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Abstract

Bootstrapping has a tendency, called seman-
tic drift, to select instances unrelated to the
seed instances as the iteration proceeds. We
demonstrate the semantic drift of bootstrap-
ping has the same root as the topic drift of
Kleinberg’s HITS, using a simplified graph-
based reformulation of bootstrapping. We
confirm that two graph-based algorithms, the
von Neumann kernels and the regularized
Laplacian, can reduce semantic drift in the
task of word sense disambiguation (WSD)
on Senseval-3 English Lexical Sample Task.
Proposed algorithms achieve superior perfor-
mance to Espresso and previous graph-based
WSD methods, even though the proposed al-
gorithms have less parameters and are easy to
calibrate.

1 Introduction

In recent years machine learning techniques be-
come widely used in natural language processing
(NLP). These techniques offer various ways to ex-
ploit large corpora and are known to perform well
in many tasks. However, these techniques often re-
quire tagged corpora, which are not readily available
to many languages. So far, reducing the cost of hu-
man annotation is one of the important problems for
building NLP systems.

To mitigate the problem of hand-tagging re-
sources, semi(or minimally)-supervised and unsu-
pervised techniques have been actively studied.
Hearst (1992) first presented a bootstrapping method
which requires only a small amount of instances

(seed instances) to start with, but can easily mul-
tiply the number of tagged instances with mini-
mal human annotation cost, by iteratively apply-
ing the following phases: pattern induction, pattern
ranking/selection, and instance extraction. Boot-
strapping has been widely adopted in NLP applica-
tions such as word sense disambiguation (Yarowsky,
1995), named entity recognition (Collins and Singer,
1999) and relation extraction (Riloff and Jones,
1999; Pantel and Pennacchiotti, 2006).

However, it is known that bootstrapping often ac-
quires instances not related to seed instances. For
example, consider the task of collecting the names
of common tourist sites from web corpora. Given
words like “Geneva” and “Bali” as seed instances,
bootstrapping would eventually learn generic pat-
terns such as “pictures” and “photos,” which also
co-occur with many other unrelated instances. The
subsequent iterations would likely acquire frequent
words that co-occur with these generic patterns,
such as “Britney Spears.” This phenomenon is
called semantic drift (Curran et al., 2007).

A straightforward approach to avoid semantic
drift is to terminate iterations before hitting generic
patterns, but the optimal number of iterations is task
dependent and is hard to come by. The recently pro-
posed Espresso (Pantel and Pennacchiotti, 2006) al-
gorithm incorporates sophisticated scoring functions
to cope with generic patterns, but as Komachi and
Suzuki (2008) pointed out, Espresso still shows se-
mantic drift unless iterations are terminated appro-
priately.

Another deficiency in bootstrapping is its sensi-
tivity to many parameters such as the number of
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seed instances, the stopping criterion of iteration, the
number of instances and patterns selected on each it-
eration, and so forth. These parameters also need to
be calibrated for each task.

In this paper, we present a graph-theoretic anal-
ysis of Espresso-like bootstrapping algorithms. We
argue that semantic drift is inherent in these algo-
rithms, and propose to use two graph-based algo-
rithms that are theoretically less prone to semantic
drift, as an alternative to bootstrapping.

After a brief review of related work in Section 2,
we analyze in Section 3 a bootstrapping algorithm
(Simplified Espresso) which can be thought of as a
degenerate version of Espresso. Simplified Espresso
is simple enough to allow an algebraic treatment,
and its equivalence to Kleinberg’s HITS algorithm
(Kleinberg, 1999) is shown. An implication of this
equivalence is that semantic drift in this bootstrap-
ping algorithm is essentially the same phenomenon
as topic drift observed in link analysis. Another im-
plication is that semantic drift is inevitable in Sim-
plified Espresso as it converges to the same score
vector regardless of seed instances.

The original Espresso also suffers from the same
problem as its simplified version does. It incorpo-
rates heuristics not present in Simplified Espresso to
reduce semantic drift, but these heuristics have lim-
ited effect as we demonstrate in Section 3.3.

In Section 4, we propose two graph-based algo-
rithms to reduce semantic drift. These algorithms
are used in link analysis community to reduce the
effect of topic drift. In Section 5 we apply them to
the task of word sense disambiguation on Senseval-3
Lexical Sample Task and verify that they indeed re-
duce semantic drift. Finally, we conclude our work
in Section 6.

2 Related Work

2.1 Overview of Bootstrapping

Bootstrapping (or self-training) is a general frame-
work for reducing the requirement of manual an-
notation. Hearst (1992) described a bootstrapping
procedure for extracting words in hyponym (is-a)
relation, starting with three manually given lexico-
syntactic patterns.

The idea of learning with a bootstrapping method
was adopted for many tasks. Yarowsky (1995) pre-

sented an unsupervised WSD system which rivals
supervised techniques. Abney (2004) presented a
thorough discussion on the Yarowsky algorithm. He
extended the original Yarowsky algorithm to a new
family of bootstrapping algorithms that are mathe-
matically well understood.

Li and Li (2004) proposed a method called Bilin-
gual Bootstrapping. It makes use of a translation
dictionary and a comparable corpus to help disam-
biguate word senses in the source language, by ex-
ploiting the asymmetric many-to-many sense map-
ping relationship between words in two languages.

Curran et al. (2007) presented an algorithm called
Mutual Exclusion Bootstrapping, which minimizes
semantic drift using mutual exclusion between se-
mantic classes of learned instances. They prepared
a list of so-called stop classes similar to a stop word
list used in information retrieval to help bound the
semantic classes. Stop classes are sets of terms
known to cause semantic drift in particular seman-
tic classes. However, stop classes vary from task to
task and domain to domain, and human intervention
is essential to create an effective list of stop classes.

A major drawback of bootstrapping is the lack
of principled method for selecting optimal param-
eter values (Ng and Cardie, 2003; Banko and Brill,
2001). Also, there is an issue of generic patterns
which deteriorates the quality of acquired instances.
Previously proposed bootstrapping algorithms differ
in how they deal with the problem of semantic drift.
We will take recently proposed Espresso algorithm
as the example to explain common configuration for
bootstrapping in detail.

2.2 The Espresso Algorithm

Pantel and Pennachiotti (2006) proposed a boot-
strapping algorithm called Espresso to learn binary
semantic relations such as is-a and part-of from
a corpus. What distinguishes Espresso from other
bootstrapping algorithms is that it benefits from
generic patterns by using a principled measure of
instance and pattern reliability. The key idea of
Espresso is recursive definition of pattern-instance
scoring metrics. The reliability scores of pattern p
and instance i, denoted respectively as rπ(p) and
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rι(i), are given as follows:

rπ(p) =

∑
i∈I

pmi(i,p)
max pmirι(i)

|I|
(1)

rι(i) =

∑
p∈P

pmi(i,p)
max pmirπ(p)

|P |
(2)

where

pmi(i, p) = log2

|i, p|
|i, ∗||∗, p|

(3)

is pointwise mutual information between i and p, P
and I are sets of patterns and instances, and |P | and
|I| are the numbers of patterns and instances, respec-
tively. |i, ∗| and |∗, p| are the frequencies of pattern
p and instance i in a given corpus, respectively, and
|i, p| is the frequency of pattern p which co-occurs
with instance i. max pmi is a maximum value of
the pointwise mutual information over all instances
and patterns. The intuition behind these definitions
is that a reliable pattern co-occurs with many reli-
able instances, and a reliable instance co-occurs with
many reliable patterns.

Espresso and other bootstrapping methods iterate
the following three phases: pattern induction, pat-
tern ranking/selection, and instance extraction.

We describe these phases below, along with the
parameters that controls each phase.

Phase 1. Pattern Induction Induce patterns from
a corpus given seed instances. Patterns may be sur-
face text patterns, lexico-syntactic patterns, and/or
just features.

Phase 2. Pattern Ranking/Selection Create a
pattern ranker from a corpus using instances as fea-
tures and select patterns which co-occur with seed
instances for the next instance extraction phase. The
main issue here is to avoid ranking generic patterns
high and to choose patterns with high relatedness to
the seed instances. Parameters and configurations:
(a) a pattern scoring metrics and (b) the number of
patterns to use for extraction of instances.

Phase 3. Instance Extraction Select high-
confidence instances to the seed instance set. It is
desirable to keep only high-confidence instances at
this phase, as they are used as seed instances for the

input:
seed vector i0
pattern-instance co-occurrence matrix M

output:
instance and pattern score vectors i and p

1: i = i0
2: loop
3: p← M i
4: Normalize p
5: i← MTp
6: Normalize i
7: if i and p have both converged then
8: return i and p
9: end if

10: end loop

Figure 1: A simple bootstrapping algorithm

next iteration. Optionally, instances can be cumula-
tively obtained on each iteration to retain highly rel-
evant instances learned in early iterations. Parame-
ters and configurations: (c) instance scoring metrics,
(d) whether to retain extracted instances on each it-
eration or not, and (e) the number of instances to
pass to the next iteration.

Bootstrapping iterates the above three phases sev-
eral times until stopping criteria are met. Acquired
instances tend to become noisy as the iteration pro-
ceeds, so it is important to terminate before semantic
drift occurs. Thus, we have another configuration:
(f) stopping criterion.

Espresso uses Equations (1) for (a) and (2) for (c)
respectively, whereas other parameters rely on the
tasks and need calibration. Even though Espresso
greatly improves recall while keeping high precision
by using these pattern and instance scoring metrics,
Komachi and Suzuki (2008) observed that extracted
instances matched against generic patterns may be-
come erroneous after tens of iterations, showing the
difficulty of applying bootstrapping methods to dif-
ferent domains.

3 Analysis of an Espresso-like
Bootstrapping Algorithm

3.1 Simplified Espresso
Let us consider a simple bootstrapping algorithm

illustrated in Figure 1, in order to elucidate the cause
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of semantic drift.
As before, let |I| and |P | be the numbers of

instances and patterns, respectively. The algo-
rithm takes a seed vector i0, and a pattern-instance
co-occurrence matrix M as input. i0 is a |I|-
dimensional vector with 1 at the position of seed in-
stances, and 0 elsewhere. M is a |P | × |I|-matrix
whose (p, i)-element [M ]pi holds the (possibly re-
weighted) number of co-occurrence of pattern p and
instance i in the corpus. If both i and p have con-
verged, the algorithm returns the pair of i and p as
output.

This algorithm, though simple, can encode
Espresso’s update formulae (1) and (2) as Steps 3
through 6 if we pose

[M ]pi =
pmi(i, p)
max pmi

, (4)

and normalize p and i in Steps 4 and 6 by

p← p/|I| and i← i/|P |, (5)

respectively.
This specific instance of the algorithm of Fig-

ure 1, obtained by specialization through Equations
(4) and (5), will be henceforth referred to as Simpli-
fied Espresso. Indeed, it is an instance of the origi-
nal Espresso in which the iteration is not terminated
until convergence, all instances are carried over to
the next iteration, and instances are not cumulatively
learned.

3.2 Simplified Espresso as Link Analysis
Let n denote the number of times Steps 2–10 are
iterated. Plugging (4) and (5) into Steps 3–6, we
see that the score vector of instances after the nth
iteration is

in = Ani0 (6)

where

A =
1

|I||P |
MT M. (7)

Suppose matrix A is irreducible; i.e., the graph
induced by taking A as the adjacency matrix is con-
nected. If n is increased and in is normalized on
each iteration, in tends to the principal eigenvec-
tor of A. This implies that no matter what seed in-
stances are input, the algorithm will end up with the

same ranking of instances, if it is run until conver-
gence. Because A = MT M

|I||P | , the principal eigen-
vector of A is identical to the authority vector of
HITS (Kleinberg, 1999) algorithm run on the graph
induced by M . 1 This similarity of Equations (1),
(2) and HITS is not discussed in (Pantel and Pen-
nacchiotti, 2006).

As a consequence of the above discussion, se-
mantic drift in simplified Espresso seems to be in-
evitable as the iteration proceeds, since the principal
eigenvector of A need not resemble seed vector i0.
A similar phenomenon is reported for HITS and is
known as topic drift, in which pages of the dominant
topic are ranked high regardless of the given query.
(Bharat and Henzinger, 1998)

Unlike HITS and Simplified Espresso, how-
ever, Espresso and other bootstrapping algo-
rithms (Yarowsky, 1995; Riloff and Jones, 1999),
incorporate heuristics so that only patterns and in-
stances with high confidence score are carried over
to the next iteration.

3.3 Convergence Process of Espresso

To investigate the effect of semantic drift on
Espresso with and without the heuristics of selecting
the most confident instances on each iteration (i.e.,
the original Espresso and Simplified Espresso of
Section 3.2), we apply them to the task of word sense
disambiguation of word “bank” in the Senseval-3
Lexical Sample (S3LS) Task data.2 There are 394
instances of word “bank” and their occurring con-
text in this dataset, and each of them is annotated
with its true sense. Of the ten senses of bank, the
most frequent is the bank as in “bank of the river.”
We use the standard training-test split provided with
the data set.

We henceforth denote Espresso with the follow-
ing filtering strategy as Filtered Espresso to stress
the distinction from Simplified Espresso. For Fil-
tered Espresso, we cleared all but the 100 top-
scoring instances in the instance vector on each iter-
ation, and the number of non-zeroed instance scores

1As long as the relative magnitude of the components of vec-
tor in is preserved, the vector can be normalized in any way on
each iteration. Hence HITS and Simplified Espresso use differ-
ent normalization but both converge to the principal eigenvector
of A.

2http://www.senseval.org/senseval3/data.html

1014



grows by 100 on each iteration. On the other hand,
we cleared all but the 20 top-scoring patterns in the
pattern vector on each iteration, and the number of
non-zeroed pattern scores grows by 1 on each iter-
ation following (Pantel and Pennacchiotti, 2006).3

The values of other parameters (b), (d), (e) and (f)
remains the same as those for simplified Espresso in
Section 3.1.

The task of WSD is to correctly predict the senses
of test instances whose true sense is hidden from the
system, using training data and their true senses. To
predict the sense of a given instance i, we apply k-
nearest neighbor algorithm.

Given a test instance i, its sense is predicted with
the following procedure:

1. Compute the instance-pattern matrix M from
the entire set of instances. We defer the details
of this step to Section 5.2.

2. Run Simplified- and Filtered Espresso using
the given instance i as the only seed instance.

3. After the termination of the algorithm, select k
training instances with the highest scores in the
score vector i output by the algorithm.

4. Since the selected k instances are training
instances, their true senses are accessible.
Choose the majority sense s from these k in-
stances, and output s as the prediction for the
given instance i. When there is a tie, output the
sense of the instance with the highest score in
i. Note that only Step 4 uses sense information.

Figure 2 shows the convergence process of
Simplified- and Filtered Espresso. X-axis indicates
the number of bootstrapping iterations and Y-axis
indicates the recall, which in this case equals pre-
cision, as the coverage is 100% in all cases.

3We conducted preliminary experiment to find these param-
eters to maximize the performance of Filtered Espresso. (These
numbers are different from the original Espresso (Pantel and
Pennacchiotti, 2006).) The number of initial patterns is rel-
atively large because of a data sparseness problem in WSD,
unlike relation extraction and named entity recognition. Also,
WSD basically uses more features than relation extraction and
thus it is hard to determine the stopping criterion based on the
number and scores of patterns, as (Pantel and Pennacchiotti,
2006) does.
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Figure 2: Recall of Simplified- and Filtered Espresso

Simplified Espresso tends to select the most fre-
quent sense as the iteration proceeds, and after nine
iterations it selects the most frequent sense (“the
bank of the river”) regardless of the seed instances.
As expected from the discussion in Section 3.2,
generic patterns gradually got more weight and se-
mantic drift occurred in later iterations. Indeed, the
ranking of the instances after convergence was iden-
tical to the HITS authority ranking computed from
instance-pattern matrix M (i.e., the ranking induced
by the dominant eigenvector of MT M ).

On the other hand, Filtered Espresso suffers less
from semantic drift. The final recall achieved
was 0.773 after convergence on the 20th iteration,
outperforming the most-frequent sense baseline by
0.10. However, a closer look reveals that the filter-
ing heuristics is limited in effectiveness.

Figure 3 plots the learning curve of Filtered
Espresso on the set of test instances. We show re-
call ( |correct instances|

|total true instances| ) of each sense to see how
Filtered Espresso tends to select the most frequent
sense. If semantic drift takes place, the number
of instances predicted as the most frequent sense
should increase as the iteration proceeds, resulting
in increased recall on the most frequent sense and
decreased recall on other senses. Figure 3 exactly
exhibit this trend, meaning that Filtered Espresso is
not completely free from semantic drift. Figure 2
also shows that the recall of Filtered Espresso starts
to decay after the seventh iteration.
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Figure 3: Recall of Filtered Espresso on the instances
having “bank of the river” and other senses

4 Two Graph-based Algorithms for
Exploiting Generic Patterns

We explore two graph-based methods which have
the advantage of Espresso to harness the property of
generic patterns by the mutual recursive definition
of instance and pattern scores. They also have less
parameters than bootstrapping, and are less prone to
semantic drift.

4.1 Von Neumann Kernel
Kandola et al. (2002) proposed the von Neumann
kernels for measuring similarity of documents us-
ing words. If we apply the von Neumann kernels to
the pattern-instance co-occurrence matrix instead of
the document-word matrix, the relative importance
of an instance to seed instances can be estimated.

Let A = MT M be the instance similarity matrix
obtained from pattern-instance matrix M , and λ be
the principal eigenvalue of A. The von Neumann
kernel matrix Kβ with diffusion factor β (0 ≤ β <
λ−1) is defined as follows:

Kβ = A
∞∑

n=0

βnAn = A(I − βA)−1. (8)

The similarity between two instances i, j is given by
the (i, j) element of Kβ . Hence, the i-th column
vector can be used as the score vector for seed in-
stance i.

Ito et al. (2005) showed that the von Neumann
kernels represent a mixture of the co-citation re-
latedness and Kleinberg’s HITS importance. They

compute the weighted sum of all paths between two
nodes in the co-citation graph induced by A =
MT M . The (MT M)n term of smaller n corre-
sponds to the relatedness to the seed instances, and
the (MT M)n term of larger n corresponds to HITS
importance. The von Neumann kernels calculate the
weighted sum of (MT M)n from n = 1 to ∞, and
therefore smaller diffusion factor β results in rank-
ing by relatedness, and larger β returns ranking by
HITS importance.

In NLP literature, Schütze (1998) introduced the
notion of first- and second-order co-occurrence.
First-order co-occurrence is a context which directly
co-occurs with a word, whereas second-order co-
occurrence is a context which occurs with the (con-
textual) words that co-occur with a word. Higher-
order co-occurrence information is less sparse and
more robust than lower-order co-occurrence, and
thus is useful for a proximity measure.

Given these definitions, we see that the (MT M)n

term of smaller n corresponds to lower-order co-
occurrence, which is accurate but sparse, and the
(MT M)n term of larger n corresponds to higher-
order co-occurrence, which is dense but possibly
giving too much weight on unrelated instances ex-
tracted by generic patterns.

As a result, it is expected that setting diffusion
factor β to a small value prevents semantic drift and
also takes higher order pattern vectors into account.
We verify this claim in Section 5.3.

4.2 Regularized Laplacian Kernel
The von Neumann kernels can be regarded as a mix-
ture of relatedness and importance, and diffusion
factor β controls the trade-off between relatedness
and importance. In practice, however, setting the
right parameter value becomes an issue. We solve
this problem by the regularized Laplacian (Smola
and Kondor, 2003; Chebotarev and Shamis, 1998),
which are stable across diffusion factors and can
safely benefit from generic patterns.

Let G be a weighted undirected graph whose adja-
cency (weight) matrix is a symmetric matrix A. The
(combinatorial) graph Laplacian L of a graph G is
defined as follows:

L = D −A (9)

where D is a diagonal matrix, and the ith diagonal
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Table 1: Recall of predicted labels of bank

algorithm MFS others

Simplified Espresso 100.0 0.0
Filtered Espresso 100.0 30.2
Filtered Espresso (optimal stopping) 94.4 67.4
von Neumann kernels 92.1 65.1
regularized Laplacian 92.1 62.8

element [D]ii is given by

[D]ii =
∑
j

[A]ij . (10)

Here, [A]ij stands for the (i, j) element of A. By re-
placing A with −L in Equation (8) and deleting the
first A, we obtain a regularized Laplacian kernel 4.

Rβ =
∞∑

n=0

βn(−L)n = (I + βL)−1 (11)

Again, β(≥ 0) is called the diffusion factor.
Both the regularized Laplacian and the von Neu-

mann kernels compute all the possible paths in a
graph, and consequently they can calculate influence
between nodes in a long distance in the graph. Also,
Equations (9) and (10) show that the negative Lapla-
cian −L can be regarded as a modification to the
graph G with the weight of self-loops re-weighted
to negative values. In this modified graph, if an in-
stance co-occurs with a pattern which also co-occurs
with a large number of other instances, a self-loop
of a node in the instance similarity graph induced
by MT M will receive a higher negative weight.
In other words, instances co-occurring with generic
patterns will get less weight in the regularized Lapla-
cian than in the von Neumann kernels.

5 Experiments and Results

5.1 Experiment 1: Reducing Semantic Drift
We test the von Neumann kernels and the regular-
ized Laplacian on the same task as we used in Sec-
tion 3.3; i.e., word sense disambiguation of word

4It has been reported that normalization of A improves per-
formance in application (Johnson and Zhang, 2007), so we nor-
malize L by L = I −D−

1
2 AD−

1
2 .

“bank.” During the training phase, a pattern-instance
matrix M was constructed using the training and
testing data from Senseval-3 Lexical Sample (S3LS)
Task. The (i, j) element of M of both kernels is set
to pointwise mutual information of a pattern i and
an instance j, just the same as in Espresso. Recall is
used in evaluation.5 The diffusion parameter β is set
to 10−5 and 10−2 for the von Neumann kernels and
the regularized Laplacian, respectively.

Table 1 illustrates how well the proposed meth-
ods reduce semantic drift, just the same as the ex-
periment of Figure 3 in Section 3.3. We evalu-
ate the recall on predicting the most frequent sense
(MFS) and the recall on predicting other less fre-
quent senses (others). For Filtered Espresso, two
results are shown: the result on the seventh iter-
ation, which maximizes the performance (Filtered
Espresso (optimal stopping)), and the one after con-
vergence. As in Section 3.3, if semantic drift oc-
curs, recall of prediction on the most frequent sense
increases while recall of prediction on other senses
declines. Even Filtered Espresso was affected by se-
mantic drift, which is again a consequence of the
inherent graphical nature of Espresso-like bootstrap-
ping algorithms. On the other hand, both proposed
methods succeeded to balance the most frequent
sense and other senses. Filtered Espresso at the op-
timal number of iterations achieved the best perfor-
mance. Nevertheless, the number of iterations has to
be estimated separately.

5.2 Experiment 2: WSD Benchmark Data

We conducted experiments on the task of word sense
disambiguation of S3LS data, this time not just on
the word “bank” but on all target nouns in the data,
following (Agirre et al., 2006). We used two types
of patterns.

Unordered single words (bag-of-words) We
used all single words (unigrams) in the provided
context from S3LS data sets. Each word in the con-
text constructs one pattern. The pattern correspond-
ing to a word w is set to 1 if it appears in the con-
text of instance i. Words were lowercased and pre-
processed with the Porter Stemmer6.

5Again, recall equals precision in this case as the coverage
is 100% in all cases.

6http://tartarus.org/˜martin/PorterStemmer/def.txt
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Table 2: Comparison of WSD algorithms

algorithm Recall

most frequent sense 54.5

HyperLex (Véronis, 2004) 64.6
PageRank (Agirre et al., 2006) 64.5

Simplified Espresso 44.1
Filtered Espresso 46.9
Filtered Espresso (optimal stopping) 66.5
von Neumann kernels (β = 10−5) 67.2
regularized Laplacian (β = 10−2) 67.1

Local collocations A local collocation refers to
the ordered sequence of tokens in the local, narrow
context of the target word. We allowed a pattern to
have wildcard expressions like “sale of * interest in
* *” for the target word interest. We set the window
size to ±3 by a preliminary experiment.

We report the results of Filtered Espresso both af-
ter convergence, and with its optimal number of iter-
ations to show the upper bound of its performance.

Table 2 compares proposed methods with
Espresso with various configurations. The proposed
methods outperform by a large margin the most fre-
quent sense baseline and both Simplified- and Fil-
tered Espresso. This means that the proposed meth-
ods effectively prevent semantic drift.

Also, Filtered Espresso without early stopping
shows more or less identical performance to Sim-
plified Espresso. It is implied that the heuristics of
filtering and early stopping is a crucial step not to
select generic patterns in Espresso, and the result is
consistent with the experiment of convergence pro-
cess of Espresso in Section 3.3.

Filtered Espresso halted after the seventh itera-
tion (Filtered Espresso (optimal stopping)) is com-
parable to the proposed methods. However, in boot-
strapping, not only the number of iterations but also
a large number of parameters must be adjusted for
each task and domain. This shortcoming makes it
hard to adapt bootstrapping in practical cases. One
of the main advantages of the proposed methods is
that they have only one parameter β and are much
easier to tune.

It is suggested in Sections 3.3 and 4.1 that
Espresso and the von Neumann kernel with large β
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Figure 4: Recall of the von Neumann kernels with a dif-
ferent diffusion factor β on S3LS WSD task

converge to the principal eigenvector of A, though
the result does not seem to support this claim (both
Simplified- and Filtered Espresso are 10 points
lower than the most frequent sense baseline). The
reason seems to be because Espresso and the von
Neumann kernels use pointwise mutual information
as a weighting factor so that the principal eigenvec-
tor of A may not always represent the most frequent
sense.7

We also show the results of previous graph-based
methods (Agirre et al., 2006), based on Hyper-
Lex (Véronis, 2004) and PageRank (Brin and Page,
1998). The experimental set-up is the same as ours
in that they do not use the sense tags of training cor-
pus to construct a co-occurrence graph, and they use
the sense tags of all the S3LS training corpus for
mapping senses to clusters. However, these meth-
ods have seven parameters to tune in order to achieve
the best performance, and hence are difficult to opti-
mize.

5.3 Experiment 3: Sensitivity to a Different
Diffusion Factor

Figure 4 shows the performance of the von Neu-
mann kernels with a diffusion factor β. As ex-
pected, smaller β leads to relatedness to seed in-
stances, and larger β asymptotically converges to the
HITS authority ranking (or equivalently, Simplified

7A similar but more extreme case is described in (Ito et al.,
2005) in which the use of a normalized weight matrix M results
in an unintuitive principal eigenvector.
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Figure 5: Recall of the regularized Laplacian with a dif-
ferent diffusion factor β on S3LS WSD task

Espresso).
One of the disadvantages of the von Neumann

kernels over the regularized Laplacian is their sen-
sitivity to parameter β. Figure 5 illustrates the per-
formance of the regularized Laplacian with a diffu-
sion factor β. The regularized Laplacian is stable for
various values of β, while the von Neumann kernels
change their behavior drastically depending on the
value of β. However, β in the von Neumann kernels
is upper-bounded by the reciprocal 1/λ of the prin-
cipal eigenvalue of A, and the derivatives of kernel
matrices with respect to β can be used to guide sys-
tematic calibration of β (see (Ito et al., 2005) for
detail).

6 Conclusion and Future Work

This paper gives a graph-based analysis of seman-
tic drift in Espresso-like bootstrapping algorithms.
We indicate that semantic drift in bootstrapping is a
parallel to topic drift in HITS. We confirm that the
von Neumann kernels and the regularized Laplacian
reduce semantic drift in the Senseval-3 Lexical Sam-
ple task. Our proposed methods have only one pa-
rameters and are easy to calibrate.

Beside the regularized Laplacian, many other ker-
nels based on the eigenvalue regularization of the
Laplacian matrix have been proposed in machine
learning community (Kondor and Lafferty, 2002;
Nadler et al., 2006; Saerens et al., 2004). One such
kernel is the commute-time kernel (Saerens et al.,
2004) defined as the pseudo-inverse of Laplacian.

Despite having no parameters at all, it has been re-
ported to perform well in many collaborative filter-
ing tasks (Fouss et al., 2007). We plan to test these
kernels in our task as well.

Another research topic is to investigate other
semi-supervised learning techniques such as co-
training (Blum and Mitchell, 1998). As we have
described in this paper, self-training can be thought
of a graph-based algorithm. It is also interesting to
analyze how co-training is related to the proposed
algorithm.

Bootstrapping algorithms have been used in many
NLP applications. Two major tasks of bootstrap-
ping are word sense disambiguation and named en-
tity recognition. In named entity recognition task,
instances are usually retained on each iteration and
added to seed instance set. This seems to be be-
cause named entity recognition suffers from seman-
tic drift more severely than word sense disambigua-
tion. Even though this problem setting is different
from ours, it needs to be verified that the graph-
based approaches presented in this paper are also ef-
fective in named entity recognition.
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