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Abstract

Many approaches to unsupervised mor-
phology acquisition incorporate the fre-
quency of character sequences with re-
spect to each other to identify word stems
and affixes. This typically involves heuris-
tic search procedures and calibrating mul-
tiple arbitrary thresholds. We present a
simple approach that uses no thresholds
other than those involved in standard ap-
plication of χ2 significance testing. A
key part of our approach is using docu-
ment boundaries to constrain generation of
candidate stems and affixes and clustering
morphological variants of a given word
stem. We evaluate our model on English
and the Mayan language Uspanteko; it
compares favorably to two benchmark sys-
tems which use considerably more com-
plex strategies and rely more on experi-
mentally chosen threshold values.

1 Introduction

Unsupervised morphology acquisition attempts to
learn from raw corpora one or more of the follow-
ing about thewritten morphology of a language:
(1) the segmentation of the set of word types in a
corpus (Creutz and Lagus, 2007), (2) the cluster-
ing of word types in a corpus based on some notion
of morphological relatedness (Schone and Juraf-
sky, 2000), (3) the generation of out-of-vocabulary
items which are morphologically related to other
word types in the corpus (Yarowsky et al., 2001).

We take a novel approach to segmenting words
and clustering morphologically related words.
The approach uses no parameters that need to
be tuned on data. The two main ideas of the
approach are (a) the filtering of affixes by sig-
nificant co-occurrence, and (b) the integration of
knowledge of document boundaries when gener-

ating candidate stems and affixes and when clus-
tering morphologically related words. The main
application that we envision for our approach is
to produce interlinearized glossed texts for under-
resourced/endangered languages (Palmer et al.,
2009). Thus, we strive to eliminate hand-tuned
parameters to enable documentary linguists to use
our model as a preprocessing step for their manual
analysis of stems and affixes. To require a docu-
mentary linguist–who is likely to have little to no
knowledge of NLP methods–to tune parameters is
unfeasible. Additionally, data-driven exploration
of parameter settings is unlikely to be reliable in
language documentation since datasets typically
are quite small. To be relevant in this context, a
model needs to produce useful results out of the
box.

Constraining learning by using document
boundaries has been used quite effectively in un-
supervised word sense disambiguation (Yarowsky,
1995). Many applications in information retrieval
are built on the statistical correlation between doc-
uments and terms. However, we are unaware of
cases where knowledge of document boundaries
has been used for unsupervised learning for mor-
phology. The intuition behind our approach is very
simple: if two words in a single document are
very similar in terms of orthography, then the two
words are likely to be related morphologically. We
measure how integrating these assumptions into
our model at different stages affects performance.

We define a simple pipeline model. After gen-
erating candidate stems and affixes (possibly con-
strained by document boundaries), aχ2 test based
on global corpus counts filters out unlikely affixes.
Mutually consistent affix pairs are then clustered
to form affix groups. These in turn are used to
build morphologically related word clusters, pos-
sibly constrained by evidence from co-occurence
of word forms in documents. Following Schone
and Jurafsky (2000), clusters are evaluated for
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whether they capture inflectional paradigms using
CELEX (Baayen et al., 1993).

We are unaware of other work on morphology
usingχ2 tests despite its wide application across
many disciplines.1 This may be due to the large
degree of noise found in the candidate affix sets
induced through other candidate generation meth-
ods. Theχ2 test has two standard thresholds–a
significance threshold and a lower bound on ob-
served counts. These are the only manually set
parameters we require—and we in fact use the
widely accepted standard values for these thresh-
olds without varying them in our experiments.
This is a significant improvement over other ap-
proaches that typically require a number of arbi-
trary thresholds and parameters yet provide little
intuitive justification for them. (We give examples
of these in§3.)

We evaluate our approach on two languages,
English and Uspanteko, and compare its per-
formance to two benchmark systems, Morfessor
(Creutz and Lagus, 2007) and Linguistica (Gold-
smith, 2001). English is commonly used in other
studies and permits the use of CELEX as a gold
standard for evaluation. Uspanteko is an endan-
gered Mayan language for which we have a set of
interlinearized glossed texts (IGT) (Pixabaj et al.,
2007; Palmer et al., 2009). IGT provides word-
by-word morpheme segmenation, which we use
to create a synthetic gold standard. In addition
to evaluation against this standard, Telma Kaan
Pixabaj—a Mayan linguist who helped create the
annotated corpus—reviewed by hand 100 word
clusters produced by our system, Morfessor and
Linguistica. Note that because English is suffixal
and Uspanteko is both prefixal and suffixal, we use
a slightly modified model for Uspanteko.

The approach introduced in this paper compares
favorably to Linguistica and Morfessor, two mod-
els that employ much more complex strategies and
rely on experimentally-tuned language/corpus-
specific parameters. In our evaluation, document
boundary awareness greatly benefits precision for
small datasets, blocking acquisition of spurious af-
fixes. For large datasets, global candidate genera-
tion outperforms document-aware candidate gen-
eration at the task of filtering out spurious stems,
but document-aware clustering improves preci-
sion. These findings are promising for the applica-
tion of this approach to under-resourced languages

1Monson (2004) suggests, but does not actually use,χ2.

like Uspanteko.

2 Unsupervised morphology acquisition

Unsupervised morphology acquisition aims to
model one or more of three properties ofwrit-
tenmorphology: segmentation, clustering around
a common stem, and generation of new word
forms with productive affixes. Intuitively, there are
straightforward, but non-trivial, challenges that
arise when evaluating a model. One large chal-
lenge is distinguishing derivational from inflec-
tional morphology. Most approaches deal with to-
kens without considering context. Since inflec-
tional morphology is virtually always driven by
syntax and word context, such approaches are un-
able to learn only inflectional morphology or only
derivational morphology. Even approaches which
take context into consideration (Schone and Juraf-
sky, 2000; Baroni et al., 2002; Freitag, 2005) can-
not learn specifically for one or the other.

In addition, the evaluation of both segmentation
and clustering involves arbitrary judgment calls.
Concerning segmentation, shouldaltimeter and
altitude be one morpheme or two? (The sam-
ple English gold standard for MorphoChallenge
2009 providesalti+meterbutaltitude.) Similar is-
sues arise when evaluating clusters of related word
forms if inflection and derivation are not distin-
guished. Doesatheismbelong to the same cluster
astheism? Where is the frequency cutoff point be-
tween a productive derivational morpheme and an
unproductive one? Yet, many studies have eval-
uated their segmentations and clusters by going
over their results word by word, cluster by cluster
and judging by sight whether some segmentation
or clustering is good (e.g., Goldsmith (2001)).

Like Schone and Jurafsky (2001), we build clus-
ters that will have both inflectionally and deriva-
tionally related stems and evaluate them with re-
spect to a gold standard ofonly inflectionally re-
lated stems.

3 Related work

There is a diverse body of existing work on unsu-
pervised morphology acquisition. We summarize
previous work, emphasizing some of its more ar-
bitrary andad hocaspects.

Letter successor variety. Letter successor va-
riety (LSV) models (Hafer and Weiss, 1974;
Gaussier, 1999; Bernhard, 2005; Bordag, 2005;
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Keshava and Pitler, 2005; Hammarström, 2006;
Dasgupta and Ng, 2007; Demberg, 2007) use the
hypothesis that there is less certainty when pre-
dicting the next character at morpheme bound-
aries. LSV has several issues that require fine pa-
rameter tuning. For example, Hafer and Weiss
(1974) counts how many types of characters ap-
pear after some initial string (thesuccessorcount)
and how many types of characters appear before
some final string (thepredecessorcount). A suc-
cessful criterion for segmenting a word was if the
predecessor count for the second part was greater
than 17 and the successor count for the first part
was greater than 5. Other studies have similar data
specific parameters and restrictions.

MDL and Bayesian models. Minimum descrip-
tion length (MDL) models (Goldsmith, 2001;
Creutz and Lagus, 2002; Creutz and Lagus, 2004;
Goldsmith, 2006; Creutz and Lagus, 2007) try to
segment words by maximizing the probability of
a training corpus subject to a penalty based on
the size of hypothesized morpheme lexicons they
build on the basis of the segmentations. While the-
oretically elegant, a pure implementation on real
data results in descriptions that do not reflect ac-
tual morphology. Creutz and Lagus (2005) re-
port that, “frequent word forms remain unsplit,
whereas rare word forms are excessively split.” In
the end, every MDL approach uses probabilisti-
cally motivated refinements that restrict the ten-
dency of raw MDL to generate descriptions that
do not fit linguistic notions of morphology. De-
spite the sophistication of the models in this group,
there are many parameters that need to be set, and
heuristic search procedures are crucial for their
success (Goldwater, 2007). Snover et al. (2002)
present a Bayesian model that uses a prior distribu-
tion to refine disjoint clusters of morphologically
related words. It disposes with parameter setting
by selecting the highest ranking hypothesis.

Context aware approaches. A word’s mor-
phology is strongly influenced by its syntactic and
semantic context. Schone and Jurafsky (2000) at-
tempts to cluster morphologically related words
starting with an unrefined trie search (but with a
parameter of minimum possible stem length and
an upper bound on potential affix candidates) that
is constrained by semantic similarity in a word
context vector space. Schone and Jurafsky (2001)
builds on this approach, but adds moread hoc

parameters to handle circumfixation. Baroni et
al. (2002) takes a similar approach but uses edit
distance to cluster words that are similar but do
not necessarily share a long, contiguous substring.
They remove noise by constraining cluster mem-
bership with mutual information derived semantic
similarity. Freitag (2005) uses a mutual informa-
tion derived measure to learn thesyntacticsimi-
larity between words and clusters them. Then he
derives finite state machines across words in dif-
ferent clusters and refines them through a graph
walk algorithm. This group is the only one to eval-
uate against CELEX (Schone and Jurafsky, 2000;
Schone and Jurafsky, 2001; Freitag, 2005).

Others. Some other models require input such
as POS tables and lexicons and use a wider range
of information about the corpus (Yarowsky and
Wicentowski, 2000; Yarowsky et al., 2001; Chan,
2006). Because of the knowledge dependence of
these models, they are able to properly induce
inflectional morphology, as opposed to the stud-
ies cited above. Snyder and Barzilay (2008) uses
a set of aligned phrases across related languages
to learn how to segment words with a Bayesian
model and is otherwise fully unsupervised.

4 Model2

Our goal is to generateconflation sets: sets of
word types that are related through either inflec-
tional or derivational morphology (Schone and Ju-
rafsky, 2000). Solving this task requires learning
how individual types are segmented (though the
segmentation itself is not evaluated). For present
purposes, we assume that the affixal pattern of the
language is known: whether it is prefixal, suffixal,
or both. To simplify presentation, we discuss a
model that captures suffixes only. Our approach is
a four stage process:

1. Candidate Generation: generate candidate
stems and affixes using an orthographically
defined data structure (a trie)

2. Candidate Filtering: filter candidate affixes
using the statistical significance for pairs of
affixes based on their co-occurence counts
with shared stems

3. Affix Clustering: cluster significant affix pairs
into affix groups

2The code implementing the model is available from
http://comp.ling.utexas.edu/earl
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4. Word Clustering: form conflation sets based
on affix clusters

The first and last stages are particularly prone to
noise, which has necessitated many of the thresh-
olds and heuristics employed in previous work.
We hypothesize that naturally occuring document
boundaries provide a strong constraint that should
reduce this noise, and we test that hypothesis by
using it in those stages.

Our intuition comes from an observation by
Yarowsky (1995) regarding multiple tokens of
words in documents. He tabulates theapplicabil-
ity of using document boundaries to disambiguate
word senses, which measures how often a given
word occurs more than twice in the same docu-
ment. For ten potentially ambiguous words, he
counts how often they occur more than once in
some document and finds that if the words do oc-
cur, they do so multiple times in 50.1% of these
documents, on average. His counts ignored mor-
phological variation, and it is likely theapplica-
bility measure would have increased considerably:
if a content word is used more than once in some
text, it is likely to be repeated in different syntactic
contexts, requiring the word to be inflected or to be
derived for a different part-of-speech category.3

For stage one, we build separate tries for each
document rather than a trie for the entire corpus.
This should reduce the chance that orthographi-
cally similar but morphologically unrelated word
pairs lead to bad candidates by reducing the search
space for words which share a stem to a local doc-
ument. For example,assuageandassumeare both
likely to occur in a large corpus and suggest that
there is a stemassuwith affixes -age and -me.
They are less likely to occur together in many dif-
ferent documents that form the corpus, whereas
assume, assumed, andassumingare. We refer to
this document constrained candidate generation as
CandGen-D, and to the unconstrained generation
(a single trie for all documents) asCandGen-G.

For stage four, documents are used to constrain
potential membership of words in clusters: all
pairs of words in a cluster must have occured to-
gether in some document. We refer to document-
constrained clustering asClust-D and the uncon-
strained global clustering asClust-G.

3For example, in just thisone paragraph we have
{document,documents}, {measure, measures}, {occur, oc-
curs, occuring}, and{word, words}.

4.1 Candidate generation

Given a document or collection of documents, we
use tries (prefix trees) to identify potential stems
and affixes and collect statistics for co-occurrences
between affixes and between affixes and stems.

a

b c

d $

Figure 1

A trie G, like the example
on the right, can be iden-
tified with the set of all
words on paths from the
root to any leaf, in the case
of the example figure the
set G = {abd, ab$, ac}.
(We use $ to denote an
empty affix.) Given a trie
G over alphabetL, we de-
fine the set oftrunksof G
as all paths from the root to a branching point:

Tr(G) = {w ∈ L+ |∃a, b ∈ L, x1, x2 ∈ L∗ :
a 6= b ∧ wax1, wbx2 ∈ G}

Also, we define the set ofbranchesof a trunkt ∈
Tr(G) as the paths from its branching points to the
leaves:

Br(t,G) = {x ∈ L+ | tx ∈ G}

In our example, {a, ab} are the trunks, with
Br(a, G) = {bd, b$, c} and Br(ab, G) = {d, $}.
When we use a trie to induce stems and affixes,
all induced stems will be trunks, and all induced
affixes will be branches.

From a given trie, we induce a set ofstem can-
didatesandaffix candidates. A simple criterion is
used: if a trunk is longer than all of its branches,
the trunk is a stem candidate and its branches are
affix candidates. So, the set of stem candidates for
a trieG, CStem(G), is the set of trunkst ∈ Tr(G)
such that|t| > |b| for all b ∈ Br(t, G).

Given a stem candidates ∈ CStem(G), its set of
affix candidatesCAff(s, G) is identical to its set of
branches. (To talk about the sets of stem and affix
candidates for a whole trieG or a set of tries, we
write CAff(G), StC(G), CAff, andCStem.) The
countof an affix candidateb ∈ CAff is the number
of stem candidates with which it occurs:

count(b) =
∑

G

|{s ∈ CStem(G) | b ∈ CAff(s,G)}|

For Fig. 1, the set of stem candidates is{ab} (since
some branches of the trunka are longer than the
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trunk itself). The matching set of affix candidates
is CAff(ab, G) = {d, $}, each with a count of one.

An affix rule candidateis an unordered pair of
affix candidates{b1, b2}. It states that any stem
occurring withb1 can also occur withb2. Affix
rules implement the assumption that all produc-
tive affixes will cooccur with other productive af-
fixes and that these will form a coherent group.
The rule candidates for a given stem candidate
s ∈ CStem(G) are:

CRule(s, G) =
{{b1, b2} ⊆ CAff(s, G) | b1 6= b2

}
For example, the single stem candidateab in
Fig. 1 has one rule candidate,{d, $}. We also use
CRule(G) for the rule candidates of a trieG across
all stems, andCRulefor the union of rule candi-
dates in a set of tries.

The count of a rule candidater={b1, b2} in a
trie is the number of stem candidates it appears
with:

count(r) =
∑

G

|{s ∈ CStem(G) | r ∈ CRule(s, G)}|

We also useCAff(s) for the set of affix candidates
of stems across several tries, andCRule(s) for the
set of rule candidates of a stems across several
tries.

Document-specific versus global candidate gen-
eration. CandGen-Ddefines separate tries for
every document in the corpus and induces stem,
affix and rule candidates for each document.
CandGen-Ginstead induces these candidates for
a global trie over all the words in the corpus.
From the perspective of the formalism laid out
above, the only difference is thatCandGen-D
has as many triesGi as there are documentsi
and CandGen-Ghas only oneG. This simple
difference leads to different candidate sets and
counts over their occurrences. For example, say
two documents contain the pairputt/putts and
another containsbogey/bogeys. With CandGen-
D, count($)=3, count(s)=3, and count($, s)=2.
For the same documents,CandGen-Gwould pro-
duce count($)=2 and count(s)=2 sinceputt/putts
would have occurred only once in the global trie.

Also, consider a rare pair such asaard-
vark/aardvarkswhere each word is found in a dif-
ferent document. The pair would be identified
by CandGen-Gbut not byCandGen-D. The pair
would contribute a count of one to count($, s) in

CandGen-Gbut not inCandGen-D. So,CandGen-
G can provide better coverage, but it is also more
likely to identify noisy candidates, such asas-
suage/assumed, thanCandGen-D.

4.2 Candidate filtering

The sets of candidatesCStem, CAff, CRule is ex-
pected to be noisy since the only basis for gener-
ating them was strings that share a large portion of
their substrings. One way of filtering candidates is
to find affix candidates whose co-occurence with
other candidates is not statistically significant.

We measure correlation between candidate af-
fixes b1, b2 in a candidate rule with the paired
χ2 test. By usingχ2, we only consider pairwise
correlation between affixes, rather than attempting
global inference. Global consistency of affix sets
is not ensured, and as such the approach is sus-
ceptible to the multiple comparisons problem. We
still opt for this approach for its simplicity and be-
cause global inference is problematic due to data
sparseness.

Correlation betweenb1 andb2 is determined by
the following contingency table:4

b1 ∼ b1

b2 O11 O12

∼ b2 O21 O22

Based on the significance testing, we define the set
of valid rulesPairRuleas those for which theχ2

test is significant atp < 0.05. Thus, affix can-
didates not significantly correlated with any other
affix in CAff are discarded.

4.3 Affix clustering

The previous stage produces a set ofpairs of af-
fixes that are significantly correlated. However,
inflectional paradigms rarely contain just two af-
fixes, so we would like to group together affix
pairs into larger affix sets to improve generaliza-
tion. We use a bottom up, minimum distance clus-
tering for valid affix pairs (rules). We do not as-
sume that cluster membership is exclusive. For
example, it would not make sense to determine
that the null affix-$ can belong to only one cluster.
Therefore, we produce non-disjoint affix clusters.

A valid cluster of affixes is a maximal set of af-
fixes forming pairwise valid rules:Aff ⊆ CAff is a
valid cluster of affixes iff

4where O11 = count({b1, b2}), O12 = count(b2) −
O11, O21 = count(b1)−O11, O22 = N−O11−O12−O21

andN =
P

b∈CAff count(b). See table (1) for examples.
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ed ∼ed
ing 10273 21853

∼ing 27120 4119332

(a)χ2 = 352678

le ∼le
s 122 132945

∼s 936 4044575

(b) χ2 = 239.132

ed ∼ed
ing 2651 1310

∼ing 1490 150848

(c) χ2 = 65101.6

le ∼le
s 20 12073

∼s 198 144008

(d) χ2 = 0.631, p = 0.427

Table 1: Affix counts in contingency tables for the valid paired/ingand spurious pairle/saccording to
CandGen-Din (a) and (b) and according toCandGen-Gin (c) and (d).χ2 test values are given under
each table. Data is from NYT. Total affix token counts inducedthroughCandGen-DandCandGen-G
areN=4178578 andN=156299, respectively. A total of 2054 and 3739 affixtypeswere induced for
CandGen-DandCandGen-G, respectively showing thatCandGen-Gdoes have better coverage though
it might have more noise.

1. ∀b1, b2 ∈ Aff : {b1, b2} ∈ PairRule, and

2. If b ∈ CAff with ∀b′ ∈ Aff : {b, b′} ∈
PairRule, thenb ∈ Aff.

The set of all valid affix clusters isGroupRule.
This formulation does not rule out the existence
of clusters with affixes in common.

4.4 Word clustering

We next cluster word forms into morphologically
related groups. Our model assumes two word
forms to be morphologically related iff (1) they oc-
curred in the same trieG, (2) they have a trunks in
common that is a stem inStem(G), and (3) their af-
fixes under this stems are members in a common
valid affix cluster inGroupRule. Hence a single
stems can be involved in at most|GroupRule| con-
flation sets, one for each valid affix cluster. Again,
the only distinction between clustering with a
global trie (Clust-G) and clustering with several
tries from the documents in a corpus (Clust-D) is
that the former has only one trie.

We define the conflation set for a given stems ∈
Stemand valid affix clusterAff ∈ GroupRuleas

Wd(s, Aff) = {sb1, sb2 | b1, b2 ∈ Aff∧
∃G.s ∈ Stem(G) ∧ b1, b2 ∈ CAff(s,G)}

One issue that needs clarification is when the
candidate generation and clustering stages use dif-
ferent strategies, i.e. the modelsCandGen-D
+Clust-G and CandGen-G+Clust-D. This sim-
ply means that thestatistics, and thus the valid
GroupRule, are derived from eitherCandGen-Dor
CandGen-G.

4.5 Induction for languages that are both
prefixal and affixal

The above approach would not fit a language that
is prefixal and suffixal. Assuming we have in-

duced separate conflation sets over a prefix trie and
a suffix trie, we merge clusters between the two if
they have at least one word form in common. For-
mally, given a set of prefix conflation setsPCSand
a set of suffix conflation setsSCS, the final set of
conflation setsCSis:

CS= {p ∪ s |p ∈ PCS, s ∈ SCS∧ p ∩ s 6= ∅}

5 Data

We apply our method on English and Uspanteko,
an endangered Mayan language.

Learning corpora. For English, we use two
subsets of the NYTimes portion in the Gigaword
corpus which we will call NYT andMINI -NYT.
NYT in the current study is the complete collec-
tion of articles in the New York Times from June,
2002. NYT has 10K articles, 88K types and 9M
tokens. MINI -NYT is a subset of NYT with 190
articles, 15K types and 187K tokens.

The Uspanteko text, USP has 29 distinct texts,
7K types, and 50K tokens. The texts are from
OKMA (Pixabaj et al., 2007) and the segmenta-
tion and labels of the interlinear glossed text anno-
tations were checked for consistency and cleaned
up (Palmer et al., 2009). All counts are for lower-
cased, punctuation-removed word forms.

CELEX. The CELEX lexical database (Baayen
et al., 1993) has been built for Dutch, English and
German and provides detailed entries that list and
analyze the morphological properties of words,
among other information. Using CELEX, we eval-
uate on types rather than tokens. The performance
of the model is based on how many of the words it
judges to be morphologically related overlap with
the entries in CELEX. Following previous work
(Schone and Jurafsky, 2000; Schone and Jurafsky,
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2001; Freitag, 2005), we evaluate on inflectional
clusters only, using the CELEX file listing clusters
of inflectional variants.5

6 Experiments and evaluation

We outline our evaluation methodology, baselines,
benchmarks and results, and discuss the results.

6.1 Evaluation metric

Schone and Jurafsky (2000) give definitions for
correct (C), inserted (I), and deleted (D) words
in model-derived conflation sets in relation to a
gold standard. Their formulation does not allow
for multiple cluster membership of words. We ex-
tend the definition to incorporate this fact about the
data. Letw be a word form. We writeXw for the
clusters induced by the model that containw, and
Yw for gold standard clusters containingw. Xw

andYw only count words which occurred in both
model and gold standard clusters. Then

C =
∑
w

∑
Xw

∑
Yw

(|Xw ∩ Yw|/|Yw|)

I =
∑
w

∑
Xw

∑
Yw

(|Xw − (Xw ∩ Yw)|/|Yw|)

D =
∑
w

∑
Xw

∑
Yw

(|Yw − (Xw ∩ Yw)|/|Yw|)

Based on these definitions, we formulate preci-
sion (P ), recall (R), and thef -score (F ) as:P =
C/(C+I), R = C/(C+D), F = (2PR)/(P +R).

USP evaluation We use two different means to
evaluate the performance on USP. One is the
f -score derived from the above section with re-
spect to a standard that was automatically gen-
erated from the morpheme segment tiers of the
OKMA IGT. We generated the standard by taking
non-hyphenated segments as the stem and cluster-
ing words with shared stems.

We also had an expert in Uspanteko manually
evaluate a random subset (N = 100) of the model
output to compensate for any failings in the stan-
dard. The evaluator determined a dominant stem
for a cluster and identified words which were not
related to that stem. We measured accuracy and

5CELEX does have a second file listing words and their
breakup into constituent morphemes for both derivation and
inflection, but its use would have required additional process-
ing that could introduce errors.

0 10 20 30 40 50 60 70 80 90 100
40

50

60

70

80

90

100

precision

re
ca

ll

 

 
mini−NYT
NYT
Usp−S
Usp−P

Figure 2: Precision/recall graph for baseline ex-
periments on English, prefix USP(Usp-P) and suf-
fix USP (Usp-S).

full cluster accuracy6 for the expert evaluations
(table 4).

We experimented on Uspanteko with three dif-
ferent assumptions: (1) it is only prefixal; (2) it is
only suffixal; (3) it is both prefixal and suffixal.
We applied the assumptions of only prefixal or
only suffixal to LINGUISTICA as well. The rele-
vant results are given row headers in tables with a
corresponding+P(prefix) or+S(suffix).

6.2 Baselines and benchmarks

In a set of baselines, we put words which share
the first k characters into the same cluster. We
do this for NYT, MINI -NYT, and USP in a pre-
fix tree, and for USP in suffix tree (using the lastk
characters). We set the values of0 < k < max,
wheremax is the length of the longest string, and
plot the results in a precision-recall graph (Fig. 2).
Low k corresponds to high recall and low preci-
sion while highk shows the opposite. The contrast
in morphological patterns for each language can
also be seen. Because Uspanteko is morpholog-
ically complex with suffixes and prefixes, a very
simple strategy cannot achieve high recall as op-
posed to English where it is possible to retrieve all
variants with a simple prefix tree.

We use Linguistica (Goldsmith, 2001) and Mor-
fessor (Creutz and Lagus, 2007) as benchmarks.
We used the default settings for these programs.
Note that comparison with these tools is not com-

6Given a model clusterCi and the “misses” for each clus-
terMi, accuracy is measured as1/N

P
i(|Ci|−|Mi|)/(|Ci|)

whereN is the sample size. Full cluster accuracy is the num-
ber of clusters that did not have any misses overN .
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MINI -NYT NYT
P R F P R F

L INGUISTICA 64.30 93.34 76.15 47.50 88.33 61.77
MORFESSOR 45.2 87.8 59.7 63.6 69.2 66.3

CandGen-D+ Clust-G 69.41 91.42 78.91 46.00 79.81 58.36
CandGen-D+ Clust-D 83.47 80.36 81.89 59.02 74.50 65.86
CandGen-G+ Clust-G 73.44 88.72 80.36 61.81 82.98 70.85
CandGen-G+ Clust-D 88.34 77.95 82.82 77.71 70.24 73.79

Table 2: Results on English for all models in precision(P), recall(R),f -score(F) for each data set.

pletely fair. Morfessor only generates segmenta-
tions. We therefore processed Morfessor output
by clustering words by assuming that the longest
segment in any segmentation is the stem and eval-
uated this instead. Linguistica produces stems and
associated suffixes so the clusters naturally follow
from this output. However, Linguistica only infers
either prefix or suffix patterns.

6.3 Results and discussion

The results on English are in table 2 withχ2 test
criteria ofp<0.05 and each cell in the contingency
table>5. CandGen-G+Clust-D had the bestf -
score, and easily beats the benchmarks.

This is different from our expectation that
awareness of document boundaries at all stages
(i.e., CandGen-D+Clust-D) would show the best
results. The discrepancy is especially marked for
the larger NYT. One important reason for this is
the affix criterion itself: trunks must be longer than
branches. Consider again the sample contingency
tables in Table 1 that were derived from NYT
throughCandGen-DandCandGen-G. We had as-
sumed at the outset thatCandGen-Dwould be bet-
ter able to filter out noise and would be sparser, but
results show the opposite. The reason is that that
short words in a global lexicon are more likely to
share trunks with longer, unrelated words. This
ensures that short word forms rarely generate can-
didate affixes. Longer words which are less likely
to have spurious long branches generate the bulk
of candidate suffixes and stems. This is born out
by the stems that were associated with the spuri-
ous suffix pairle/s: CandGen-Ghascliente, cripp,
crumb, daniel, ender, label, mccord, nag, oval,
sear, stubb, whipp. CandGen-Dhascrumb, hand,
need, sing, tab, trick, trip. The word forms that
are associated withle/s through theCandGen-D
strategy arecrumble/crumbs, handle/hands, . . ..

Compare this with the word forms associated with
the search strategyCandGen-Gsuch asclien-
tele/clientes, cripple/crips, . . .. The majority of
them are not common English words; they are
most probably proper names such asLaBelleand
Searle. Furthermore, there is no item among the
stems from theCandGen-Gsearch where concate-
nating the stemsle andswould result in both word
forms being a common noun or verb as is the
case with the stems from theCandGen-Dsearch
where all concatenated word forms are common
English words. ThoughCandGen-Gfinds spuri-
ous stems, the counts for the spurious affix pair are
suppressed (see table 1) because it is a type count
rather than a token count. This results inle/s be-
ing properly excluded as a rule. This explains why
CandGen-Dhas worse precision in general than
CandGen-G.

The affix criterion has other minor issues. One
is that it ignores the few cases where stems are
shorter than affixes, such as the very common
words be, do, go.7 Assuming that the longest
productive inflectional suffix in English is-ing8,
the criterion would correctly find stem candidates
for -ing only when the stem is longer than 3 or
4 letters. Another is that the criterion, when
combined withCandGen-D, generates candidates
from the/them/then/their/thesewhich cooccur fre-
quently in documents. This is not an issue when
the criterion is applied inCandGen-G.

Nonetheless, results show that when data sizes
are small, as with USP (Table 3) andMINI -NYT,
awareness of document boundaries at the candi-
date generation stage is beneficial to precision.

7The exclusion of such words in atokenbased evaluation
as opposed to atypebased evaluation would heavily penalize
our approach. We are not aware, however, of any prior work
in unsupervised morphology that evaluates over tokens.

8with occasional gemination of final consonant such as
occur→ occurring
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P R F

Ca-D+ Cl-D 70.51 44.35 54.45
Ca-G+ Cl-G 70.00 46.87 56.15

Ca-D + Cl-D + S 88.58 45.21 59.86
Ca-D + Cl-G + S 85.03 44.75 58.64
Ca-G+ Cl-D + S 90.34 45.48 60.50
Ca-G+ Cl-G + S 84.54 46.03 59.60
Ca-D + Cl-D + P 93.84 47.90 63.42
Ca-D + Cl-G + P 89.94 47.38 62.06
Ca-G+ Cl-D + P 95.42 47.89 63.78
Ca-G+ Cl-G + P 92.03 50.01 64.80

L INGUISTICA + S 81.14 47.60 60.00
L INGUISTICA + P 84.15 52.00 64.28

MORFESSOR 28.12 62.28 38.75

Table 3: Performance of models on automatically
generated USP evaluation set.P: Prefix only,S:
Suffix only. If there is no indication ofS or P, it
means model attempted to learn both

Acc. FAcc. Avg. Sz.

Ca-G+ Cl-G 98.5 79.0 2.94
L INGUISTICA 96.0 85.0 2.64
MORFESSOR 85.3 55.0 4.8

Table 4: Human expert evaluated accuracy (Acc.)
and full cluster accuracy (FAcc.) of models on
USPand average cluster size in words (Avg. Sz.)

However, it seems thatCandGen-Ghas better cov-
erage no matter the size of the corpus, which
explains why coupling it withClust-D produces
overall better scores.Clust-Ddoes provide a use-
ful added constraint to mere orthographic similar-
ity (i.e. shared trunks in a trie).

A worrisome aspect of the results is that perfor-
mance degrades for large data sets (this is also true
for Linguistica). However, it also hints that this
method might work well for under-resourced lan-
guages. We surmise that since productive suffixes
do not suffer from sparsity, even a small data set
provides sufficient evidence to reach reliable con-
clusions about the productive morphology of some
language. Increasing the size of the data merely
increases the counts of spurious affixes and poses
problems for a relative simple measure such as
theχ2 test. A similar result was shown in Creutz
and Lagus (2005) wheref -score performance of
their segmentation method improved as more data
was provided then decreased as the input exceeded

250K tokens in English. Their method showed
continued improvement with increased data for
Finnish. This hints that more data is beneficial
for morphologically complex languages but not
for morphologically impoverished languages.

Finally, it is also encouraging that the manual
evaluation (Table 4) shows very high accuracy, as
judged by a documentary linguist. Both our model
and Linguistica perform very well under this eval-
uation.

7 Conclusion

We have presented a novel approach to unsuper-
vised morphology acquisition that uses a very
simple pipeline and does not use any thresholds
other than standard ones associated with theχ2

test. The model relies on document boundaries
and correlation tests for filtering spurious stems
and affixes. The model compares favorably to
Linguistica and Morfessor, two models that em-
ploy much more complex strategies and rely on
fine-tuned parameters. We found that the use of
document boundaries is especially beneficial with
small datasets, which is promising for the applica-
tion of this model to under-resourced languages.
For large datasets, global candidate generation
outperformed document-aware candidate genera-
tion at the task of filtering out spurious stems,
but document-aware clustering does improve pre-
cision and overall performance.

In this paper we have addressed one aspect of
morphology acquisition, segmentation and clus-
tering. Extending the approach is straightforward,
for example, substituting more sophisticated data
structures or statistical tests for the current ones.
In particular, we will move from the use of doc-
ument boundaries to a flexible notion of textual
distance to estimate likelihood of morphological
relatedness.
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