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Abstract

We present a graph-based semi-supervised la-
bel propagation algorithm for acquiring open-
domain labeled classes and their instances
from a combination of unstructured and struc-
tured text sources. This acquisition method
significantly improves coverage compared to
a previous set of labeled classes and instances
derived from free text, while achieving com-
parable precision.

1 Introduction

1.1 Motivation
Users of large document collections can readily ac-
quire information about the instances, classes, and
relationships described in the documents. Such rela-
tions play an important role in both natural language
understanding and Web search, as illustrated by their
prominence in both Web documents and among the
search queries submitted most frequently by Web
users (Jansen et al., 2000). These observations moti-
vate our work on algorithms to extract instance-class
information from Web documents.

While work on named-entity recognition tradi-
tionally focuses on the acquisition and identifica-
tion of instances within a small set of coarse-grained
classes, the distribution of instances within query
logs indicates that Web search users are interested
in a wider range of more fine-grained classes. De-
pending on prior knowledge, personal interests and
immediate needs, users submit for example medi-
cal queries about the symptoms of leptospirosis or

∗Contributions made during internships at Google.

the treatment of monkeypox, both of which are in-
stances of zoonotic diseases, or the risks and benefits
of surgical procedures such as PRK and angioplasty.
Other users may be more interested in African coun-
tries such as Uganda and Angola, or active volca-
noes like Etna and Kilauea. Note that zoonotic dis-
eases, surgical procedures, African countries and
active volcanoes serve as useful class labels that cap-
ture the semantics of the associated sets of class in-
stances. Such interest in a wide variety of specific
domains highlights the utility of constructing large
collections of fine-grained classes.

Comprehensive and accurate class-instance in-
formation is useful not only in search but also
in a variety of other text processing tasks includ-
ing co-reference resolution (McCarthy and Lehn-
ert, 1995), named entity recognition (Stevenson and
Gaizauskas, 2000) and seed-based information ex-
traction (Riloff and Jones, 1999).

1.2 Contributions
We study the acquisition of open-domain, labeled
classes and their instances from both structured
and unstructured textual data sources by combin-
ing and ranking individual extractions in a princi-
pled way with the Adsorption label-propagation al-
gorithm (Baluja et al., 2008), reviewed in Section 3
below.

A collection of labeled classes acquired from
text (Van Durme and Paşca, 2008) is extended in two
ways:

1. Class label coverage is increased by identify-
ing additional class labels (such as public agen-
cies and governmental agencies) for existing
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instances such as Office of War Information),

2. The overall instance coverage is increased by
extracting additional instances (such as Addi-
son Wesley and Zebra Books) for existing class
labels (book publishers).

The WebTables database constructed by Cafarella
et al. (2008) is used as the source of additional
instances. Evaluations on gold-standard labeled
classes and instances from existing linguistic re-
sources (Fellbaum, 1998) indicate coverage im-
provements relative to that of Van Durme and Paşca
(2008), while retaining similar precision levels.

2 First Phase Extractors

To show Adsorption’s ability to uniformly combine
extractions from multiple sources and methods, we
apply it to: 1) high-precision open-domain extrac-
tions from free Web text (Van Durme and Paşca,
2008), and 2) high-recall extractions from WebTa-
bles, a large database of HTML tables mined from
the Web (Cafarella et al., 2008). These two meth-
ods were chosen to be representative of two broad
classes of extraction sources: free text and structured
Web documents.

2.1 Extraction from Free Text

Van Durme and Paşca (2008) produce an open-
domain set of instance clusters C ∈ C that parti-
tions a given set of instances I using distributional
similarity (Lin and Pantel, 2002), and labels using
is-a patterns (Hearst, 1992). By filtering the class
labels using distributional similarity, a large number
of high-precision labeled clusters are extracted. The
algorithm proceeds iteratively: at each step, all clus-
ters are tested for label coherence and all coherent
labels are tested for high cluster specificity. Label
L is coherent if it is shared by at least J% of the
instances in cluster C, and it is specific if the total
number of other clusters C ′ ∈ C, C ′ 6= C containing
instances with label L is less than K. When a cluster
is found to match these criteria, it is removed from
C and added to an output set. The procedure termi-
nates when no new clusters can be removed from C.
Table 1 shows a few randomly chosen classes and
representative instances obtained by this procedure.

2.2 Extraction from Structured Text

To expand the instance sets extracted from free
text, we use a table-based extraction method that
mines structured Web data in the form of HTML
tables. A significant fraction of the HTML ta-
bles in Web pages is assumed to contain coherent
lists of instances suitable for extraction. Identifying
such tables from scratch is hard, but seed instance
lists can be used to identify potentially coherent ta-
ble columns. In this paper we use the WebTables
database of around 154 million tables as our struc-
tured data source (Cafarella et al., 2008).

We employ a simple ranking scheme for candi-
date instances in the WebTables corpus T . Each ta-
ble T ∈ T consists of one or more columns. Each
column g ∈ T consists of a set of candidate in-
stances i ∈ g corresponding to row elements. We
define the set of unique seed matches in g relative to
semantic class C ∈ C as

MC(g) def= {i ∈ I(C) : i ∈ g}

where I(C) denotes the set of instances in seed class
C. For each column g, we define its α-unique class
coverage, that is, the set of classes that have at least
α unique seeds in g,

Q(g;α) def= {C ∈ C : |MC(g)| ≥ α}.

Using M and Q we define a method for scoring
columns relative to each class. Intuitively, such a
score should take into account not only the number
of matches from class C, but also the total num-
ber of classes that contribute to Q and their relative
overlap. Towards this end, we introduce the scoring
function

score(C, g;α) def= |MC(g)|︸ ︷︷ ︸
seed matches

·

class coherence︷ ︸︸ ︷
|MC(g)|

|
⋃

C′∈Q(g;α) I(C ′)|

which is the simplest scoring function combining
the number of seed matches with the coherence of
the table column. Coherence is a critical notion
in WebTables extraction, as some tables contain in-
stances across many diverse seed classes, contribut-
ing to extraction noise. The class coherence intro-
duced here also takes into account class overlap; that
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Class Size Examples of Instances
Book Publishers 70 crown publishing, kluwer academic, prentice hall, puffin

Federal Agencies 161 catsa, dhs, dod, ex-im bank, fsis, iema, mema, nipc, nmfs, tdh, usdot
Mammals 956 armadillo, elephant shrews, long-tailed weasel, river otter, weddell seals, wild goat

NFL Players 180 aikman, deion sanders, fred taylor, jamal lewis, raghib ismail, troy vincent
Scientific Journals 265 biometrika, european economic review, nature genetics, neuroscience

Social Issues 210 gender inequality, lack of education, substandard housing, welfare dependency
Writers 5089 bronte sisters, hemingway, kipling, proust, torquato tasso, ungaretti, yeats

Table 1: A sample of the open-domain classes and associated instances from (Van Durme and Paşca, 2008).

is, a column containing many semantically similar
classes is penalized less than one containing diverse
classes.1 Finally, an extracted instance i is assigned
a score relative to class C equal to the sum of all its
column scores,

score(i, C;α) def=
1

ZC

∑
g∈T,T∈T

score(C, g;α)

where ZC is a normalizing constant set to the max-
imum score of any instance in class C. This scor-
ing function assigns high rank to instances that oc-
cur frequently in columns with many seed matches
and high class specificity.

The ranked list of extracted instances is post-
filtered by removing all instances that occur in less
than d unique Internet domains.

3 Graph-Based Extraction

To combine the extractions from both free and struc-
tured text, we need a representation capable of en-
coding efficiently all the available information. We
chose a graph representation for the following rea-
sons:

• Graphs can represent complicated relationships
between classes and instances. For example,
an ambiguous instance such as Michael Jor-
dan could belong to the class of both Profes-
sors and NBA players. Similarly, an instance
may belong to multiple nodes in the hierarchy
of classes. For example, Blue Whales could be-
long to both classes Vertebrates and Mammals,
because Mammals are a subset of Vertebrates.

1Note that this scoring function does not take into account
class containment: if all seeds are both wind Instruments and
instruments, then the column should assign higher score to the
more specific class.

• Extractions from multiple sources, such as Web
queries, Web tables, and text patterns can be
represented in a single graph.

• Graphs make explicit the potential paths of in-
formation propagation that are implicit in the
more common local heuristics used for weakly-
supervised information extraction. For exam-
ple, if we know that the instance Bill Clinton
belongs to both classes President and Politician
then this should be treated as evidence that the
class of President and Politician are related.

Each instance-class pair (i, C) extracted in the
first phase (Section 2) is represented as a weighted
edge in a graph G = (V,E, W ), where V is the set
of nodes, E is the set of edges and W : E → R+

is the weight function which assigns positive weight
to each edge. In particular, for each (i, C,w) triple
from the set of base extractions, i and C are added
to V and (i, C) is added to E, 2 with W (i, C) = w.
The weight w represents the total score of all extrac-
tions with that instance and class. Figure 1 illustrates
a portion of a sample graph. This simple graph rep-
resentation could be refined with additional types of
nodes and edges, as we discuss in Section 7.

In what follows, all nodes are treated in the same
way, regardless of whether they represent instances
or classes. In particular, all nodes can be assigned
class labels. For an instance node, that means that
the instance is hypothesized to belong to the class;
for a class node, that means that the node’s class is
hypothesized to be semantically similar to the label’s
class (Section 5).

We now formulate the task of assigning labels to
nodes as graph label propagation. We are given a

2In practice, we use two directed edges, from i to C and
from C to i, both with weight w.
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bob dylan

musician

0.95

johnny cash

0.87

singer

0.73

billy joel

0.82

0.75

Figure 1: Section of a graph used as input into Adsorp-
tion. Though the nodes do not have any type associated
with them, for readability, instance nodes are marked in
pink while class nodes are shown in green.

set of instances I and a set of classes C represented
as nodes in the graph, with connecting edges as de-
scribed above. We annotate a few instance nodes
with labels drawn from C. That is, classes are used
both as nodes in the graph and as labels for nodes.
There is no necessary alignment between a class
node and any of the (class) labels, as the final labels
will be assigned by the Adsorption algorithm.

The Adsorption label propagation algo-
rithm (Baluja et al., 2008) is now applied to
the given graph. Adsorption is a general framework
for label propagation, consisting of a few nodes
annotated with labels and a rich graph structure
containing the universe of all labeled and unlabeled
nodes. Adsorption proceeds to label all nodes
based on the graph structure, ultimately producing a
probability distribution over labels for each node.

More specifically, Adsorption works on a graph
G = (V,E, W ) and computes for each node v a la-
bel distribution Lv that represents which labels are
more or less appropriate for that node. Several in-
terpretations of Adsorption-type algorithms have ap-
peared in various fields (Azran, 2007; Zhu et al.,
2003; Szummer and Jaakkola, 2002; Indyk and Ma-
tousek, 2004). For details, the reader is referred to
(Baluja et al., 2008). We use two interpretations
here:

Adsorption through Random Walks: Let Gr =
(V,Er,Wr) be the edge-reversed version of the
original graph G = (V,E, W ) where (a, b) ∈

Er iff (b, a) ∈ E; and Wr(a, b) = W (b, a).
Now, choose a node of interest q ∈ V . To es-
timate Lq for q, we perform a random walk on
Gr starting from q to generate values for a ran-
dom label variable L. After reaching a node v
during the walk, we have three choices:

1. With probability pcont
v , continue the ran-

dom walk to a neighbor of v.
2. With probability pabnd

v , abandon the ran-
dom walk. This abandonment proba-
bility makes the random walk stay rela-
tively close to its source when the graph
has high-degree nodes. When the ran-
dom walk passes through such a node,
it is likely that further transitions will be
into regions of the graph unrelated to the
source. The abandonment probability mit-
igates that effect.

3. With probability pinj
v , stop the random

walk and emit a label L from Iv.

Lq is set to the expectation of all labels L emit-
ted from random walks initiated from node q.

Adsorption through Averaging: For this interpre-
tation we make some changes to the original
graph structure and label set. We extend the la-
bel distributions Lv to assign a probability not
only to each label in C but also to the dummy
label ⊥, which represents lack of information
about the actual label(s). We represent the ini-
tial knowledge we have about some node labels
in an augmented graph G′ = (V ′, E′,W ′) as
follows. For each v ∈ V , we define an ini-
tial distribution Iv = L⊥, where L⊥ is the
dummy distribution with L⊥(⊥) = 1, repre-
senting lack of label information for v. In addi-
tion, let Vs ⊆ V be the set of nodes for which
we have some actual label knowledge, and let
V ′ = V ∪ {v̄ : v ∈ Vs}, E′ = E ∪ {(v̄, v) :
v ∈ Vs}, and W ′(v̄, v) = 1 for v ∈ Vs,
W ′(u, v) = W (u, v) for u, v ∈ V . Finally,
let Iv̄ (seed labels) specify the knowledge about
possible labels for v ∈ Vs. Less formally, the
v̄ nodes in G′ serve to inject into the graph the
prior label distributions for each v ∈ Vs.

The algorithm proceeds as follows: For each
node use a fixed-point computation to find label
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distributions that are weighted averages of the
label distributions for all their neighbors. This
causes the non-dummy initial distribution of Vs

nodes to be propagated across the graph.

Baluja et al. (2008) show that those two views are
equivalent. Algorithm 1 combines the two views:
instead of a random walk, for each node v, it itera-
tively computes the weighted average of label distri-
butions from neighboring nodes, and then uses the
random walk probabilities to estimate a new label
distribution for v.

For the experiments reported in Section 4, we
used the following heuristics from Baluja et al.
(2008) to set the random walk probabilities:

• Let cv = log β
log(β + exp H(v)) where H(v) =

−
∑

u puv × log(puv) with puv = W (u,v)P
u
′ W (u′ ,v)

.

H(v) can be interpreted as the entropy of v’s
neighborhood. Thus, cv is lower if v has many
neighbors. We set β = 2.

• jv = (1 − cv) ×
√

H(v) if Iv 6= L> and 0
otherwise.

• Then let

zv = max(cv + jv, 1)
pcont

v = cv/zv

pinj
v = jv/zv

pabnd
v = 1− pcont

v − pabnd
v

Thus, abandonment occurs only when the con-
tinuation and injection probabilities are low
enough.

The algorithm is run until convergence which is
achieved when the label distribution on each node
ceases to change within some tolerance value. Alter-
natively, the algorithm can be run for a fixed number
of iterations which is what we used in practice3.

Finally, since Adsorption is memoryless, it eas-
ily scales to tens of millions of nodes with dense
edges and can be easily parallelized, as described
by Baluja et al. (2008).

3The number of iterations was set to 10 in the experiments
reported in this paper.

Algorithm 1 Adsorption Algorithm.
Input: G′ = (V

′
, E

′
,W ′), Iv (∀v ∈ V ′).

Output: Distributions {Lv : v ∈ V }.

1: Lv = Iv ∀v ∈ V
′

2:

3: repeat
4: Nv =

∑
u W (u, v)

5: Dv = 1
Nv

∑
u W (u, v)Lu ∀v ∈ V

′

6: for all v ∈ V
′ do

7: Lv = pcont
v ×Dv +pinj

v × Iv +pabnd
v ×L>

8: end for
9: until convergence

4 Experiments

4.1 Data

As mentioned in Section 3, one of the benefits of
using Adsorption is that we can combine extrac-
tions by different methods from diverse sources into
a single framework. To demonstrate this capabil-
ity, we combine extractions from free-text patterns
and from Web tables. To the best of our knowl-
edge, this is one of the first attempts in the area of
minimally-supervised extraction algorithms where
unstructured and structured text are used in a prin-
cipled way within a single system.

Open-domain (instance, class) pairs were ex-
tracted by applying the method described by Van
Durme and Paşca (2008) on a corpus of over 100M
English web documents. A total of 924K (instance,
class) pairs were extracted, containing 263K unique
instances in 9081 classes. We refer to this dataset as
A8.

Using A8, an additional 74M unique (in-
stance,class) pairs are extracted from a random 10%
of the WebTables data, using the method outlined in
Section 2.2. For maximum coverage we set α = 2
and d = 2, resulting in a large, but somewhat noisy
collection. We refer to this data set as WT.

4.2 Graph Creation

We applied the graph construction scheme described
in Section 3 on the A8 and WT data combined, re-
sulting in a graph with 1.4M nodes and 75M edges.
Since extractions in A8 are not scored, weight of all
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Seed Class Seed Instances
Book Publishers millbrook press, academic press, springer verlag, chronicle books, shambhala publications
Federal Agencies dod, nsf, office of war information, tsa, fema

Mammals african wild dog, hyaena, hippopotamus, sperm whale, tiger
NFL Players ike hilliard, isaac bruce, torry holt, jon kitna, jamal lewis

Scientific Journals american journal of roentgenology, pnas, journal of bacteriology, american economic review,
ibm systems journal

Table 2: Classes and seeds used to initialize Adsorption.

edges originating from A8 were set at 14. This graph
is used in all subsequent experiments.

5 Evaluation

We evaluated the Adsorption algorithm under two
experimental settings. First, we evaluate Adsorp-
tion’s extraction precision on (instance, class) pairs
obtained by Adsorption but not present in A8 (Sec-
tion 5.1). This measures whether Adsorption can
add to the A8 extractions at fairly high precision.
Second, we measured Adsorption’s ability to assign
labels to a fixed set of gold instances drawn from
various classes (Section 5.2).

Book Publishers Federal Agencies NFL Players Scientific Journals Mammals
20

40

60

80

100

 

 

Adsorption A8

Book
Publishers

Federal
Agencies

NFL
Players

Scientific
Journals

Mammals

A8 Adsorption

Figure 2: Precision at 100 comparisons for A8 and Ad-
sorption.

5.1 Instance Precision

First we manually evaluated precision across five
randomly selected classes from A8: Book Publish-
ers, Federal Agencies, NFL Players, Scientific Jour-
nals and Mammals. For each class, 5 seed in-
stances were chosen manually to initialize Adsorp-
tion. These classes and seeds are shown in Table 2.
Adsorption was run for each class separately and the

4A8 extractions are assumed to be high-precision and hence
we assign them the highest possible weight.

resulting ranked extractions were manually evalu-
ated.

Since the A8 system does not produce ranked lists
of instances, we chose 100 random instances from
the A8 results to compare to the top 100 instances
produced by Adsorption. Each of the resulting 500
instance-class pairs (i, C) was presented to two hu-
man evaluators, who were asked to evaluate whether
the relation “i is a C” was correct or incorrect. The
user was also presented with Web search link to ver-
ify the results against actual documents. Results
from these experiments are presented in Figure 2
and Table 4. The results in Figure 2 show that the
A8 system has higher precision than the Adsorption
system. This is not surprising since the A8 system is
tuned for high precision. When considering individ-
ual evaluation classes, changes in precision scores
between the A8 system and the Adsorption system
vary from a small increase from 87% to 89% for the
class Book Publishers, to a significant decrease from
52% to 34% for the class Federal Agencies, with a
decrease of 10% as an average over the 5 evaluation
classes.

Class Precision at 100
(non-A8 extractions)

Book Publishers 87.36
Federal Agencies 29.89

NFL Players 94.95
Scientific Journals 90.82
Mammal Species 84.27

Table 4: Precision of top 100 Adsorption extractions (for
five classes) which were not present in A8.

Table 4 shows the precision of the Adsorption sys-
tem for instances not extracted by the A8 system.
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Seed Class Non-Seed Class Labels Discovered by Adsorption
Book Publishers small presses, journal publishers, educational publishers, academic publishers,

commercial publishers
Federal Agencies public agencies, governmental agencies, modulation schemes, private sources,

technical societies
NFL Players sports figures, football greats, football players, backs, quarterbacks

Scientific Journals prestigious journals, peer-reviewed journals, refereed journals, scholarly journals,
academic journals

Mammal Species marine mammal species, whale species, larger mammals, common animals, sea mammals

Table 3: Top class labels ranked by their similarity to a given seed class in Adsorption.

Seed Class Sample of Top Ranked Instances Discovered by Adsorption
Book Publishers small night shade books, house of anansi press, highwater books,

distributed art publishers, copper canyon press
NFL Players tony gonzales, thabiti davis, taylor stubblefield, ron dixon, rodney hannah
Scientific Journals journal of physics, nature structural and molecular biology,

sciences sociales et santé, kidney and blood pressure research,
american journal of physiology–cell physiology

Table 5: Random examples of top ranked extractions (for three classes) found by Adsorption which were not present
in A8.

Such an evaluation is important as one of the main
motivations of the current work is to increase cov-
erage (recall) of existing high-precision extractors
without significantly affecting precision. Results in
Table 4 show that Adsorption is indeed able to ex-
traction with high precision (in 4 out of 5 cases)
new instance-class pairs which were not extracted
by the original high-precision extraction set (in this
case A8). Examples of a few such pairs are shown
in Table 5. This is promising as almost all state-
of-the-art extraction methods are high-precision and
low-recall. The proposed method shows a way to
overcome that limitation.

As noted in Section 3, Adsorption ignores node
type and hence the final ranked extraction may also
contain classes along with instances. Thus, in ad-
dition to finding new instances for classes, it also
finds additional class labels similar to the seed class
labels with which Adsorption was run, at no extra
cost. Some of the top ranked class labels extracted
by Adsorption for the corresponding seed class la-
bels are shown in Table 3. To the best of our knowl-
edge, there are no other systems which perform both
tasks simultaneously.

5.2 Class Label Recall

Next we evaluated each extraction method on its rel-
ative ability to assign labels to class instances. For
each test instance, the five most probably class la-
bels are collected using each method and the Mean
Reciprocal Rank (MRR) is computed relative to a
gold standard target set. This target set, WN-gold,
consists of the 38 classes in Wordnet containing 100
or more instances.

In order to extract meaningful output from Ad-
sorption, it is provided with a number of labeled seed
instances (1, 5, 10 or 25) from each of the 38 test
classes. Regardless of the actual number of seeds
used as input, all 25 seed instances from each class
are removed from the output set from all methods,
in order to ensure fair comparison.

The results from this evaluation are summarized
in Table 6; AD x refers to the adsorption run with x
seed instances. Overall, Adsorption exhibits higher
MRR than either of the baseline methods, with MRR
increasing as the amount of supervision is increased.
Due to its high coverage, WT assigns labels to
a larger number of the instance in WN-gold than
any other method. However, the average rank of
the correct class assignment is lower, resulting is
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MRR MRR # found
Method (full) (found only)

A8 0.16 0.47 2718
WT 0.15 0.21 5747

AD 1 0.26 0.45 4687
AD 5 0.29 0.48 4687

AD 10 0.30 0.51 4687
AD 25 0.32 0.55 4687

Table 6: Mean-Reciprocal Rank scores of instance class
labels over 38 Wordnet classes (WN-gold). MRR (full)
refers to evaluation across the entire gold instance set.
MRR (found only) computes MRR only on recalled in-
stances.

lower MRR scores compared to Adsorption. This
result highlights Adsorption’s ability to effectively
combine high-precision, low-recall (A8) extractions
with low-precision, high-recall extractions (WT) in
a manner that improves both precision and coverage.

6 Related Work

Graph based algorithms for minimally supervised
information extraction methods have recently been
proposed. For example, Wang and Cohen (2007)
use a random walk on a graph built from entities and
relations extracted from semi-structured text. Our
work differs both conceptually, in terms of its focus
on open-domain extraction, as well as methodologi-
cally, as we incorporate both unstructured and struc-
tured text. The re-ranking algorithm of Bellare et al.
(2007) also constructs a graph whose nodes are in-
stances and attributes, as opposed to instances and
classes here. Adsorption can be seen as a general-
ization of the method proposed in that paper.

7 Conclusion

The field of open-domain information extraction has
been driven by the growth of Web-accessible data.
We have staggering amounts of data from various
structured and unstructured sources such as general
Web text, online encyclopedias, query logs, web ta-
bles, or link anchor texts. Any proposed algorithm
to extract information needs to harness several data
sources and do it in a robust and scalable manner.
Our work in this paper represents a first step towards
that goal. In doing so, we achieved the following:

1. Improved coverage relative to a high accuracy
instance-class extraction system while main-
taining adequate precision.

2. Combined information from two different
sources: free text and web tables.

3. Demonstrated a graph-based label propagation
algorithm that given as little as five seeds per
class achieved good results on a graph with
more than a million nodes and 70 million
edges.

In this paper, we started off with a simple graph.
For future work, we plan to proceed along the fol-
lowing lines:

1. Encode richer relationships between nodes,
for example instance-instance associations and
other types of nodes.

2. Combine information from more data sources
to answer the question of whether more data or
diverse sources are more effective in increasing
precision and coverage.

3. Apply similar ideas to other information extrac-
tion tasks such as relation extraction.
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