold standard tags for conversational
speech and we have access to corresponding auto-
matically generated ToBI break indexes provided by
(Dreyer and Shafran, 2007; Harper et al., 2005)2.

We utilized the Fisher dev1 and dev2 sets contain-
ing 16,519 sentences (112,717 words) as the primary
training data and the entire Penn Switchboard tree-
bank containing 110,504 sentences (837,863 words)
as an additional training source3. The treebanks
were preprocessed as follows: the tags of auxiliary
verbs were replaced with the AUX tag, empty nodes

2A small fraction of words in the Switchboard treebank do
not align with the break indexes because they were produced
based on a later refinement of the transcripts used to produce
the treebank. For these cases, we heuristically added break *1*
to words in the middle of a sentence and *4* to words that end
a sentence.

3Preliminary experiments evaluating the effect of training
data size on performance indicated using the additional Switch-
board data leads to more accurate models, and so we use the
combined training set.
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and function tags were removed, words were down-
cased, punctuation was deleted, and the words and
their tags were extracted. Because the Fisher tree-
bank was developed using the lessons learned when
developing Switchboard, we chose to use its eval
portion for development (the first 1,020 tagged sen-
tences containing 7,184 words) and evaluation (the
remaining 3,917 sentences with 29,173 words).

We utilize the development set differently for the
generative and discriminative models. Since the EM
algorithm used for estimating the parameters in the
latent variable models introduces a lot of variabil-
ity, we train five models with a different seed and
then choose the best one based on dev set perfor-
mance. For the discriminative models, we tuned
their respective regularization parameters on the dev
set. All results reported in the rest of this paper are
on the test set.

4 Integration of Prosodic Information

In this work, we use three classes of automatically
generated ToBI break indexes to represent prosodic
information (Kahn et al., 2005; Dreyer and Shafran,
2007; Huang and Harper, 2010): 4, 1, and p.
Consider the following speech transcription exam-
ple, which is enriched with ToBI break indexes in
parentheses and tags: i(1)/PRP did(1)/VBD
n’t(1)/RB you(1)/PRP know(4)/VBP
i(1)/PRP did(1)/AUX n’t(1)/RB...
The speaker begins an utterance, and then restarts
the utterance. The automatically predicted break 4
associated with know in the utterance compellingly
indicates an intonational phrase boundary and could
provide useful information for tagging if we can
model it appropriately.

To integrate prosody into our generative models,
we utilize the method from (Dreyer and Shafran,
2007) to add prosodic breaks. As Figure 1 shows,
ToBI breaks provide a secondary sequence of ob-
servations that is parallel to the sequence of words
that comprise the sentence. Each break bi in the sec-
ondary sequence is generated by the same tag ti as
that which generates the corresponding wordwi, and
so it is conditionally independent of its correspond-
ing word given the tag:

P (w, b|t) = P (w|t)P (b|t)

PRP

i 1

VBD

did 1

RB

n’t 1

VBP

know 4

Figure 1: Parallel generation of words and breaks for the
HMM models

The HMM-LA taggers are then able to split tags to
capture implicit higher order interactions among the
sequence of tags, words, and breaks.

The discriminative models are able to utilize
prosodic features directly, enabling the use of con-
textual interactions with other features to further im-
prove tagging accuracy. Specifically, in addition to
the standard set of features used in the tagging lit-
erature, we use the feature templates presented in
Table 3, where each feature associates the break bi,
word wi, or some combination of the two with the
current tag ti4.

Break and/or word values Tag value
bi=B ti = T
bi=B & bi−1=C ti = T
wi=W & bi=B ti = T
wi+1=W & bi=B ti = T
wi+2=W & bi=B ti = T
wi−1=W & bi=B ti = T
wi−2=W & bi=B ti = T
wi=W & bi=B & bi−1=C ti = T

Table 3: Prosodic feature templates

5 Experiments

5.1 Conversation side segmentation

When working with raw speech transcripts, we ini-
tially have a long stream of unpunctuated words,
which is called a conversation side. As the average
length of conversation side segments in our data is
approximately 630 words, it poses quite a challeng-
ing tagging task. Thus, we hypothesize that it is on
these large segments that we should achieve the most

4We modified the Stanford taggers to handle these prosodic
features.
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Figure 2: Tagging accuracy on conversation sides

improvement from the addition of prosodic informa-
tion.

In fact, as the baseline results in Figure 2 show,
the accuracies achieved on this task are much lower
than those on the newswire task. The trigram HMM
tagger accuracy drops to 92.43%, while all the other
models fall to within the range of 93.3%-94.12%,
a significant departure from the 96-97.3% range on
newswire sentences. Note that the Stanford bidi-
rectional and HMM-LA tagger perform very simi-
larly, although the HMM-LA-Bidir tagger performs
significantly better than both. In contrast to the
newswire task on which the Stanford bidirectional
tagger performed the best, on this genre, it is slightly
worse than the HMM-LA tagger, albeit the differ-
ence is not statistically significant.

With the direct integration of prosody into the
generative models (see Figure 2), there is a slight but
statistically insignificant shift in performance. How-
ever, integrating prosody directly into the discrimi-
native models leads to significant improvements in
the CRF and Stanford Left5 taggers. The gain in
the Stanford bidirectional tagger is not statistically
significant, however, which suggests that the left-
to-right models benefit more from the addition of
prosody than bidirectional models.

5.2 Human-annotated sentences

Given the lack-luster performance of the tagging
models on conversation side segments, even with the
direct addition of prosody, we chose to determine the
performance levels that could be achieved on this
task using human-annotated sentences, which we

will refer to as sentence segmentation. Figure 3 re-
ports the baseline tagging accuracy on sentence seg-
ments, and we see significant improvements across
all models. The HMM Trigram tagger performance
increases to 93.00%, while the increase in accuracy
for the other models ranges from around 0.2-0.3%.
The HMM-LA taggers once again achieve the best
performance, with the Stanford bidirectional close
behind. Although the addition of prosody has very
little impact on either the generative or discrimina-
tive models when applied to sentences, the base-
line tagging models (i.e., not prosodically enriched)
significantly outperform all of the prosodically en-
riched models operating on conversation sides.

At this point, it would be apt to suggest us-
ing automatic sentence boundary detection to cre-
ate shorter segments. Table 4 presents the results
of using baseline models without prosodic enrich-
ment trained on the human-annotated sentences to
tag automatically segmented speech5. As can be
seen, the results are quite similar to the conversation
side segmentation performances, and thus signifi-
cantly lower than when tagging human-annotated
sentences. A caveat to consider here is that we break
the standard assumption that the training and test set
be drawn from the same distribution, since the train-
ing data is human-annotated and the test is automat-
ically segmented. However, it can be quite challeng-
ing to create a corpus to train on that represents the
biases of the systems that perform automatic sen-
tence segmentation. Instead, we will examine an-

5We used the Baseline Structural Metadata System de-
scribed in Harper et al. (2005) to predict sentence boundaries.
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Figure 3: Tagging accuracy on human-annotated segments

other segmentation method to shorten the segments
automatically, i.e., by training and testing on speaker
turns, which preserves the train-test match, in Sec-
tion 5.5.

Model Accuracy
HMM-LA 93.95
HMM-LA-Bidir 94.07
Stanford Bidir 93.77
Stanford Left5 93.35
CRF 93.29

Table 4: Baseline tagging accuracy on automatically de-
tected sentence boundaries

5.3 Oracle Break Insertion

As we believe one of the major roles that prosodic
cues serve for tagging conversation sides is as a
proxy for sentence boundaries, perhaps the efficacy
of the prosodic breaks can, at least partially, be at-
tributed to errors in the automatically induced break
indexes themselves, as they can misalign with syn-
tactic phrase boundaries, as discussed in Huang and
Harper (2010). This may degrade the performance
of our models more than the improvement achieved
from correctly placed breaks. Hence, we conduct
a series of experiments in which we systematically
eliminate noisy phrase and disfluency breaks and
show that under these improved conditions, prosodi-
cally enriched models can indeed be more effective.

To investigate to what extent noisy breaks are im-
peding the possible improvements from prosodically
enriched models, we replaced all 4 and p breaks in

the training and evaluation sets that did not align
to the correct phrase boundaries as indicated by the
treebank with break 1 for both the conversation sides
and human-annotated sentences. The results from
using Oracle Breaks on conversation sides can be
seen in Figure 2. All models except Stanford Left5
and HMM-LA-Bidir significantly improve in accu-
racy when trained and tested on the Oracle Break
modified data. On human-annotated sentences, Fig-
ure 3 shows improvements in accuracies across all
models, however, they are statistically insignificant.

To further analyze why prosodically enriched
models achieve more improvement on conversation
sides than on sentences, we conducted three more
Oracle experiments on conversation sides. For the
first, OracleBreak-Sent, we further modified the data
such that all breaks corresponding to a sentence
ending in the human-annotated segments were con-
verted to break 1, thus effectively only leaving in-
side sentence phrasal boundaries. This modification
results in a significant drop in performance, as can
be seen in Figure 2.

For the second, OracleSent, we converted all
the breaks corresponding to a sentence end in the
human-annotated segmentations to break 4, and all
the others to break 1, thus effectively only leaving
sentence boundary breaks. This performed largely
on par with OracleBreak, suggesting that the phrase-
aligned prosodic breaks seem to be a stand-in for
sentence boundaries.

Finally, in the last condition, OracleBreak+Sent,
we modified the OracleBreak data such that all
breaks corresponding to a sentence ending in the
human-annotated sentences were converted to break
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Figure 4: Tagging accuracy on speaker turns

4 (essentially combining OracleBreak and Oracle-
Sent). As Figure 2 indicates, this modification re-
sults in the best tagging accuracies for all the mod-
els. All models were able to match or even improve
upon the baseline accuracies achieved on the human
segmented data. This suggests that when we have
breaks that align with phrasal and sentence bound-
aries, prosodically enriched models are highly effec-
tive.

5.4 N-best Rescoring

Based on the findings in the previous section and the
findings of (Huang and Harper, 2010), we next ap-
ply a rescoring strategy in which the search space
of the prosodically enriched generative models is re-
stricted to the n-best list generated from the base-
line model (without prosodic enrichment). In this
manner, the prosodically enriched model can avoid
poor tag sequences produced due to the misaligned
break indexes. As Figure 2 shows, using the base-
line conversation side model to produce an n-best
list for the prosodically enriched model to rescore
results in significant improvements in performance
for the HMM-LA model, similar to the parsing re-
sults of (Huang and Harper, 2010). The size of the
n-best list directly impacts performance, as reducing
to n = 1 is akin to tagging with the baseline model,
and increasing n → ∞ amounts to tagging with the
prosodically enriched model. We experimented with
a number of different sizes for n and chose the best
one using the dev set. Figure 3 presents the results
for this method applied to human-annotated sen-
tences, where it produces only marginal improve-

ments6.

5.5 Speaker turn segmentation

The results presented thus far indicate that if we
have access to close to perfect break indexes, we
can use them effectively, but this is not likely to be
true in practice. We have also observed that tagging
accuracy on shorter conversation sides is greater
than longer conversation sides, suggesting that post-
processing the conversation sides to produce shorter
segments would be desirable.

We thus devised a scheme by which we could
automatically extract shorter speaker turn segments
from conversation sides. For this study, speaker
turns, which effectively indicate speaker alterna-
tions, were obtained by using the metadata in the
treebank to split the sentences into chunks based on
speaker change. Every time a speaker begins talk-
ing after the other speaker was talking, we start a
new segment for that speaker. In practice, this would
need to be done based on audio cues and automatic
transcriptions, so these results represent an upper
bound.

Figure 4 presents tagging results on speaker turn
segments. For most models, the difference in accu-
racy achieved on these segments and that of human-
annotated sentences is statistically insignificant. The
only exception is the Stanford bidirectional tagger,

6Rescoring using the CRF model was also performed, but
led to a performance degradation. We believe this is due to
the fact that the prosodically enriched CRF model was able to
directly use the break index information, and so restricting it to
the baseline CRF model search space limits the performance to
that of the baseline model.
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Figure 5: Error reduction for prosodically enriched HMM-LA (a) and CRF (b) models

which performs worse on these slightly longer seg-
ments. With the addition of break indexes, we see
marginal changes in most of the models; only the
CRF tagger receives a significant boost. Thus, mod-
els achieve performance gains from tagging shorter
segments, but at the cost of limited usefulness of the
prosodic breaks. Overall, speaker turn segmenta-
tion is an attractive compromise between the original
conversation sides and human-annotated sentences.

6 Discussion

Across the different models, we have found that tag-
gers applied to shorter segments, either sentences or
speaker turns, do not tend to benefit significantly
from prosodic enrichment, in contrast to conversa-
tion sides. To analyze this further we broke down
the results by part of speech for the two models
for which break indexes improved performance the
most: the CRF and HMM-LA rescoring models,
which achieved an overall error reduction of 2.8%
and 2.1%, respectively. We present those categories
that obtained the greatest benefit from prosody in
Figure 5 (a) and (b). For both models, the UH cate-
gory had a dramatic improvement from the addition
of prosody, achieving up to a 10% reduction in error.

For the CRF model, other categories that saw im-
pressive error reductions were NN and VB, with
10% and 5%, respectively. Table 5 lists the prosodic

features that received the highest weight in the CRF
model. These are quite intuitive, as they seem to rep-
resent places where the prosody indicates sentence
or clausal boundaries. For the HMM-LA model,
the VB and DT tags had major reductions in error
of 13% and 10%, respectively. For almost all cat-
egories, the number of errors is reduced by the ad-
dition of breaks, and further reduced by using the
OracleBreak processing described above.

Weight Feature
2.2212 wi=um & bi=4 & t=UH
1.9464 wi=uh & bi=4 & t=UH
1.7965 wi=yes & bi=4 & t=UH
1.7751 wi=and & bi=4 & t=CC
1.7554 wi=so & bi=4 & t=RB
1.7373 wi=but & bi=4 & t=CC

Table 5: Top break 4 prosody features in CRF prosody
model

To determine more precisely the effect that the
segment size has on tagging accuracy, we extracted
the oracle tag sequences from the HMM-LA and
CRF baseline and prosodically enriched models
across conversation sides, sentences, and speaker
turn segments. As the plot in Figure 6 shows, as
we increase the n-best list size to 500, the ora-
cle accuracy of the models trained on sentences in-
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creases rapidly to 99%; whereas, the oracle accu-
racy of models on conversation sides grow slowly
to between 94% and 95%. The speaker turn trained
models, however, behave closely to those using sen-
tences, climbing rapidly to accuracies of around
98%. This difference is directly attributable to the
length of the segments. As can be seen in Table 6,
the speaker turn segments are more comparable in
length to sentences.

Train Eval
Conv 627.87 ± 281.57 502.98 ± 151.22
Sent 7.52± 7.86 7.45 ± 8.29

Speaker 15.60± 29.66 15.27± 21.01

Table 6: Length statistics of different data segmentations

Next, we return to the large performance degrada-
tion when tagging speech rather than newswire text
to examine the major differences among the mod-
els. Using two of our best performing models, the
Stanford bidirectional and HMM-LA, in Figure 7
we present the categories for which performance
degradation was the greatest when comparing per-
formance of a tagger trained on WSJ to a tagger
trained on spoken sentences and conversation sides.
The performance decrease is quite similar across
both models, with the greatest degradation on the
NNP, RP, VBN, and RBS categories.

Unsurprisingly, both the discriminative and gen-
erative bidirectional models achieve the most im-

pressive results. However, the generative HMM-
LA and HMM-LA-Bidir models achieved the best
results across all three segmentations, and the best
overall result, of 94.35%, on prosodically enriched
sentence-segmented data. Since the Stanford bidi-
rectional model incorporates all of the features that
produced its state-of-the-art performance on WSJ,
we believe the fact that the HMM-LA outperforms
it, despite the discriminative model’s more expres-
sive feature set, is indicative of the HMM-LA’s abil-
ity to more effectively adapt to novel domains during
training. Another challenge for the discriminative
models is the need for regularization tuning, requir-
ing additional time and effort to train several mod-
els and select the most appropriate parameter each
time the domain changes. Whereas for the HMM-
LA models, although we also train several models,
they can be combined into a product model, such as
that described by Petrov (2010), in order to further
improve performance.

Since the prosodic breaks are noisier features than
the others incorporated in the discriminative models,
it may be useful to set their regularization param-
eter separately from the rest of the features, how-
ever, we have not explored this alternative. Our ex-
periments used human transcriptions of the conver-
sational speech; however, realistically our models
would be applied to speech recognition transcripts.
In such a case, word error will introduce noise in ad-
dition to the prosodic breaks. In future work, we will
evaluate the use of break indexes for tagging when
there is lexical error. We would also apply the n-
best rescoring method to exploit break indexes in the
HMM-LA bidirectional model, as this would likely
produce further improvements.

7 Conclusion

In this work, we have evaluated factors that are im-
portant for developing accurate tagging models for
speech. Given that prosodic breaks were effective
knowledge sources for parsing, an important goal
of this work was to evaluate their impact on vari-
ous tagging model configurations. Specifically, we
have examined the use of prosodic information for
tagging conversational speech with several different
discriminative and generative models across three
different speech transcript segmentations. Our find-
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Figure 7: Comparison of error rates between the Standford Bidir and HMM-LA models trained on WSJ, sentences,
and conversation sides

ings suggest that generative models with latent an-
notations achieve the best performance in this chal-
lenging domain. In terms of transcript segmenta-
tion, if sentences are available, it is preferable to use
them. In the case that no such annotation is avail-
able, then using automatic sentence boundary detec-
tion does not serve as an appropriate replacement,
but if automatic speaker turn segments can be ob-
tained, then this is a good alternative, despite the fact
that prosodic enrichment is less effective.

Our investigation also shows that in the event that
conversation sides must be used, prosodic enrich-
ment of the discriminative and generative models
produces significant improvements in tagging accu-
racy (by direct integration of prosody features for
the former and by restricting the search space and
rescoring with the latter). For tagging, the most im-
portant role of the break indexes appears to be as a
stand in for sentence boundaries. The oracle break
experiments suggest that if the accuracy of the au-
tomatically induced break indexes can be improved,
then the prosodically enriched models will perform
as well, or even better, than their human-annotated
sentence counterparts.
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