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Abstract

Conventional wisdom dictates that syn-
chronous context-free grammars (SCFGs)
must be converted to Chomsky Normal Form
(CNF) to ensure cubic time decoding. For ar-
bitrary SCFGs, this is typically accomplished
via the synchronous binarization technique of
(Zhang et al., 2006). A drawback to this ap-
proach is that it inflates the constant factors as-
sociated with decoding, and thus the practical
running time. (DeNero et al., 2009) tackle this
problem by defining a superset of CNF called
Lexical Normal Form (LNF), which also sup-
ports cubic time decoding under certain im-
plicit assumptions. In this paper, we make
these assumptions explicit, and in doing so,
show that LNF can be further expanded to
a broader class of grammars (called “scope-
3”) that also supports cubic-time decoding.
By simply pruning non-scope-3 rules from a
GHKM-extracted grammar, we obtain better
translation performance than synchronous bi-
narization.

1 Introduction

At the heart of bottom-up chart parsing (Younger,
1967) is the following combinatorial problem. We
have a context-free grammar (CFG) rule (for in-
stance, S → NP VP PP) and an input sentence of
length n (for instance, “on the fast jet ski of mr
smith”). During chart parsing, we need to apply the
rule to all relevant subspans of the input sentence.
See Figure 1. For this particular rule, there are

(
n+1

4

)
application contexts, i.e. ways to choose the sub-
spans. Since the asymptotic running time of chart
parsing is at least linear in this quantity, it will take
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Figure 1: A demonstration of application contexts. There
are
(
n+1

4

)
application contexts for the CFG rule “S→ NP

VP PP”, where n is the length of the input sentence.

at least O(
(
n+1

4

)
) = O(n4) time if we include this

rule in our grammar.
Fortunately, we can take advantage of the fact that

any CFG has an equivalent representation in Chom-
sky Normal Form (CNF). In CNF, all rules have
the form X → Y Z or X → x, where x is a termi-
nal and X, Y, Z are nonterminals. If a rule has the
form X → Y Z, then there are only

(
n+1

3

)
applica-

tion contexts, thus the running time of chart parsing
is O(

(
n+1

3

)
) = O(n3) when applied to CNF gram-

mars.
A disadvantage to CNF conversion is that it in-

creases both the overall number of rules and the
overall number of nonterminals. This inflation of
the “grammar constant” does not affect the asymp-
totic runtime, but can have a significant impact on
the performance in practice. For this reason, (DeN-
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Figure 2: A demonstration of application contexts for
rules with lexical anchors. There are O(n) application
contexts for CFG rule “S → the NPB of NNP”, and
O(n2) application contexts for CFG rule “S → the JJ
NPB of NNP”, if we assume that the input sentence has
length n and contains no repeated words.

ero et al., 2009) provide a relaxation of CNF called
Lexical Normal Form (LNF). LNF is a superclass of
CNF that also allows rules whose right-hand sides
have no consecutive nonterminals. The intuition is
that the terminals provide anchors that limit the ap-
plicability of a given rule. For instance, consider the
rule NP→ the NPB of NNP. See Figure 2. Because
the terminals constrain our choices, there are only
two different application contexts. The implicit as-
sumption is that input sentences will not repeat the
same word more than a small constant number of
times. If we make the explicit assumption that all
words of an input sentence are unique, then there
are O(n2) application contexts for a “no consecu-
tive nonterminals” rule. Thus under this assumption,
the running time of chart parsing is stillO(n3) when
applied to LNF grammars.

But once we make this assumption explicit, it be-
comes clear that we can go even further than LNF
and still maintain the cubic bound on the runtime.
Consider the rule NP → the JJ NPB of NNP. This
rule is not LNF, but there are still only O(n2) ap-
plication contexts, due to the anchoring effect of the
terminals. In general, for a rule of the form X→ γ,
there are at most O(np) application contexts, where
p is the number of consecutive nonterminal pairs in

the string X ·γ· X (where X is an arbitrary nontermi-
nal). We refer to p as the scope of a rule. Thus chart
parsing runs in time O(nscope(G)), where scope(G)
is the maximum scope of any of the rules in CFG G.
Specifically, any scope-3 grammar can be decoded
in cubic time.

Like (DeNero et al., 2009), the target of our in-
terest is synchronous context-free grammar (SCFG)
decoding with rules extracted using the GHKM al-
gorithm (Galley et al., 2004). In practice, it turns out
that only a small percentage of the lexical rules in
our system have scope greater than 3. By simply re-
moving these rules from the grammar, we can main-
tain the cubic running time of chart parsing without
any kind of binarization. This has three advantages.
First, we do not inflate the grammar constant. Sec-
ond, unlike (DeNero et al., 2009), we maintain the
synchronous property of the grammar, and thus can
integrate language model scoring into chart parsing.
Finally, a system without binarized rules is consid-
erably simpler to build and maintain. We show that
this approach gives us better practical performance
than a mature system that binarizes using the tech-
nique of (Zhang et al., 2006).

2 Preliminaries

Assume we have a global vocabulary of symbols,
containing the reserved substitution symbol ♦. De-
fine a sentence as a sequence of symbols. We will
typically use space-delimited quotations to represent
example sentences, e.g. “the fast jet ski” rather than
〈the, fast, jet, ski〉. We will use the dot operator to
represent the concatenation of sentences, e.g. “the
fast” · “jet ski” = “the fast jet ski”.

Define the rank of a sentence as the count
of its ♦ symbols. We will use the no-
tation SUB(s, s1, ..., sk) to denote the substitu-
tion of k sentences s1, ..., sk into a k-rank sen-
tence s. For instance, if s = “the ♦ ♦ of
♦”, then SUB(s, “fast”, “jet ski”, “mr smith”) =
“the fast jet ski of mr smith”.

To refer to a subsentence, define a span as a pair
[a, b] of nonnegative integers such that a < b. For
a sentence s = 〈s1, s2, ..., sn〉 and a span [a, b] such
that b ≤ n, define s[a,b] = 〈sa+1, ..., sb〉.
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NP -> the JJ NN of NNP

PP -> on NP

JJ -> fast NN -> jet ski NNP -> mr smith

NP -> < the JJ1 NN2 of NNP3, le NN2 JJ1 de NNP3 >

PP -> < on NP1, sur NP1>

JJ -> < fast, vite > NN -> < jet ski, jet ski > NNP -> < mr smith, m smith >

Figure 3: An example CFG derivation (above) and an ex-
ample SCFG derivation (below). Both derive the sen-
tence SUB(“on ♦”, SUB( “the ♦ ♦ of ♦”, “fast”, “jet
ski”, “mr smith”) ) = “on the fast jet ski of mr smith”.
The SCFG derivation simultaneously derives the auxil-
iary sentence “sur le jet ski vite de m smith”.

3 Minimum Derivation Cost

Chart parsing solves a problem which we will re-
fer to as Minimum Derivation Cost. Because we
want our results to be applicable to both CFG decod-
ing and SCFG decoding with an integrated language
model, we will provide a somewhat more abstract
formulation of chart parsing than usual.

In Figure 3, we show an example of a CFG deriva-
tion. A derivation is a tree of CFG rules, constructed
so that the preconditions (the RHS nonterminals) of
any rule match the postconditions (the LHS nonter-
minal) of its child rules. The purpose of a derivation
is to derive a sentence, which is obtained through
recursive substitution. In the example, we substitute
“fast”, “jet ski”, and “mr smith” into the lexical pat-
tern “the ♦ ♦ of ♦” to obtain “the fast jet ski of mr
smith”. Then we substitute this result into the lexi-
cal pattern “on ♦” to obtain “on the fast jet ski of mr
smith”.

The cost of a derivation is simply the sum of the
base costs of its rules. Thus the cost of the CFG
derivation in Figure 3 is C1 + C2 + C3 + C4 + C5,
where C1 is the base cost of rule “PP→ on NP”, etc.
Notice that this cost can be distributed locally to the
nodes of the derivation (Figure 4).

An SCFG derivation is similar to a CFG deriva-

NP -> the JJ NN of NNP

PP -> on NP

JJ -> fast NN -> jet ski NNP -> mr smith

C3

C4

C5

C2

C1

Figure 4: The cost of the CFG derivation in Figure 3 is
C1 + C2 + C3 + C4 + C5, where C1 is the base cost
of rule “PP → on NP”, etc. Notice that this cost can be
distributed locally to the nodes of the derivation.

tion, except that it simultaneously derives two sen-
tences. For instance, the SCFG derivation in Fig-
ure 3 derives the sentence pair 〈 “on the fast jet ski
of mr smith”, “sur le jet ski vite de m smith” 〉. In
machine translation, often we want the cost of the
SCFG derivation to include a language model cost
for this second sentence. For example, the cost of the
SCFG derivation in Figure 3 might beC1+C2+C3+
C4+C5+LM(sur le)+LM(le jet)+LM(jet ski)+
LM(ski de) + LM(de m) + LM(m smith), where
LM is the negative log of a 2-gram language model.
This new cost function can also be distributed lo-
cally to the nodes of the derivation, as shown in Fig-
ure 5. However, in order to perform the local com-
putations, we need to pass information (in this case,
the LM boundary words) up the tree. We refer to
this extra information as carries. Formally, define a
carry as a sentence of rank 0.

In order to provide a chart parsing formulation
that applies to both CFG decoding and SCFG de-
coding with an integrated language model, we need
abstract definitions of rule and derivation that cap-
ture the above concepts of pattern, postcondition,
preconditions, cost, and carries.

3.1 Rules

Define a rule as a tuple 〈k, s∗, X, π,Γ, c〉, where k is
a nonnegative integer called the rank, s∗ is a rank-k
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NP -> < the JJ1 NN2 of NNP3, 
le NN2 JJ1 de NNP3 >

PP -> < on NP1, 
sur NP1>

JJ -> < fast, 
vite >

NN -> < jet ski, 
jet ski >

NNP -> < mr smith, 
m smith >

m * smith

C5 + LM(m smith)C4 + LM(jet ski)C3

vite * vite
jet * ski

le * smith

C2 + LM(le jet) 
+ LM(ski vite) 
+ LM(vite de) 
+ LM(de m)C1 + LM(sur le)

Figure 5: The cost of the SCFG derivation in Figure 3
(with an integrated language model score) can also be dis-
tributed to the nodes of the derivation, but to perform the
local computations, information must be passed up the
tree. We refer to this extra information as a carry.

sentence called the pattern 1, X is a symbol called
the postcondition, π is a k-length sentence called the
preconditions, Γ is a function (called the carry func-
tion) that maps a k-length list of carries to a carry,
and c is a function (called the cost function) that
maps a k-length list of carries to a real number. Fig-
ure 6 shows a CFG and an SCFG rule, deconstructed
according to this definition. 2 Note that the CFG rule
has trivial cost and carry functions that map every-
thing to a constant. We refer to such rules as simple.

We will use post(r) to refer to the postcondition
of rule r, and pre(r, i) to refer to the ith precondition
of rule r.

Finally, define a grammar as a finite set of rules.
A grammar is simple if all its rules are simple.

3.2 Derivations

For a grammarR, define deriv(R) as the smallest set
that contains every tuple 〈r, δ1, ..., δk〉 satisfying the
following conditions:

1For simplicity, we also impose the condition that “♦” is not
a valid pattern. This is tantamount to disallowing unary rules.

2One possible point of confusion is why the pattern of the
SCFG rule refers only to the primary sentence, and not the aux-
iliary sentence. To reconstruct the auxiliary sentence from an
SCFG derivation in practice, one would need to augment the
abstract definition of rule with an auxiliary pattern. However
this is not required for our theoretical results.

NP -> < the JJ1 NN2 of NNP3, 
le NN2 JJ1 de NNP3 >

postcondition preconditions rank

pattern the ◊ ◊ of ◊

carry 
function

Γ( “u*v” , ”w*x” , ”y*z” )
= “le * z” 

cost 
function

c( “u*v” , ”w*x” , ”y*z” ) 
= C + LM(w|le) + LM(u|x) 

+ LM(de|v) + LM(y|de)

NP -> the JJ NN of NNP

postcondition preconditions

pattern the ◊ ◊ of ◊

carry 
function

Γ( “” , ”” , ”” ) = “” 

cost 
function

c( “” , ”” , ”” ) = C

rank = 3

Figure 6: Deconstruction of a CFG rule (left) and SCFG
rule (right) according to the definition of rule in Sec-
tion 3.1. The carry function of the SCFG rule computes
boundary words for a 2-gram language model. In the cost
functions, C is a real number and LM returns the negative
log of a language model query.

• r ∈ R is a k-rank rule

• δi ∈ deriv(R) for all 1 ≤ i ≤ k

• pre(r, i) = post(ri) for all 1 ≤ i ≤ k, where ri
is the first element of tuple δi.

An R–derivation is an element of deriv(R). Con-
sider a derivation δ = 〈r, δ1, ..., δk〉, where rule
r = 〈k, s∗, X, π,Γ, c〉. Define the following prop-
erties:

post(δ) = post(r)

sent(δ) = SUB(s∗, sent(δ1), ..., sent(δk))

carry(δ) = Γ(carry(δ1), ..., carry(δk))

cost(δ) = c(carry(δ1), ..., carry(δk)) +

k∑
j=1

cost(δj)

In words, we say that derivation δ derives sen-
tence sent(δ). If for some span σ of a particular sen-
tence s, it holds that sent(δ) = sσ, then we will say
that δ is a derivation over span σ.

3.3 Problem Statement
The Minimum Derivation Cost problem is the fol-
lowing. Given a set R of rules and an input sentence
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on the fast jet ski of mr smith

the ◊ ◊ of ◊

0 1 2 3 4 5 6 7 8

Figure 7: An application context for the pattern “the ♦ ♦
of ♦” and the sentence “on the fast jet ski of mr smith”.

s, find the minimum cost of any R–derivation that
derives s. In other words, compute:

MinDCost(R, s) , min
δ∈deriv(R)|sent(δ)=s

cost(δ)

4 Application Contexts

Chart parsing solves Minimum Derivation Cost via
dynamic programming. It works by building deriva-
tions over increasingly larger spans of the input sen-
tence s. Consider just one of these spans σ. How do
we build a derivation over that span?

Recall that a derivation takes the form
〈r, δ1, ..., δk〉. Given the rule r and its pattern
s∗, we need to choose the subderivations δi such
that SUB(s∗, sent(δ1), ..., sent(δk)) = sσ. To do
so, we must match the pattern to the span, so that
we know which subspans we need to build the
subderivations over. Figure 7 shows a matching
of the pattern “the ♦ ♦ of ♦” to span [1, 8] of the
sentence “on the fast jet ski of mr smith”. It tells
us that we can build a derivation over span [1, 8] by
choosing this rule and subderivations over subspans
[2, 3], [3, 5], and [6, 8].

We refer to these matchings as application con-
texts. Formally, given two sentences s∗ and s
of respective lengths m and n, define an 〈s∗, s〉–
context as an monotonically increasing sequence
〈x0, x1, ..., xm〉 of integers between 0 and n such
that for all i:

s∗[i−1,i] 6= ♦ implies that s∗[i−1,i] = s[xi−1,xi]

The context shown in Figure 7 is 〈1, 2, 3, 5, 6, 8〉.
Use cxt(s∗, s) to denote the set of all 〈s∗, s〉–
contexts.

An 〈s∗, s〉–context x = 〈x0, x1, ..., xm〉 has the
following properties:

span(x; s∗, s) = [x0, xm]

subspans(x; s∗, s) = 〈[x0, x1], ..., [xm−1, xm]〉

Moreover, define varspans(x; s∗, s) as the sub-
sequence of subspans(x; s∗, s) including only
[xi−1, xi] such that s∗[i−1,i] = ♦. For the context
x shown in Figure 7:

span(x; s∗, s) = [1, 8]

subspans(x; s∗, s) = 〈[1, 2], [2, 3], [3, 5], [5, 6], [6, 8]〉
varspans(x; s∗, s) = 〈[2, 3], [3, 5], [6, 8]〉

An application context x ∈ cxt(s∗, s) tells us that
we can build a derivation over span(x) by choosing
a rule with pattern s∗ and subderivations over each
span in varspans(x; s∗, s).

5 Chart Parsing Algorithm

We are now ready to describe the chart parsing al-
gorithm. Consider a span σ of our input sentence
s and assume that we have computed and stored all
derivations over any subspan of σ. A naive way to
compute the minimum cost derivation over span σ is
to consider every possible derivation:

1. Choose a rule r = 〈k, s∗, X, π,Γ, c〉.

2. Choose an application context x ∈ cxt(s∗, s)
such that span(x; s∗, s) = σ.

3. For each subspan σi ∈ varspans(x; s∗, s),
choose a subderivation δi such that post(δi) =
pre(r, i).

The key observation here is the following. In or-
der to score such a derivation, we did not actually
need to know each subderivation in its entirety. We
merely needed to know the following information
about it: (a) the subspan that it derives, (b) its post-
condition, (c) its carry.
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Chart parsing takes advantage of the above obser-
vation to avoid building all possible derivations. In-
stead it groups together derivations that share a com-
mon subspan, postcondition, and carry, and records
only the minimum cost for each equivalence class.
It records this cost in an associative map referred to
as the chart.

Specifically, assume that we have computed and
stored the minimum cost of every derivation class
〈σ′, X ′, γ′〉, where X ′ is a postcondition, γ′ is a
carry, and σ′ is a proper subspan of σ. Chart pars-
ing computes the minimum cost of every derivation
class 〈σ,X, γ〉 by adapting the above naive method
as follows:

1. Choose a rule r = 〈k, s∗, X, π,Γ, c〉.

2. Choose an application context x ∈ cxt(s∗, s)
such that span(x; s∗, s) = σ.

3. For each subspan σi ∈ varspans(x; s∗, s),
choose a derivation class 〈σi, Xi, γi〉 from the
chart such that Xi = pre(r, i).

4. Update3 the cost of derivation class
〈σ, post(r),Γ(γ1, ..., γk)〉 with:

c(γ1, ..., γk) +
k∑
i=1

chart[σi, Xi, γi]

where chart[σi, Xi, γi] refers to the stored
cost of derivation class 〈σi, Xi, γi〉.

By iteratively applying the above method to all sub-
spans of size 1, 2, etc., chart parsing provides an
efficient solution for the Minimum Derivation Cost
problem.

6 Runtime Analysis

At the heart of chart parsing is a single operation:
the updating of a value in the chart. The running
time is linear in the number of these chart updates.
4 The typical analysis counts the number of chart
updates per span. Here we provide an alternative

3Here, update means “replace the cost associated with the
class if the new cost is lower.”

4This assumes that you can linearly enumerate the relevant
updates. One convenient way to do this is to frame the enumer-
ation problem as a search space, e.g. (Hopkins and Langmead,
2009)

analysis that counts the number of chart updates per
rule. This provides us with a finer bound with prac-
tical implications.

Let r be a rule with rank k and pattern s∗. Con-
sider the chart updates involving rule r. There is
(potentially) an update for every choice of (a) span,
(b) application context, and (c) list of k derivation
classes. If we let C be the set of possible carries,
then this means there are at most |cxt(s∗, s)| · |C|k
updates involving rule r. 5 If we are doing beam de-
coding (i.e. after processing a span, the chart keeps
only the B items of lowest cost), then there are at
most |cxt(s∗, s)| ·Bk updates.

We can simplify the above by providing an upper
bound for |cxt(s∗, s)|. Define an ambiguity as the
sentence “♦ ♦”, and define scope(s∗) as the number
of ambiguities in the sentence “♦” ·s∗· “♦”. The
following bound holds:

Lemma 1. Assume that a zero-rank sentence s does
not contain the same symbol more than once. Then
|cxt(s∗, s)| ≤ |s|scope(s∗).

Proof. Suppose s∗ and s have respective lengths m
and n. Consider 〈x0, x1, ..., xm〉 ∈ cxt(s∗, s). Let
I be the set of integers i between 1 and m such that
s∗i 6= ♦ and let I+ be the set of integers i between
0 and m − 1 such that s∗i+1 6= ♦. If i ∈ I , then we
know the value of xi, namely it is the unique integer
j such that sj = s∗i . Similarly, if i ∈ I+, then the
value of xi must be the unique integer j such that
sj = s∗i+1. Thus the only nondetermined elements
of context xi are those for which i 6∈ I ∪ I+. Hence
|cxt(s∗, s)| ≤ |s|{0,1,...,m}−I−I+ = |s|scope(s∗).

Hence, under the assumption that the input sen-
tence s does not contain the same symbol more than
once, then there are at most |s|scope(s∗) · |C|k chart
updates involving a rule with pattern s∗.

For a rule r with pattern s∗, define scope(r) =
scope(s∗). For a grammar R, define scope(R) =
maxr∈R scope(r) and rank(R) = maxr∈R rank(r).

Given a grammar R and an input sentence s,
the above lemma tells us that chart parsing makes

5For instance, in SCFG decoding with an integrated j-gram
language model, a carry consists of 2(j − 1) boundary words.
Generally it is assumed that there are O(n) possible choices for
a boundary word, and hence O(n2(j−1)) possible carries.
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O(|s|scope(R) · |C|rank(R)) chart updates. If we re-
strict ourselves to beam search, than chart parsing
makes O(|s|scope(R)) chart updates. 6

6.1 On the Uniqueness Assumption
In practice, it will not be true that each input sen-
tence contains only unique symbols, but it is not too
far removed from the practical reality of many use
cases, for which relatively few symbols repeat them-
selves in a given sentence. The above lemma can
also be relaxed to assume only that there is a con-
stant upper bound on the multiplicity of a symbol
in the input sentence. This does not affect the O-
bound on the number of chart updates, as long as we
further assume a constant limit on the length of rule
patterns.

7 Scope Reduction

From this point of view, CNF binarization can be
viewed as a specific example of scope reduction.
Suppose we have a grammar R of scope p. See Fig-
ure 8. If we can find a grammar R̂ of scope p̂ < p
which is “similar” to grammar R, then we can de-
code in O(np̂) rather than O(np) time.

We can frame the problem by assuming the fol-
lowing parameters:

• a grammar R

• a desired scope p

• a loss function Λ that returns a (non-negative
real-valued) score for any two grammars R and
R̂; if Λ(R, R̂) = 0, then the grammars are con-
sidered to be equivalent

A scope reduction method with loss λ finds a gram-
mar R̂ such that scope(R̂) ≤ p and Λ(R, R̂) = λ.
A scope reduction method is lossless when its loss
is 0.

In the following sections, we will use the loss
function:

Λ(R, R̂) = |MinDCost(R, s)−MinDCost(R̂, s)|

where s is a fixed input sentence. Observe that if
Λ(R, R̂) = 0, then the solution to the Minimum

6Assuming rank(R) is bounded by a constant.

CNF LNF

Scope 3

All Grammars

Figure 8: The “scope reduction” problem. Given a gram-
mar of large scope, find a similar grammar of reduced
scope.

Derivation Cost problem is the same for both R and
R̂. 7

7.1 CNF Binarization

A rule r is CNF if its pattern is “♦♦” or “x”, where x
is any non-substitution symbol. A grammar is CNF
if all of its rules are CNF. Note that the maximum
scope of a CNF grammar is 3.

CNF binarization is a deterministic process that
maps a simple grammar to a CNF grammar. Since
binarization takes subcubic time, we can decode
with any grammar R in O(n3) time by converting
R to CNF grammar R̂, and then decoding with R̂.
This is a lossless scope reduction method.

What if grammar R is not simple? For SCFG
grammars, (Zhang et al., 2006) provide a scope
reduction method called synchronous binarization
with quantifiable loss. Synchronous binarization se-
lects a “binarizable” subgrammar R′ of grammar R,
and then converts R′ into a CNF grammar R̂. The
cost and carry functions of these new rules are con-
structed such that the conversion from R′ to R̂ is
a lossless scope reduction. Thus the total loss of
the method is |MinDCost(R, s)−MinDCost(R′, s)|.
Fortunately, they find in practice thatR′ usually con-
tains the great majority of the rules of R, thus they

7Note that if we want the actual derivation and not just its
cost, then we need to specify a more finely grained loss func-
tion. This is omitted for clarity and left as an exercise.
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a ◊ ◊
◊ ◊ a

a ◊ ◊ b
◊ a ◊ ◊
◊ ◊ a ◊
◊ ◊ ◊ a
a ◊ ◊ ◊
a b ◊ ◊
◊ ◊ a b

a ◊ ◊ b ◊
a ◊ ◊ b c

a b ◊ ◊ c
◊ a ◊ ◊ b
a ◊ b ◊ ◊
◊ ◊ a ◊ b
◊ ◊ ◊ a b
a ◊ ◊ ◊ b

a ◊ ◊ b ◊ c
a ◊ ◊ ◊ ◊ b

a ◊ ◊ b c ◊ ◊ d
a ◊ ◊ ◊ ◊ b ◊ c ◊ d
a ◊ ◊ b ◊ ◊ c ◊ ◊ d

Figure 9: A selection of rule patterns that are scope ≤ 3
but not LNF or CNF.

assert that this loss is negligable.
A drawback of their technique is that the resulting

CNF grammar contains many more rules and post-
conditions than the original grammar. These con-
stant factors do not impact asymptotic performance,
but do impact practical performance.

7.2 Lexical Normal Form

Concerned about this inflation of the grammar con-
stant, (DeNero et al., 2009) consider a superset of
CNF called Lexical Normal Form (LNF). A rule is
LNF if its pattern does not contain an ambiguity as
a proper subsentence (recall that an ambiguity was
defined to be the sentence “♦ ♦”). Like CNF, the
maximum scope of an LNF grammar is 3. In the
worst case, the pattern s∗ is “♦ ♦”, in which case
there are three ambiguities in the sentence “♦” ·s∗·
“♦”.

(DeNero et al., 2009) provide a lossless scope
reduction method that maps a simple grammar to
an LNF grammar, thus enabling cubic-time decod-
ing. Their principal objective is to provide a scope
reduction method for SCFG that introduces fewer
postconditions than (Zhang et al., 2006). However
unlike (Zhang et al., 2006), their method only ad-
dresses simple grammars. Thus they cannot inte-
grate LM scoring into their decoding, requiring them
to rescore the decoder output with a variant of cube
growing (Huang and Chiang, 2007).
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Figure 10: Breakdown of rules by scope (average per sen-
tence in our test sets). In practice, most of the lexical rules
applicable to a given sentence (95% for Arabic-English
and 85% for Chinese-English) are scope 3 or less.

7.3 Scope Pruning

To exercise the power of the ideas presented in this
paper, we experimented with a third (and very easy)
scope reduction method called scope pruning. If we
consider the entire space of scope-3 grammars, we
see that it contains a much richer set of rules than
those permitted by CNF or LNF. See Figure 9 for
examples. Scope pruning is a lossy scope reduc-
tion method that simply takes an arbitrary grammar
and prunes all rules with scope greater than 3. By
not modifying any rules, we preserve their cost and
carry functions (enabling integrated LM decoding),
without increasing the grammar constant. The prac-
tical question is: how many rules are we typically
pruning from the original grammar?

We experimented with two pretrained syntax-
based machine translation systems with rules ex-
tracted via the GHKM algorithm (Galley et al.,
2004). The first was an Arabic-English system, with
rules extracted from 200 million words of parallel
data from the NIST 2008 data collection, and with
a 4-gram language model trained on 1 billion words
of monolingual English data from the LDC Giga-
word corpus. We evaluated this system’s perfor-
mance on the NIST 2008 test corpus, which con-
sists of 1357 Arabic sentences from a mixture of
newswire and web domains, with four English refer-
ence translations. The second system was a Chinese-
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Figure 11: Speed-quality tradeoff curves comparing the baseline scope reduction method of synchronous binarization
(dark gray diamonds) with scope-3 pruning (light gray squares).

English system, with rules extracted from 16 million
words of parallel data from the mainland-news do-
main of the LDC corpora, and with a 4-gram lan-
guage model trained on monolingual English data
from the AFP and Xinhua portions of the LDC Gi-
gaword corpus. We evaluated this system’s perfor-
mance on the NIST 2003 test corpus, which con-
sists of 919 Chinese sentences, with four English
reference translations. For both systems, we report
BLEU scores (Papineni et al., 2002) on untokenized,
recapitalized output.

In practice, how many rules have scope greater
than 3? To answer this question, it is useful to dis-
tinguish between lexical rules (i.e. rules whose pat-
terns contain at least one non-substitution symbol)
and non-lexical rules. Only a subset of lexical rules
are potentially applicable to a given input sentence.
Figure 10 shows the scope profile of these applicable

rules (averaged over all sentences in our test sets).
Most of the lexical rules applicable to a given sen-
tence (95% for Arabic-English, 85% for Chinese-
English) are scope 3 or less. 8 Note, however, that
scope pruning also prunes a large percentage of non-
lexical rules.

Figure 11 compares scope pruning with the base-
line technique of synchronous binarization. To gen-
erate these speed-quality tradeoff curves, we de-
coded the test sets with 380 different beam settings.
We then plotted the hull of these 380 points, by elim-
inating any points that were dominated by another
(i.e. had better speed and quality). We found that
this simple approach to scope reduction produced
a better speed-quality tradeoff than the much more
complex synchronous binarization. 9

8For contrast, the corresponding numbers for LNF are 64%
and 53%, respectively.

9We also tried a hybrid approach in which we scope-pruned

654



8 Conclusion

In this paper, we made the following contributions:

• We provided an abstract formulation of chart
parsing that generalizes CFG decoding and
SCFG decoding with an integrated LM.

• We framed scope reduction as a first-class ab-
stract problem, and showed that CNF binariza-
tion and LNF binarization are two specific solu-
tions to this problem, each with their respective
advantages and disadvantages.

• We proposed a third scope reduction technique
called scope pruning, and we showed that it can
outperform synchronous CNF binarization for
particular use cases.

Moreover, this work gives formal expression to the
extraction heuristics of hierarchical phrase-based
translation (Chiang, 2007), whose directive not to
extract SCFG rules with adjacent nonterminals can
be viewed as a preemptive pruning of rules with
scope greater than 2 (more specifically, the prun-
ing of non-LNF lexical rules). In general, this work
provides a framework in which different approaches
to tractability-focused grammar construction can be
compared and discussed.
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