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Abstract 

Almost all Chinese language processing tasks 
involve word segmentation of the language 
input as their first steps, thus robust and reli-
able segmentation techniques are always re-
quired to make sure those tasks well-
performed. In recent years, machine learning 
and sequence labeling models such as Condi-
tional Random Fields (CRFs) are often used in 
segmenting Chinese texts. Compared with 
traditional lexicon-driven models, machine 
learned models achieve higher F-measure 
scores. But machine learned models heavily 
depend on training materials. Although they 
can effectively process texts from the same 
domain as the training texts, they perform 
relatively poorly when texts from new do-
mains are to be processed. In this paper, we 
propose to use χ2 statistics when training an 
SVM-HMM based segmentation model to im-
prove its ability to recall OOV words and then 
use bootstrapping strategies to maintain its 
ability to recall IV words. Experiments show 
the approach proposed in this paper enhances 
the domain portability of the Chinese word 
segmentation model and prevents drastic de-
cline in performance when processing texts 
across domains. 

1 Introduction 

Chinese word segmentation plays a fundamental 
role in Chinese language processing tasks, because 
almost all Chinese language processing tasks are 
assumed to work with segmented input. After in-
tensive research for more than twenty years, the 

performance of Chinese segmentation made con-
siderable progress. The bakeoff series hosted by 
the Chinese Information Processing Society (CIPS) 
and ACL SIGHAN shows that an F measure of 
0.95 can be achieved in the closed test tracks, in 
which only specified training materials can be used 
in learning segmentation models1.    

Traditional word segmentation approaches are 
lexicon-driven (Liang, 1987) and assume prede-
fined lexicons of Chinese words are available. 
Segmentation results are obtained by finding a best 
match between the input texts and the lexicons. 
Such lexicon-driven approaches can be rule-based, 
statistic-based or in some hybrid form. 

Xue (2003) proposed a novel way of segmenting 
Chinese texts, and it views the Chinese word seg-
mentation task as a character tagging task. Accord-
ing to Xue’s approach, no predefined Chinese 
lexicons are required; a tagging model is learned 
by using manually segmented training texts. The 
model is then used to assign each character a tag 
indicating the position of this character within a 
word. Xue’s approach has become the most popu-
lar approach to Chinese word segmentation for its 
high performance and unified way of dealing with 
out-of-vocabulary (OOV) issues. Most segmenta-
tion work began to follow this approach later. Ma-
jor improvements in this line of research include: 1) 
More sophisticated learning models were intro-
duced other than the maximum entropy model that 
Xue used, such as the conditional random fields 
(CRFs) model which fits the sequence tagging 
tasks much better than the maximum entropy 
model (Tseng et al.,2005). 2) More tags were in-

                                                           
1 http://www.sighan.org/bakeoff2005/data/results.php.htm 
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troduced, as Zhao et al. (2006) shows 6 tags are 
superior to 4 tags. 3) New feature templates were 
added, such as the templates that were used in rep-
resenting numbers, dates, letters etc. (Low et al., 
2005)  

Character tagging approaches require manually 
segmented training texts to learn models usually in 
a supervised way. The performance is always eva-
luated on a test set from the same domain as the 
training set. Such evaluation does not reveal its 
ability to deal with domain variation. Actually, 
when test set is from other domains than the do-
main where training set is from, the learned model 
normally underperforms substantially.   

One of the main reasons of such performance 
degradation lies in the model’s ability to cope with 
OOV words. Actually, even when the test set has 
the same domain properties as the training set, the 
ability of the model to recall OOV words is still the 
main obstacle to achieve better performance of 
segmentation. However, when the test set is differ-
ent with the training set in nature, the OOV recall 
normally drops much more substantially, and be-
comes much lower. 

Apart from the supervised approach, Sun et al. 
(2004) proposed an unsupervised way of Chinese 
word segmentation. The approach did not use any 
predefined lexicons or segmented texts. A statistic 
named as md, combining the mutual information 
and t score, was proposed to measure whether a 
string of characters forms word. The unsupervised 
nature of the approach means good ability to deal 
with domain variation. However, the approach did 
not show a segmentation performance as good as 
that of the supervised approach. The approach was 
not evaluated in F measurement, but in accuracy of 
word break prediction. As their experiment showed, 
the approach successfully predicted 85.88% of the 
word breaks, which is much lower than that of the 
character tagging approach if in terms of F meas-
urement.   

Aiming at preventing the OOV recall from 
dropping sharply and still maintaining an overall 
performance as good as that of the state-of-art 
segmenter when working with heterogeneous test 
sets, we propose in this paper to use a semi-
supervised way for Chinese word segmentation 
task. Specifically, we propose to use χ2 statistics 
together with bootstrapping strategies to build Chi-
nese word segmentation model. The experiment 
shows the approach can effectively promote the 

OOV recall and lead to a higher overall perform-
ance. In addition, instead of using the popular CRF 
model, we use another sequence labeling model in 
this paper --- the hidden Markov Support Vector 
Machines (SVM-HMM) Model (Altun et al., 2003). 
We just wish to show that there are alternatives 
other than CRF model to use and comparable re-
sults can be obtained. 

Our work differs from the previous supervised 
work in its ability to cope with domain variation 
and differs from the previous unsupervised work in 
its much better overall segmentation performance.   

The rest of the paper is organized as follows: In 
section 2, we give a brief introduction to the hid-
den Markov Support Vector Machines, on which 
we rely to build the segmentation model. In section 
3, we list the segmentation tags and the basic fea-
ture templates we used in the paper. In section 4 
we show how χ2 statistics can be encoded as fea-
tures to promote OOV recall. In section 5 we give 
the bootstrapping strategy. In section 6, we report 
the experiments and in section 7 we present our 
conclusions. 

2 The hidden Markov support vector ma-
chines  

The hidden Markov support vector machine 
(SVM-HMM) is actually a special case of the 
structural support vector machines proposed by 
Tsochantaridis et al. (2005). It is a powerful model 
to solve the structure predication problem. It dif-
fers from support vector machine in its ability to 
model complex structured problems and shares the 
max-margin training principles with support vector 
machines. The hidden Markov support vector ma-
chine model is inspired by the hidden Markov 
model and is an instance of structural support vec-
tor machine dedicated to solve sequence labeling 
learning, a problem that CRF model is assumed to 
solve. In the SVM-HMM model, the sequence la-
beling problem is modeled by learning a discrimi-
nant function F: X×Y→R over the pairs of input 
sequence and label sequence, thus the prediction of 
the label sequence can be derived by maximizing F 
over all possible label sequences for a specific giv-
en input sequence x. 
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In the structural SVMs, F is assumed to be linear 
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in some combined feature representation of the 
input sequence and the label sequence ψ(x,y), i.e. 

),(,);,( yxψwwyx =F  
Where w denotes a parameter vector, for the SVM-
HMMs, the discriminant function is defined as fol-
lows. 
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the input sequence. δ (yt, y) is the Kronecker func-
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The first term of the discriminant function is used 
to model the interactions between input features 
and labels, and the second term is used to model 
interactions between nearby labels. η > 0 is a scal-
ing factor which balances the two types of contri-
butions. (Tsochantaridis et al., 2005) 

Like SVMs, parameter vector w is learned with 
the maximum margin principle by using training 
data. To control the complexity of the training 
problem, the cutting plane method is used to solve 
the resulted constrained optimization problem. 
Thus only a small subset of constraints from the 
full-sized optimization is checked to ensure a suf-
ficiently accurate solution. Roughly speaking, 
SVM-HMM differs from CRF in its principle of 
training, and both of them could be used to deal 
with sequence labeling problem like Chinese word 
segmentation. 

3 The tag set and the basic feature tem-
plates 

As in most other work on segmentation, we use a 
4-tag tagset, that is S for the character being a sin-
gle-character-word by itself, B for the character 
beginning a multi-character-word, E for the char-
acter ending a multi-character-word and M for a 
character occurring in the middle of a multi-
character-word. 

We use the following feature templates, as are 
widely used in most segmentation work: 

(a) Cn (n = -2, -1, 0, 1, 2) 
(b) CnCn+1 (n = -2, -1, 0, 1) 
(c) C-1C+1  

Here C refers to a character; n refers to the position 
index relative to the current character. By setting 
the above feature templates, we actually set a 5-
character window to extract features, the current 
character, 2 characters to its left and 2 characters to 
its right.   

In addition, we also use the following feature 
templates to extract features representing the char-
acter type: 

(d) Tn (n = -2, -1, 0, 1, 2) 
(e) TnTn+1 (n = -2, -1, 0, 1) 
(f) T-1T+1 

Here T refers to a character type, and its value can 
be digit, letter, punctuation or Chinese character. 
The type feature is important, for there are two 
versions of Arabic numbers, Latin alphabets and 
punctuations in the Chinese texts. This is because 
all three kinds of characters have their internal 
codes defined in ASCII table, but the Chinese en-
coding standard like GB18030 assigns them with 
other double-byte codes. This causes problems for 
model learning as we encounter in the experiment. 
The training data we adopt in this paper only use 
numbers, letters and punctuation of double-byte 
codes. But the test data use both the double-byte 
and single-byte codes. If the type features are not 
introduced, most of the numbers, letters and punc-
tuation of single-byte can not be segmented cor-
rectly. The type feature establishes links between 
the two versions of codes, for both versions of a 
digit, a letter or punctuation share the same type 
feature value. Actually, the encoding problem 
could be alternatively solved by a character nor-
malization process. That is the mapping all single-
byte versions of digits, letters and punctuations in 
the test sets into their double-byte counterparts as 
in the training set. We use the type features here to 
avoid any changes to the test sets. 

4 The χ2 statistic features 

χ2 test is one of hypothesis test methods, which can 
be used to test if two events co-occur just by 
chance or not. A lower χ2 score normally means 
the two co-occurred events are independent; oth-
erwise they are dependent on each other. χ2 score 
is widely used in computational linguistics to ex-
tract collocations or terminologies. Unsupervised 
segmentation approach also mainly relies on mu-
tual information and t-score to identify words in 
Chinese texts (Sun et al., 2004). Inspired by their 
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work, we believe that χ2 statistics could also be 
incorporated into supervised segmentation models 
to deal with the OOV issue. The idea is very 
straightforward. If two continuous characters in the 
test set have a higher χ2 score, it is highly likely 
they form a word or are part of a word even they 
are not seen in the training set.  

The χ2 score of a character bigram (i.e. two con-
tinuous characters in the text) C1C2 can be com-
puted by the following formula. 
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Here,  
a refers to all counts of bigram C1C2 in the text; 
b refers to all counts of bigrams that C1 oc-curs 

but C2 does not; 
c refers to all counts of bigrams that C1 does not 

occur but C2 occurs; 
d refers to all counts of bigrams that both C1 and 

C2 do not occur.  
n refers to total counts of all bigrams in the text, 

apparently, n= a + b + c + d. 
We do the χ2 statistics computation to the train-

ing set and the test set respectively. To make the χ2 
statistics from the training set and test set compa-
rable, we normalize the χ2 scores by the following 
formula.  
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To make the learned model sensitive to the χ2 sta-
tistics, we then add two more feature templates as 
follows: 

(g) XnXn+1 (n = -2, -1, 0, 1) 
(h) X-1X+1 

The value of the feature XnXn+1 is the normalized χ2 
score of the bigram CnCn+1. Note we also compute 
the normalized χ2 score to bigram C-1C+1, which is 
to measure the association strength of two inter-
vened characters. 

By using the χ2 features, statistics from the test 
set are introduced into segmentation model, and it 
makes the resulted model more aware of the test 
set and therefore more robust to test domains other 
than training domains. 

Because the normalized χ2 score is one of 11 
possible values 0, 1, 2, …, 10,  templates (g)-(h) 
generate 55 features in total.   

All features generated from the templates (a)-(f) 
together with the 55 χ2 features form the whole 

feature set. The training set and test set are then 
converted into their feature representations. The 
feature representation of the training set is then 
used to learn the model and the feature representa-
tion of the test set is then used for segmentation 
and evaluated by comparison with gold standard 
segmentation. The whole process is shown in Fig-
ure-1. 
 

 
Figure-1. The workflow 

 
By this way, an OOV word in the test set might be 
found by the segmentation model if the bigrams 
extracted from this word take higher χ2 scores. 

5 the bootstrapping strategy 

The addition of the χ2 features can be also prob-
lematic as we will see in the experiments. Even 
though it could promote the OOV recall signifi-
cantly, it also leads to drops in in-vocabulary (IV) 
recall.  

We are now in a dilemma. If we use χ2 features, 
we get high OOV recall but a lower IV recall. If 
we do not use the χ2 feature, we get a lower OOV 
recall but a high IV recall. To keep the IV recall 
from falling, we propose to use a bootstrapping 
method. Specifically, we choose to use both mod-
els with χ2 features and without χ2 features. We 
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train two models firstly, one is χ2-based and the 
other not. Then we do the segmentation for the test 
set with the two models simultaneously. Two seg-
mentation results can be obtained. One result is 
produced by the χ2-based model and has a high 
OOV recall. The other result is produced by the 
non- χ2-based model and has a higher IV recall. 
Then we compare the two results and extract all 
sentences that have equal segmentations with the 
two models as the intersection of the two results. It 
is not difficult to understand that the intersection of 
the two results has both high OOV recall and high 
IV recall, if we also extract these sentences from 
the gold standard segmentation and perform 
evaluations. We then put the intersection results 
into the training set to form a new training set. By 
this new training set, we train again to get two new 
models, one χ2-based and the other not. Then the 
two new models are used to segment the test set. 
Then we do again intersection to the two results 
and their common parts are again put into the train-
ing set. We repeat this process until a plausible 
result is obtained. 

The whole process can be informally described 
as the following algorithm: 

1. let training set T to be the original training set; 
2. for I = 0 to K 

1) train the χ2-based model by using training 
set T; 

2) train the non- χ2-based model by using 
training set T; 

3) do segmentation by using the χ2-based 
model; 

4) do segmentation by using the non- χ2-
based model; 

5) do intersection to the two segmentation re-
sults 

6) put the intersection results into the training 
set and get the enlarged training set T 

3. train the non- χ2-based model using training 
set T, and take the output of this model as the 
final output; 

4. end. 

6 The experiments and discussions 

6.1  On the training set and test set 

For training the segmentation model, we use the 
training data provided by Peking University for 

bakeoff 20052 . The training set has about 1.1 mil-
lion words in total. The PKU training data is actu-
ally consisted of all texts of the People’s Daily 
newspaper in January of 1998. So the training data 
represents very formal written Chinese and mainly 
are news articles. A characteristic of the PKU data 
is that all Arabic numbers, Latin letters and punc-
tuations in the data are all double-byte GB codes; 
there are no single-byte ASCII versions of these 
characters in the PKU training data. 

We use three different test sets. The first one 
(denoted by A) is all texts of the People’s Daily of 
February in 19983 . Its size and the genre of the 
texts are very similar to the training data. We use 
this test set to show how well the SVM-HMM can 
be used to model segmentation problem and the 
performance that a segmentation model achieves 
when applied to the texts from the same domain. 

The second and the third test sets are set to test 
how well the segmentation model can apply to 
texts from other domains. The second test set (de-
noted by B) is from the literature domain and the 
third (denoted by C) from computer domain. We 
segmented them manually according to the guide-
lines of Peking University4 to use as gold standard 
segmentations. The genres of the two test set are 
very different from the training set. There are even 
typos in the texts. In the computer test set, there are 
many numbers and English words. And most of the 
numbers and letters are single-byte ASCII codes.   

The sizes and the OOV rates of the three test 
sets are shown in Table-1. 
 

Table-1. Test sets statistics 
test set domain word count OOV rate
A Newspaper 1,152,084 0.036 
B Literature 72,438 0.058 
C Computer 69,671 0.159 
 

For all the experiments, we use the same evalua-
tion measure as most of previous work on segmen-
tation, that is the Recall(R), Precision(P), F 
measure (F=2PR/(P+R)), IV word recall and OOV 
word recall. In addition, we also evaluate all the 
test results with sentence accuracies (SA), which is 
the proportion of the correctly segmented sen-
tences in the test set.  

                                                           
2 can be download from http://www.sighan.org/bakeoff2005/ 
3 The corpus can be licensed from Peking University. 
4 See http:// www.sighan.org/bakeoff2005/ 
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6.1 SVM-HMM vs. CRF 

To show how well the SVM-HMM model can be 
used to model segmentation tasks and its perform-
ance compared to that of CRF model, we use the 
training set to train two models, one with SVM-
HMM and the other with CRF.  

The implementations of SVM-HMM and CRF 
model we use in the paper can be found and down-
loaded respectively via Internet. 5 

To make the results comparable, we use the 
same feature templates, that is feature template (a)-
(c). However, SVM-HMM takes interactions be-
tween nearby labels into the model, which means 
there is a label bigram feature template implicitly 
used in the SVM-HMM. So when training the CRF 
model we also use explicitly the label bigram fea-

                                                           
5 http://www.cs.cornell.edu/People/tj/svm_light/ 
svm_hmm.html, and http://sourceforge.net/projects/crfpp/ 

ture template to model interactions between nearby 
labels6.   

For the SVM-HMM model, we set ε to 0.25. 
This is a parameter to control the accuracy of the 
solution of the optimization problem. We set C to 
half of the number of the sentences in the training 
data according to our understanding to the models. 
The C parameter is set to trade off the margin size 
and training error. For CRF model, we use all pa-
rameters to their default value.  We do not do pa-
rameter optimizations to both models with respect 
their performances.   

We use test set A to test both models. For both 
models, we use the same cutoff frequency to fea-
ture extraction. Only those features that are seen 
more than three times in texts are actually used in 
the models. The performances of the two models 
are shown in Table-2, which shows SVM-HMM 
can be used to model Chinese segmentation tasks 

                                                           
6 specified by the B template as the toolkit requires.  

Table-2. Performance of the SVM-HMM  and CRF model 
Models P R F Riv Roov SA 

SVM-HMM 0.9566 0.9528 0.9547 0.9620 0.7041 0.5749 
CRF 0.9541 0.9489 0.9515 0.9570 0.7185 0.5570 

 
Table-3. Performance of the basic model 

test set P R F Riv Roov SA 
A 0.9566 0.9528 0.9547 0.9620 0.7041 0.5749 
B 0.9135 0.9098 0.9116 0.9295 0.5916 0.4698 
C 0.7561 0.8394 0.7956 0.9325 0.3487 0.2530 

 
Table-4. Performance of the type sensitive model 

test set P R F Riv Roov SA 
A 0.9576 0.9522↓ 0.9549 0.9610↓ 0.7161 0.5766 
B 0.9176 0.9095↓ 0.9136 0.9273↓ 0.6228 0.4832 
C 0.9141 0.8975 0.9057 0.9381 0.6839 0.4287 

 
Table-5. Performance of the χ2-based model 

test set P R F Riv Roov SA 
A 0.9585 0.9518↓ 0.9552 0.9602↓ 0.7274 0.5736↓ 
B 0.9211 0.8971↓ 0.9090↓ 0.9104↓ 0.6825 0.4648↓ 
C 0.9180 0.8895↓ 0.9035↓ 0.9209↓ 0.7239 0.4204↓ 

 
Table-6. Performance of the bootstrapping model 

test set P R F Riv Roov SA 
B 0.9260 0.9183 0.9221 0.9329 0.6830 0.5120 
C 0.9113↓ 0.9268 0.9190 0.9482 0.8138 0.5039 
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and comparable results can be achieved like CRF 
model.   

6.2 The baseline model 

To test how well the segmentation model applies to 
other domain texts, we only use the SVM-HMM 
model with the same parameters as in section 6.1 
and the same cutoff frequency.  

For a baseline model, we only use feature tem-
plates (a)-(c), the performances of the basic model 
on the three test sets are shown in Table-3. 

For the test set A, which is from the same do-
main as the training data, an F-score 0.95 is 
achieved. 

For test set B and C, both are from different do-
mains with the training data, the F-scores drop sig-
nificantly. Especially the OOV recalls fall 
drastically, which means the model is very sensi-
tive to the domain variation. Even the IV recalls 
fall significantly. This also shows the domain port-
ability of the segmentation model is still an obsta-
cle for the segmentation model to be used in cross-
domain applications.  

6.3 The type features 

As we noted before, there are different encoding 
types for the Arabic numbers, Latin letters and 
punctuations. Especially, test set C is full of single-
byte version of such numbers, letters and punctua-
tions. The introduction of type features may im-
prove performance of the model to the test set. 
Therefore, we use the feature tem-plates (a)-(f) to 
train a type sensitive model with the training data. 
This gives segmentation results shown in table-4. 
(The symbol ↓ means performance drop compared 
with a previous model) 

As we can see, for test set A, the type features 
almost contribute nothing; the F-score has a very 
slight change. The IV recall even has a slight fall 
while the OOV recall rises a little. 

For test set C, the type features bring about very 
significant improvement. The F-score rises from 
0.7956 to 0.9057, and the OOV recall rises from 
0.3487 to 0.6839. Different with the test set A, 
even the IV recall for test set C rises slightly. The 
reason of such a big improvement lies in that there 
are many single-byte digits, letters and punctua-
tions in the texts.    

 Unlike test set C, there are not so many single-
byte characters in test set B. Even though the OOV 

recall does rise significantly, the change in OOV 
recall for test set B is not as much as that for test 
set B. Type features contribute much to cross do-
main texts. 

6.4 The χ2-based model 

Compared with OOV recall for test set A, the OOV 
recall for test set B and C are still lower. To pro-
mote the OOV recall, we use the feature templates 
(a)-(h) to train a χ2-based model with the training 
data. This gives segmentation results shown in ta-
ble-5.   

  As we see from table-5, the introduction of the 
χ2 features does not improve the overall perform-
ance. Only F-score for test set A improves slightly, 
the other two get bad. But the OOV recall for the 
three test sets does improve, especially for test set 
B and C. The IV recalls for the three test sets drop, 
especially for test set B and C. That's why the F 
scores for test B and C drop.  

6.5 Bootstrapping  

To increase the OOV recall and prevent the IV re-
call from falling, we use the bootstrapping strategy 
in section 5. 

We set K = 3 and run the algorithm shown in 
section 5. We just do the bootstrapping to test set B 
and C, because what we are concerned with in this 
paper is to improve the performance of the model 
to different domains. This gives results shown in 
Table-6. As we see in Table-6, almost all evalua-
tion measurements get improved. Not only the 
OOV recall improves significantly, but also the IV 
recall improves compared with the type-sensitive 
model.  

To illustrate how the bootstrapping strategy 
works, we also present the performance of the in-
termediate models on test set C in each pass of the 
bootstrapping in table-7 and table-8. Table-7 is 
results of the intermediate χ2-based models for test 
set C. Table-8 is results of the intermediate non-
 χ2-based models for test set C. Figure-2 illustrates 
changes in OOV recalls of both non- χ2-based 
models and χ2-based models as the bootstrapping 
algorithm advances for test set C. Figure-3 illus-
trates changes in IV re-calls of both non- χ2-based 
models and χ2-based models for test set C. As we 
can see from Figure-2 and Figure-3, the ability of 
non- χ2-based model gets improved to the OOV 
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recall of the χ2-based model as the bootstrapping 
algorithm advances. The abilities to recall IV 
words of both models improve, and even the final 
IV recall of the χ2-based model surpasses the IV 
recall of the type sensitive model shown in Table-3. 
(0.9412 vs. 0.9381). To save the space of the paper, 
we do not list all the intermediate results for test 
set B. We just show the changes in OOV recalls 
and IV recalls as illustrated in Figure-4 and Figure-
5. One can see from Figure-4 and Figure-5, the 
bootstrapping strategy also works for test set B in a 
similar way as it works for test set C.  
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Figure-2 the Changes in OOV recalls for test set C 
as boot-strapping algorithm advances 
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Figure-3 the Changes in IV recalls for test set C as 
boot-strapping algorithm advances 
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Figure-4 the Changes in OOV recalls for test set B 
as boot-strapping algorithm advances 

 
Table-7. Performance of the intermediate χ2-based models for test set C 

I P R F Riv Roov SA 
0 0.9180 0.8895 0.9035 0.9209 0.7239 0.4204
1 0.9084 0.9186 0.9134 0.9387 0.8126 0.4762
2 0.9083 0.9187 0.9134 0.9386 0.8138 0.4822
3 0.9068 0.9208 0.9137 0.9412 0.8131 0.4816

 
Table-8. Performance of the intermediate non-χ2-based models  

for test set C 
I P R F Riv Roov SA 
0 0.9141 0.8975 0.9057 0.9381 0.6839 0.4287
1 0.9070 0.9249 0.9159 0.9478 0.8044 0.4869
2 0.9093 0.9254 0.9173 0.9476 0.8087 0.4947
3 0.9111 0.9266 0.9188 0.9481 0.8133 0.5030
4 0.9113 0.9268 0.9190 0.9482 0.8138 0.5039

 
Table-9. Performance of the intersection of the intermediate χ2-based 

model and non-χ2-based model for test C 
I P R F Riv Roov SA 
0 0.9431 0.9539 0.9485 0.9664 0.8832 0.6783
1 0.9259 0.9434 0.9345 0.9609 0.8491 0.5992
2 0.9178 0.9379 0.9277 0.9582 0.8316 0.5724
3 0.9143 0.9347 0.9244 0.9559 0.8250 0.5616
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Figure-5 the Changes in IV recalls for test set B 
as boot-strapping algorithm advances 

 
As we mentioned in section 5, the intersection of 
the results produced by χ2-based model and non-
 χ2-based model has both high OOV recall and 
high IV recall, that’s the reason why bootstrapping 
strategy works. This can be seen from Table-9. 
However, as the algorithm progresses, both the 
OOV recall and IV recall of the intersection results 
fall, but are still higher than OOV recall and IV 
recall of the final results on the whole test set. 

As we said before, we give also sentence accu-
racies of all segmentation models. With the χ2 sta-
tistics and bootstrapping strategies, the sentence 
accuracy also rises. 2.8% more sentences on test 
set B and 7.5% more sentences on test set C are 
correctly segmented, compared with the type-
sensitive model.     

7 Conclusions 

Sequence labeling models are widely used in Chi-
nese word segmentation recently. High perform-
ance can be achieved when the test data is from the 
same domain as the training data. However, if the 
test data is assumed to be from other domains than 
the domain of the training data, the segmentation 
models always underperform substantially. To en-
hance the portability of the sequence labeling seg-
mentation models to other domains, this paper 
proposes to use χ2 statistics and bootstrapping 
strategy. The experiment shows the approach sig-
nificantly increases both IV recall and OOV recall 
when processing texts from different domains.  

We also show in this paper that hidden Markov 
support vector machine which is also a sequence 
labeling model like CRF can be used to model the 
Chinese word segmentation problem, by which 

high F-score results can be obtained like those of 
CRF model. 

One concern to the bootstrapping approach in 
this paper is that it takes time to work with, which 
will make it difficult to be incorporated into lan-
guage applications that need to responses in real 
time. However, we believe that such an approach 
can be used in offline contexts. For online use in a 
specified domain, one can first train models by 
using the approach in the paper with prepared raw 
texts from the specified domain and then use the 
final non-χ2-based model to segment new texts of 
the same domain, since statistics of the target do-
main are more or less injected into the model by 
the iteration of bootstrapping.    
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