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Abstract

We define the crouching Dirichlet, hidden
Markov model (CDHMM), an HMM for part-
of-speech tagging which draws state prior dis-
tributions for each local document context.
This simple modification of the HMM takes
advantage of the dichotomy in natural lan-
guage between content and function words. In
contrast, a standard HMM draws all prior dis-
tributions once over all states and it is known
to perform poorly in unsupervised and semi-
supervised POS tagging. This modification
significantly improves unsupervised POS tag-
ging performance across several measures on
five data sets for four languages. We also show
that simply using different hyperparameter
values for content and function word states in
a standard HMM (which we call HMM+) is
surprisingly effective.

1 Introduction

Hidden Markov Models (HMMs) are simple, ver-
satile, and widely-used generative sequence models.
They have been applied to part-of-speech (POS) tag-
ging in supervised (Brants, 2000), semi-supervised
(Goldwater and Griffiths, 2007; Ravi and Knight,
2009) and unsupervised (Johnson, 2007) training
scenarios. Though discriminative models achieve
better performance in both semi-supervised (Smith
and Eisner, 2005) and supervised (Toutanova et al.,
2003) learning, there has been only limited work on
unsupervised discriminative sequence models (e.g.,
on synthetic data and protein sequences (Xu et al.,
2006)), and none to POS tagging.

The tagging accuracy of purely unsupervised
HMMs is far below that of supervised and semi-
supervised HMMs; this is unsurprising as it is still

not well understood what kind of structure is being
found by an unconstrained HMM (Headden III et al.,
2008). However, HMMs are fairly simple directed
graphical models, and it is straightforward to ex-
tend them to define alternative generative processes.
This also applies to linguistically motivated HMMs
for recovering states and sequences that correspond
more closely to those implicitly defined by linguists
when they label sentences with parts-of-speech.

One way in which a basic HMM’s structure is a
poor model for POS tagging is that there is no inher-
ent distinction between (open-class) content words
and (closed-class) function words. Here, we propose
two extensions to the HMM. The first, HMM+, is a
very simple modification where two different hyper-
parameters are posited for content states and func-
tion states, respectively. The other is thecrouch-
ing Dirichlet, hidden Markov model (CDHMM), an
extended HMM that captures this dichotomy based
on the statistical evidence that comes from context.
Content states display greater variance across lo-
cal context (e.g. sentences, paragraphs, documents),
and we capture this variance by adding a component
to the model for content states that is based on la-
tent Dirichlet allocation (Blei et al., 2003). This ex-
tension is in some ways similar to the LDAHMM
of Griffiths et al. (2005). Both models are compos-
ite in that two distributions do not mix with each
other. Unlike the LDAHMM, the generation of con-
tent states is folded into the CDHMM process.

We compare the HMM+ and CDHMM against a
basic HMM and LDAHMM on POS tagging on a
more extensive and diverse set of languages than
previous work in monolingual unsupervised POS
tagging: four languages from three families (Ger-
manic: English and German;Romance: Portuguese;
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andMayan: Uspanteko). The CDHMM easily out-
performs all other models, including HMM+, across
three measures (accuracy, F-score, and variation
of information) for unsupervised POS tagging on
most data sets. However, the HMM+ is surpris-
ingly competitive, outperforming the basic HMM
and LDAHMM, and rivaling or even passing the
CDHMM on some measures and data sets.

2 Background

The Bayesian formulation for a basic HMM (Gold-
water and Griffiths, 2007) is:

ψt|ξ ∼ Dir(ξ)
δt|γ ∼ Dir(γ)
wi|ti = t ∼ Mult(ψt)
ti|ti−1 = t ∼ Mult(δt)

Dir is the conjugate Dirichlet prior to Mult (a multi-
nomial distribution). The state transitions are gen-
erated by Mult(δt) whose priorδt is generated by
Dir(γ) with a symmetric (i.e. uniform) hyperparam-
eterγ. Emissions are generated by Mult(ψt) with
a prior ψt generated by Dir(ξ) with a symmetric
hyperparameterξ. Hyperparameter values smaller
than one encourage posteriors that are peaked, with
smaller values increasing this concentration. It is
not necessary that the hyperparameters be symmet-
ric, but this is a common approach when one wants
to be naı̈ve about the data. This is particularly ap-
propriate in unsupervised POS tagging with regard
to novel data since there won’t bea priori grounds
for favoring certain distributions over others.

There is considerable work on extensions to
HMM-based unsupervised POS tagging (see§6),
but here we concentrate on the LDAHMM (Grif-
fiths et al., 2005), which models topics and state
sequences jointly. The model is a composite of a
probabilistic topic model and an HMM in which a
single state is allocated for words generated from
the topic model. A strength of this model is that it
is able to use less supervision than previous topic
models since it does not require a stopword list.
While the topic model component still uses the bags-
of-words assumption, the joint model infers which
words are more likely to carry topical content and
which words are more likely to contribute to the
local sequence. This model is competitive with a

standard topic model, and its output is also compet-
itive when compared with a standard HMM. How-
ever, Griffiths et al. (2005) note that the topic model
component inevitably loses some finer distinctions
with respect to parts-of-speech. Though many con-
tent states such as adjectives, verbs, and nouns can
vary a great deal across documents, the topic state
groups these words together. This leads to assign-
ment of word tokens to clusters that are a poorer fit
for POS tagging. This paper shows that a model that
conflates the LDAHMM topics with content states
can significantly improve POS tagging.

3 Models

We aim to model the fact that in many languages
words can generally be grouped into function words
and content words and that these groups often
have significantly different distributions. There are
few function words and they appear frequently,
while there are many content words appearing infre-
quently. Another difference in distribution is often
implied in information retrieval by the use of stop-
word filters andtf-idf values to remove or reduce the
influence of words which occur frequently but have
low variance (i.e. their global probability is similar
to their local probability in a document).

A difference in distribution is also revealed when
the parts-of-speech are known. When no smoothing
parameters are added, the joint probability of a word
that is not ‘the’ or ‘a’ occurring with aDT tag (in
the Penn Treebank) is almost always zero. Similarly
peaked distributions are observed for other function
categories such asMD andCC. On the other hand,
the joint probability of any word occurring withNN
is much less likely to be zero and the distribution is
much less likely to be peaked.

We attempt to account for these two distributional
properties—that certain words have higher variance
across contexts (e.g. a document) and that certain
tags have more peaked emission distributions—in a
sequence model. To do this, we define thecrouching
Dirichlet, hidden Markov model1 (CDHMM). This
model, like LDAHMM, captures items of high vari-
ance across contexts, but it does so without losing

1We call our model a “crouching Dirichlet” model since it
involves a Dirichlet prior that generates distributions for certain
states as if it were “crouching” on the side.
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Figure 1: Graphical representation of relevant vari-
ables and dependencies at a given time stepi. Ob-
served wordwi is dependent on hidden stateti.
Edges to priorsθ, φ, ψ may or may not be activated
depending on the value ofti. The edge to transition
prior δ is always activated. Hyperparameters to pri-
ors are represented by dots. See§3.1 for details.

sequence distinctions, namely, a given word’s lo-
cal function via its part-of-speech. We also define
the HMM+, a simple adaptation of a basic HMM
which accounts for the latter property by using dif-
ferent priors for emissions from content and function
states.

3.1 CDHMM

The CDHMM incorporates an LDA-like module to
its graphical structure in order to capture words
and tags which have high variance across contexts.
Such tags correspond to content states. Like the
LDAHMM, the model is composite in that distribu-
tions over a single random variable are composed
of several different distribution functions which de-
pend on the value of the underlying variable.

We posit the following model (see fig. 1 for a dia-
gram of dependencies and all variables involved at a
single time step). We observe a sequence of tokens
w=(w1, . . . , wN ) that we assume is generated by
an underlying state sequencet=(t1, . . . , tN ) over a
state alphabetT with first order Markov dependen-
cies. T is a union of disjoint content statesC and
function statesF . In this composite model, the pri-
ors for the emission and transition for each step in

the sequence depend on whether statet at stepi is
t∈C or t∈F . If t∈C, the word emission is depen-
dent onφ (the content word prior) and the state tran-
sition is dependent onθ (the “topic” prior) andδ (the
transition prior). Ift∈F , the word emission proba-
bility is dependent onψ (the function word prior)
and the state transition onδ (again, the transition
prior). Therefore, ift∈F , the transition and emis-
sion structure is identical to the standard Bayesian
HMM.

To elaborate, three prior distributions are defined
globally for this model: (1)δt, the transition prior
such thatp(t̂|t, δt) = δt̂|t (2) ψt, the function word
prior such thatp(w|t, ψt) = ψw|t (3) φt, the content
word prior such thatp(w|t, φt) = φw|t. Locally for
each contextd (documents in our case), we define
θd, the topic prior such thatp(t|θd) = θt|d for t∈C.

The generative story is as follows:

1. For each statet∈T

(a) Draw a distribution over statesδt ∼
Dir(γ)

(b) If t∈C, draw a distribution over words
φt ∼ Dir(β)

(c) If t∈F , draw a distribution over words
ψt ∼ Dir(ξ)

2. For each contextd

(a) Draw a distributionθd ∼ Dir(α) over
statest∈C

(b) For each wordwi in d

i. draw ti from δti−1
◦ θd

ii. if ti∈C, then drawwi from φti , else
drawwi from ψti

For each contextd, we draw a prior distribution
θd—formally identical to the LDA topic prior—that
is defined only for the statest∈C. This prior is then
used to weight the draws for states at each word,
from δti−1

◦ θd, where we have defined the vector
valued operation◦ as follows:

(δti−1
◦ θd)ti =

{

1
Z
δti|ti−1

· θti|d ti∈C
1
Z
δti|ti−1

ti∈F

where(δti−1
◦ θd)ti is the element corresponding to

stateti in the vectorδti−1
◦ θd. Z is a normalization

constant such that the probability mass sums to one.
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Figure 2: Conditional distribution forti in the CDHMM.

The important thing to note is that the draw for
states at each word is proportional to acomposite
of (a) the product of the individual elements of the
topic and transition priors whenti∈C and (b) the
transition priors whenti∈F . The draw is propor-
tional to the product of topic and transition priors
whenti∈C because we have made a product of ex-
perts (PoE) factorization assumption (Hinton, 2002)
for tractability and to reduce the size of our model.
Without such an assumption, the transition parame-
ters would lie in a partitioned space of sizeO(|C|4)
as opposed toO(|T |2) for the current model. Fur-
thermore, this combination of a composite hidden
state space with a product of experts assumption al-
lows us to capture high variance for certain states.

To summarize, the CDHMM is a composite
model where both the observed token and the hidden
state variable are composite distributions. For the
hidden state, this means that there is a “topical” ele-
ment with high variance across contexts that is em-
bedded in the state sequence for a subset of events.
We embed this element through a PoE assumption
where transitions into content states are modeled as
a product of the transition probability and the local
probability of the content state.

Inference. We use a Gibbs sampler (Gao and
Johnson, 2008) to learn the parameters of this and
all other models under consideration. In this infer-
ence regime, two distributions are of particular in-
terest. One is the posterior density and the other is
the conditional distribution, neither of which can be
learned in closed form.

Letting Λ = (θ, δ, φ, ψ) andh = (α, β, γ, ξ), the
posterior density is given as

p(Λ|w, t;h) ∝ p(w, t|Λ)p(Λ;h)

Note thatp(w, t|Λ) is equal to

D
∏

d

Nd
∏

i

(

φwi|tiθti|dδti|ti−1

)I[ti∈C]

(

ψwi|tiδti|ti−1

)I[ti∈F ]
(1)

where I[·] is the indicator function,D is the number
of documents in the corpus andNd is the number of
tokens in documentd.

Another important measure is the conditional dis-
tribution which is conditioned on all the random
variables except the hidden state variable of interest
and which is derived by integrating out the priors:

p(ti|t−i,w;h) ∝ p(ti|t−i;h)p(wi|t,w−i;h) (2)

wheret−i is the joint random variablet without ti
andw−i is w withoutwi.

There are two well-known approaches to conduct-
ing Gibbs sampling for HMMs. The default method
is to sampleΛ based on the posterior, then sample
eachti based on the conditional distribution. An-
other approach is to sample directly from the con-
ditional distribution without sampling from the pos-
terior since the conditional distribution incorporates
the posterior through integration. This is called a
collapsed Gibbs sampler, which is the method em-
ployed for the models in this study.

The full conditional distribution for tag transitions
for the Gibbs sampler is given in Figure 2. At each
time step, we decrement all counts for the current
value ofti, sample a new value forti from a multino-
mial proportional to the conditional distribution and
assign that value toti. β, ξ are the hyperparameters
for the word emission priors of the content states and
function states, respectively.γ is the hyperparame-
ter for the state transition priors.α is the hyperpa-
rameter for the state prior given that it is in some
contextd. Note that we have overridden notation so
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thatC andT here refer to the size of the alphabet.
W is the size of the vocabulary. Notation such as
Nti|ti−1

refers to the counts of the events indicated
by the subscript, minus the current token and tag un-
der consideration.Nti|ti−1

is the number of timesti
has occurred afterti−1 minus the tag forwi. Nwi|ti

is the number of timeswi has occurred withti minus
the current value.Nti andNdi

are the counts for the
given tag and document minus the current value.

In its broad outline, the CDHMM is not much
more complicated than an HMM since the decompo-
sition (eqn. 1) is nearly identical to that of an HMM
with the exception that conditional probabilities for
a subset of the states—the content states—are local.
An inference algorithm can be derived that involves
no more than adding a single term to the standard
MCMC algorithm for HMMs (see Figure 2).

3.2 HMM+

The CDHMM explicitly posits two different types
of states: function states and content states. Hav-
ing made this distinction, there is a very simple way
to capture the difference in emission distributions
for function and content states within an otherwise
standard HMM: posit different hyperparameters for
the two types. One type has a small hyperparame-
ter to model a sparse distribution for function words
and the other has a relatively large hyperparameter
to model a distribution with broader support. This
extension, which we refer to as HMM+, provides an
important benchmark to compare with the CDHMM
to see how much is gained by its additional ability to
model the fact that function words occur frequently
but have low variance across contexts.

As with the CDHMM, we use Gibbs sampling to
estimate the model parameters while holding the two
different hyperparameters fixed. The conditional
distribution for tag transitions for this model is iden-
tical to that in fig. 2 except that it does not have the

second term
Nti|di

+α

Ndi
+Cα

in the first case whereti∈C.

We are not aware of a published instance of such
an extension to the HMM—which our results show
to be surprisingly effective. Goldwater and Griffiths
(2007) posits different hyperparameters for individ-
ual states, but not for different groups of states.

corpus tokens docs avg. tags

WSJ 974254 1801 541 43
Brown 797328 343 2325 80

Tiger 447079 1090 410 58
Floresta 197422 1956 101 19

Uspanteko 70125 29 2418 83

Table 2: Number of tokens, documents, average to-
kens per document and total tag types for each cor-
pus.

4 Data and Experiments

Data. We use five datasets from four languages
(English, German, Portuguese, Uspanteko) for eval-
uating POS tagging performance.

• English: the Brown corpus (Francis et al., 1982)
and the Wall Street Journal portion of the Penn
Treebank (Marcus et al., 1994).

• German: the Tiger corpus (Brants et al., 2002).

• Portuguese: the full Bosque subset of the Floresta
corpus (Afonso et al., 2002).

• Uspanteko (an endangered Mayan language of
Guatemala): morpheme-segmented and POS-
tagged texts collected and annotated by the
OKMA language documentation project (Pixabaj
et al., 2007); we use the cleaned-up version de-
scribed in Palmer et al. (2009).

Table 2 provides the statistics for these corpora.
We lowercase all words, do not remove any punc-

tuation orhapax legomena, and we do not replace
numerals with a single identifier. Due to the nature
of the models, document boundaries are retained.

Evaluation We report values for three evaluation
metrics on all five corpora, using their full tagsets.

• Accuracy: We use a greedy search algorithm to
map each unsupervised tag to a gold label such
that accuracy is maximized. We evaluate on a
1-to-1 mapping between unsupervised tags and
gold labels, as well as many-to-1 (M-to-1), cor-
responding to the evaluation mappings used in
Johnson (2007). The 1-to-1 mapping provides a
stricter evaluation. The many-to-one mapping, on
the other hand, may be more adequate as unsu-
pervised tags tend to be more fine-grained than
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Model
Accuracy Pairwise P/R Scores

VI
1-to-1 M-to-1 P R F

W
S

J
(5

0) HMM 0.34 (0.01) 0.49 (0.03) 0.51 (0.03) 0.19 (0.01) 0.28 (0.01) 3.72 (0.08)
LDAHMM 0.30 (0.04) 0.45 (0.04) 0.25 (0.07) 0.27 (0.03) 0.26 (0.04) 3.64 (0.14)

HMM + 0.42 (0.04) 0.46 (0.05) 0.24 (0.03) 0.49 (0.03) 0.32 (0.03) 2.65 (0.15)
CDHMM 0.44 (0.01) 0.58 (0.02) 0.31 (0.01) 0.43 (0.03) 0.36 (0.02) 2.73 (0.08)

B
ro

w
n

(5
0) HMM 0.32 (0.01) 0.50 (0.02) 0.60 (0.02) 0.18 (0.00) 0.28 (0.01) 3.82 (0.05)

LDAHMM 0.28 (0.06) 0.41 (0.08) 0.25 (0.10) 0.28 (0.05) 0.25 (0.05) 3.71 (0.21)
HMM + 0.43 (0.06) 0.48 (0.07) 0.29 (0.05) 0.50 (0.04) 0.37 (0.05) 2.63 (0.19)

CDHMM 0.48 (0.02) 0.62 (0.02) 0.32 (0.03) 0.54 (0.04) 0.40 (0.03) 2.48 (0.06)

T
ig

er
(5

0) HMM 0.29 (0.02) 0.49 (0.02) 0.49 (0.04) 0.14 (0.01) 0.22 (0.02) 3.91 (0.06)
LDAHMM 0.31 (0.04) 0.50 (0.04) 0.26 (0.07) 0.24 (0.02) 0.25 (0.04) 3.51 (0.11)

HMM + 0.41 (0.08) 0.44 (0.05) 0.25 (0.05) 0.58 (0.10) 0.35 (0.06) 2.70 (0.25)
CDHMM 0.47 (0.01) 0.61 (0.02) 0.45 (0.01) 0.58 (0.03) 0.50 (0.02) 2.72 (0.04)

U
sp

.
(5

0) HMM 0.36 (0.01) 0.49 (0.02) 0.39 (0.01) 0.18 (0.00) 0.25 (0.00) 3.63 (0.04)
LDAHMM 0.35 (0.02) 0.47 (0.02) 0.26 (0.04) 0.23 (0.03) 0.24 (0.02) 3.52 (0.09)

HMM + 0.32 (0.02) 0.35 (0.03) 0.12 (0.02) 0.52 (0.05) 0.20 (0.02) 3.13 (0.06)
CDHMM 0.39 (0.02) 0.50 (0.02) 0.16 (0.02) 0.39 (0.03) 0.23 (0.02) 3.00 (0.06)

F
lo

r.
(5

0) HMM 0.30 (0.01) 0.58 (0.03) 0.62 (0.05) 0.18 (0.01) 0.28 (0.01) 3.51 (0.06)
LDAHMM 0.36 (0.06) 0.59 (0.04) 0.55 (0.10) 0.29 (0.07) 0.38 (0.08) 3.22 (0.15)

HMM + 0.35 (0.04) 0.52 (0.02) 0.28 (0.04) 0.43 (0.06) 0.34 (0.04) 2.58 (0.07)
CDHMM 0.36 (0.01) 0.64 (0.02) 0.37 (0.02) 0.27 (0.01) 0.31 (0.01) 2.73 (0.05)

Table 1: Evaluation on WSJ, Brown, Tiger, Floresta and Uspanteko for models with 50 states. For VI, lower
is better

gold part-of-speech tags. In particular, they tend
to form semantically coherent sub-classes of gold
parts of speech.

• Pairwise Precision and Recall: Viewing tagging
as a clustering task over tokens, we evaluate pair-
wise precision (P ) and recall (R) between the
model tag sequence (M ) and gold tag sequence
(G) by counting the true positives (tp), false pos-
itives (fp) and false negatives (fn) between the
two and settingP = tp/(tp + fp) and R =
tp/(tp+ fn). tp is the number of token pairs that
share a tag inM as well as inG, fp is the number
token pairs that share the same tag inM but have
different tags inG, andfn is the number token
pairs assigned a different tag inM but the same
in G (Meila, 2007). We also provide thef -score
which is the harmonic mean ofP andR.

• Variation of Information (VI): The variation of
information is an information theoretic metric
that measures the amount of information lost and
gained in going from tag sequenceM toG (Meila,
2007). It is defined asV I(M,G) = H(M) +
H(G)− 2I(M,G) whereH denotes entropy and
I mutual information. Goldwater and Griffiths

(2007) noted that this measure can point out mod-
els that have more consistent errors in the form
of lower VI, even when accuracy figures are the
same.

We also report learning curves onM-to-1 with ge-
ometrically increasing training set sizes of 8, 16, 32,
64, 128, 256, 512, 1024, and all documents, or as
many as possible given the corpus.

5 Experiments

In this section we discuss our parameter settings and
experimental results.

5.1 Models and Parameters

We compare four different models:

• HMM : a standard HMM
• HMM +: an HMM in which the hyperparameters

for the word emissions are asymmetric, such that
content states have different word emission priors
compared to function states.

• LDAHMM : an HMM with a distinguished state
that generates words from a topic model (Griffiths
et al., 2005)
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Figure 3: Averaged many-to-one accuracy on the full tagset for the modelsHMM +, LDAHMM , CDHMM

when the number of states is set at 20, 30, 40 and 50 states.

• CDHMM: our HMM with context-based emis-
sions, where the context used is the document

We implemented all of these models, ensuring per-
formance differences are due to the models them-
selves rather than implementation details.

For all models, the transition hyperparametersγ
are set to0.1. For theLDAHMM andHMM all emis-
sion hyperparameters are set to 0.0001. These fig-
ures are the MCMC settings that provided the best
results in Johnson (2007). For the models that distin-
guish content and function states (HMM +, CDHMM),
we fixed the number of content states at 5 and set the
function state emission hyperparametersξ = 0.0001
and the content state emission hyperparametersβ =
0.1. For the models with an LDA or LDA-like com-
ponent (LDAHMM , CDHMM), we set the topic or
content-state hyperparameterα = 1.

For decoding, we use maximum posterior decod-
ing to obtain a single sample after the required burn-
in, as has been done in other unsupervised HMM
experiments. We use this sample for evaluation.

5.2 Results

Results for all models on the full tagset are provided
in table 1.2 Each number is the mean accuracy of
ten randomly initialized samples after a single chain
burn-in of 1000 iterations. The model with a sta-
tistically significant (p < 0.05) best score for each
measure and data set is given in plain bold. In cases

2Similar results are obtained with reduced tagsets, as is com-
monly done in other work on unsupervised POS-tagging.

where the differences for the best models are not sig-
nificantly different from each other, but are signifi-
cantly better from the others, the top model scores
are given in bold italic.

CDHMM is extremely strong on the accuracy met-
ric: it wins or ties for all datasets for both 1-to-1 and
M-to-1 measures. For pairwisef -score, it obtains
the best score for two datasets (WSJ and Tiger), and
ties with HMM + on Brown (we return to Uspanteko
and Floresta below in an experiment that varies the
number of states). For VI,HMM + andCDHMM both
easily outperform the other models, withCDHMM

winning Brown and Uspanteko andHMM + winning
Floresta.

In the case of Uspanteko, the absolute difference
in mean performance between models is smaller
overall but still significant. This is due to the reduced
variance between samples for all models. This is
striking because the non-CDHMM models have much
higher standard deviation on other corpora but have
sharply reduced standard deviation only for Uspan-
teko. The most likely explanation is that the Uspan-
teko corpus is much smaller than the other corpora.3

Nonetheless,CDHMM comes out strongest on most
measures.

A simple baseline for accuracy is to choose the
most frequent tag for all tokens; this gives accura-
cies of 0.14 (WSJ), 0.14 (Brown), 0.21 (Tiger), 0.20

3which is interesting in itself since the weak law of large
numbers implies that sample standard deviation decreases with
sample size, which in our case is the number of tokens rather
than the 10 samples under discussion
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Model
Accuracy P/R Scores

VI
1-to-1 M-to-1 P R F

U
sp

.
(1

00
)

HMM 0.36 (0.01) 0.58 (0.01) 0.56 (0.02) 0.16 (0.00) 0.25 (0.01) 3.53 (0.04)
LDAHMM 0.35 (0.01) 0.58 (0.02) 0.45 (0.04) 0.17 (0.01) 0.24 (0.01) 3.46 (0.06)

HMM + 0.35 (0.02) 0.41 (0.02) 0.18 (0.01) 0.36 (0.03) 0.24 (0.01) 3.25 (0.08)
CDHMM 0.40 (0.01) 0.59 (0.01) 0.25 (0.02) 0.27 (0.02) 0.26 (0.01) 3.05 (0.03)

F
lo

r.
(2

0) HMM 0.31 (0.02) 0.48 (0.03) 0.40 (0.03) 0.21 (0.01) 0.28 (0.02) 3.54 (0.10)
LDAHMM 0.35 (0.06) 0.46 (0.06) 0.27 (0.07) 0.45 (0.08) 0.33 (0.05) 3.10 (0.10)

HMM + 0.37 (0.04) 0.50 (0.03) 0.30 (0.02) 0.45 (0.06) 0.36 (0.03) 2.62 (0.06)
CDHMM 0.44 (0.02) 0.55 (0.02) 0.30 (0.01) 0.53 (0.03) 0.39 (0.02) 2.39 (0.07)

Table 3: Evaluation for Uspanteko and Floresta. Experiments in this table use state sizes that correspond
more closely to the size of the tag sets in the respective corpora.

(Floresta), and 0.11 (Uspanteko). Clearly, all of the
models easily outperform this baseline.

Number of states. Figure 3 shows the change in
accuracy for the different models for different cor-
pora when the overall number of states is varied
between 20 and 50. The figure shows results for
M-to-1. All models with the exception ofHMM +
show improvements as the number of states is in-
creased. This brings up the valid concern (Clark,
2003; Johnson, 2007) that a model could posit a
very large number of states and obtain high M-to-
1 scores. However, it is neither the case here nor
in any of the studies we cite. Furthermore, as is
strongly suggested withHMM +, it does not seem as
if all models will benefit from assuming a large num-
ber of states.

Looking at the results by number of states on VI
and f -score forCDHMM(Figure 5), it is clear that
Floresta displays the reverse pattern of all other data
sets where performance monotonically deteriorates
as state sizes are increased. Though the exact reason
is unknown, we believe it is partially due to the fact
that Floresta has 19 tags. We therefore wondered
whether positing a state size that more closely ap-
proximated the size of the gold tag set performs bet-
ter. Since the discrepancy is greatest for Uspanteko
and Floresta, we present tabulated results for exper-
iments with state settings of 100 and 20 states re-
spectively (table 3). With the exception of VI (where
lower is better) for Uspanteko, the scores generally
improve when the model state size is closer to the
gold size. M-to-1 goes down for Floresta when 20
states are posited, but this is to be expected since this
score is defined, to a certain extent, to do better with

WSJ Brown Tiger Floresta Uspanteko

20
30
40
50

F−SCORE

f−
sc

or
e

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

WSJ Brown Tiger Floresta Uspanteko

VI

vi

0
1

2
3

4

Figure 5:f -score and VI forCDHMM by number of
states

larger models.

Variance. As we average performance figures
over ten runs for each model, it is also instructive
to consider standard deviation across runs. Standard
deviation is lowest for theCDHMM models and the
vanilla HMM . Standard deviation is high forHMM +
andLDAHMM . This is not surprising forLDAHMM ,
since it has fifty topic parameters in addition to the
number of states posited, and random initial condi-
tions would have greater effect on the outcome than
for the other models. It is unexpected, however, that
HMM + has high variance over different chains. The
model shares the large content emission hyperpa-
rameterβ = 0.1 with CDHMM. At this point, it can
only be assumed that the additional LDA component
acts as a regularization factor forCDHMM and re-
duced the volatility in having a large emission hy-
perparameter.
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Figure 4: Learning curves on M-to-1 evaluation. The staplesat each point represent two standard deviations.

Learning curves We present learning curves on
different sizes of subcorpora in Figure 4. The graphs
are box plots of the full M-1 accuracy figures on
10 randomly initialized training runs for seven sub-
corpora in Brown, nine in WSJ, Tiger, Floresta and
three in Uspanteko.

Comparing the graphs, the performance ofHMM +
shows the strongest improvement for English and
German data as the amount of training data in-
creases. Also, it is evident thatCDHMM posts con-
sistent performance gains across data sets as it trains
on more data. This stands in opposition toHMM and
LDAHMM which do not seem able to take advantage
of more information for WSJ and Floresta. This
suggests that performance forCDHMM and HMM +
could improve if the training corpora were aug-
mented with out-of-corpus raw data. One exception
to the consistent improvement over increased data is
the performance of the models on Uspanteko, which
uniformly flatline. One reason might be that the tags
are labeled over segmented morphemes instead of
words like the other corpora. Another could be that
Uspanteko has a relatively large number of tags in a
very small corpus.

6 Related work

Unsupervised POS tagging is an active area of re-
search. Most recent work has involved HMMs.
Given that an unconstrained HMM is not well under-
stood in POS tagging, much work has been done on
examining the mechanism and the properties of the
HMM as applied to natural language data (Johnson,
2007; Gao and Johnson, 2008; Headden III et al.,
2008). Conversely, there has also been work focused
on improving the HMM as an inference procedure
that looked at POS tagging as an example (Graca et
al., 2009; Liang and Klein, 2009). Nonparametric
HMMs for unsupervised POS tag induction (Snyder
et al., 2008; Van Gael et al., 2009) have seen partic-
ular activity due to the fact that model size assump-
tions are unnecessary and it lets the data “speak for
itself.”

There is also work on alternative unsupervised
models that are not HMMs (Schütze, 1993; Abend
et al., 2010; Reichart et al., 2010b) as well as re-
search on improving evaluation of unsupervised tag-
gers (Frank et al., 2009; Reichart et al., 2010a).

Though they did not concentrate on unsupervised
methods, Haghighi and Klein (2006) conducted an
unsupervised experiment that utilized certain to-
ken features (e.g. character suffixes of 3 or less,
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has initial capital, etc.; the features themselves are
from Smith and Eisner (2005)) to learn parameters
in an undirected graphical model which was the
equivalent of an HMM in directed models. It was
also the first study to posit the one-to-one evalua-
tion criterion which has been repeated extensively
since (Johnson, 2007; Headden III et al., 2008;
Graca et al., 2009).

Finkel et al. (2007) is an interesting variant of un-
supervised POS tagging where a parse tree is as-
sumed and POS tags are induced from this structure
non-parametrically. It is the converse of unsuper-
vised parsing which assumes access to a tagged cor-
pus and induces a parsing model.

Other models more directly influenced or closely
parallel our work. Griffiths et al. (2005) is the work
that inspired the current approach where a set of
states is designated to capture variance across con-
texts. The primary goal of that model was to induce
a topic model given data that had not been filtered
of noise in the form of function words. As such,
distinguishing between topic states such that they
model different syntactic states was not attempted,
and we have seen in sec. 3 that such an extension is
not entirely straightforward.4 Boyd-Graber and Blei
(2009) has some parallels to our model in that a hid-
den variable over topics is distributed according to
a normalized product between a context prior and a
syntactic prior. However, it assumes a much greater
amount of information than we do in that a parse tree
as well as (possibly) POS tags are taken as observed.
The model has a very different goal from ours as
well, which is to infer a syntactically informed topic
model. Teichert and Daumé III (2010) is another
study with close similarities to our own. This study
models distinctions between closed class words and
open class words within a modified HMM. It is un-
clear from their formulation how the distinction be-
tween open class and closed class words is learned.

There is also extensive literature on learning se-
quence structure fromunlabeled text (Smith and
Eisner, 2005; Goldberg et al., 2008; Ravi and
Knight, 2009) which assume access to a tag dic-
tionary. Goldwater and Griffiths (2007) deserves
mention for examining a semi-supervised model

4We tested a variant ofLDAHMM in which more than one
state can generate topics. It did not achieve good results.

that sampled emission hyperparameters for each
state rather than a single symmetric hyperparame-
ter. They showed that this outperformed a symmet-
ric model. An interesting heuristic model is Zhao
and Marcus (2009) that uses a seed set of closed
class words to classify open class words.

7 Conclusion

We have shown that a hidden Markov model that
allocates a subset of the states to have distribu-
tions conditioned on localized domains can signif-
icantly improve performance in unsupervised part-
of-speech tagging. We have also demonstrated that
significant performance gains are possible simply
by setting a different emission hyperparameter for
a subgroup of the states. It is encouraging that these
results hold for both models not just on the WSJ but
across a diverse set of languages and measures.

We believe our proposed extensions to the HMM
are a significant contribution to the general HMM
and unsupervised POS tagging literature in that both
can be implemented with minimum modification
of existing MCMC inferred HMMs, have (nearly)
equivalent run times, produce output that is easy to
interpret since they are based on a generative frame-
work, and bring about considerable performance im-
provements at the same time.
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