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Abstract

We describe our submission to the domain
adaptation track of the CoNLL07 shared
task in the open class for systems using ex-
ternal resources. Our main finding was that
it was very difficult to map from the annota-
tion scheme used to prepare training and de-
velopment data to one that could be used to
effectively train and adapt the RASP system
unlexicalized parse ranking model. Never-
theless, we were able to demonstrate a sig-
nificant improvement in performance utiliz-
ing bootstrapping over the PBIOTB data.

1 Introduction

The CoNLL07 domain adaptation task was created
to explore how a parser trained in one domain might
be adapted to a new one. The training data were
drawn from the PTB (Marcus et al., 1993) rean-
notated with dependency relations (Johansson and
Nugues, 2007, hereafter DRs). The test data were
taken from a corpus of biomedical articles (Kulick
et al., 2004) and the CHILDES database (Brown,
1973; MacWhinney, 2000) also reannotated with
DRs (see Nivre et al., 2007) for further details of
the task, annotation format, and evaluation scheme.
The development data consisted of a small amount
of annotated and unannotated biomedical and con-
versational data.

The RASP system (Briscoe et al., 2006) utilizes
a manually-developed grammar and outputs gram-
matical bilexical dependency relations (see Briscoe,
2006 for a detailed description, hereafter GRs). Wat-

son et al. (2007) describe a semi-supervised, boot-
strapping approach to training the parser which uti-
lizes unlabelled partially-bracketed input with re-
spect to the system derivations. For the domain
adaptation task we retrained RASP by mapping our
GR scheme to the DR scheme and annotation for-
mat, and used this mapping to select a derivation
to train the unlexicalized parse ranking model from
the annotated PTB training data. We also performed
similar partially-supervised bootstrapping over the
200 annotated biomedical sentences in the develop-
ment data. We then tried unsupervised bootstrap-
ping from the unannotated development data based
on these initial models.

As the parser requires input to consist of a se-
quence of one of 150 CLAWS PoS tags, we also uti-
lize a first-order HMM PoS tagger which has been
trained on manually-annotated data from the LOB,
BNC and Susanne Corpora (see Briscoe, 2006 for
further details). Accordingly, we submitted our re-
sults in the open class.

2 Training and Adaptation

The RASP parser is a generalized LR parser which
builds a non-deterministic generalized LALR(1)
parse table from the grammar (Tomita, 1987). A
context-free ‘backbone’ is automatically derived
from a unification grammar. The residue of fea-
tures not incorporated into the backbone are unified
on each reduce action and if unification fails the as-
sociated derivation paths also fail. The parser cre-
ates a packed parse forest represented as a graph-
structured stack.

Inui et al. (1997) describe the probability model
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utilized in the system where a transition is repre-
sented by the probability of moving from one stack
state, σi−1, (an instance of the graph structured
stack) to another, σi. They estimate this probability
using the stack-top state si−1, next input symbol li
and next action ai. This probability is conditioned
on the type of state si−1. Ss and Sr are mutually
exclusive sets of states which represent those states
reached after shift or reduce actions, respectively.
The probability of an action is estimated as:

P (li, ai, σi|σi−1) ≈
{

P (li, ai|si−1) si−1 ∈ Ss

P (ai|si−1, li) si−1 ∈ Sr

}

Therefore, normalization is performed over all
lookaheads for a state or over each lookahead for the
state depending on whether the state is a member of
Ss or Sr, respectively. In addition, Laplace estima-
tion can be used to ensure that all actions in the table
are assigned a non-zero probability.

These probabilities are estimated from counts
of actions which yield derivations compatible with
training data. We use a confidence-based self-
training approach to select derivations compatible
with the annotation of the training and development
data to train the model. In Watson et al. (2007), we
utilized unlabelled partially-bracketed training data
as the starting point for this semi-supervised train-
ing process. Here we start from the DR-annotated
training data, map it to GRs, and then find the one
or more derivations in our grammar which yield GR
output consistent with the GRs recovered from the
DR scheme. Following Watson et al. (2007), we
utilize the subset of sentences in the training data
for which there is a single derivation consistent with
this mapping to build an initial trained parse ranking
model. Then we use this model to rank the deriva-
tions consistent with the mapping in the portion of
the training data which remains ambiguous given
the mapping. We then train a new model based on
counts from these consistent derivations which are
weighted in some manner by our confidence in them,
given both the degree of remaining ambiguity and
also the ranking and/or derivation probabilities pro-
vided by the initial model.

Thus, the first and hardest step was to map the
DR scheme to our GR scheme. Issues concerning

this mapping are discussed in section 4. Given this
mapping, we determined the subset of sentences in
the (PTB) training data for which there was a sin-
gle derivation in the grammar compatible with the
set of mapped GRs. These derivations were used
to create the initial trained model (B) from the uni-
form model (A). To evaluate the performance of
these and subsequent models, we tested them using
our own GR-based evaluation scheme over 560 sen-
tences from our reannotated version of DepBank, a
subset of section 23 of the WSJ PTB (see Briscoe
& Carroll, 2006). Table 1 gives the unlabelled pre-
cision, recall and microaveraged F1 score of these
models over this data. Model B was used to rerank
derivations compatible with the mapped GRs recov-
ered for the PTB training data. Model C was built
from the weighted counts of actions in the initial set
of unambiguous data and from the highest-ranked
derivations over the training data (i.e. we do not in-
clude duplicate counts from the unambiguous data).
Counts were weighted with scores ranging [0 − 1]
corresponding to the overall probability of the rel-
evant derivation. The evaluation shows a steady
increase in performance for these successive mod-
els. We also explored other variants of this boot-
strapping approach involving use of weighted counts
from the top n ranked parses derived from the initial
model (see Watson et al., 2007, for details), but none
performed better than simply selecting the highest-
ranked derivation.

To adapt the trained parser, we used the same
technique for the 200 in-domain biomedical sen-
tences (PBIOTB), using Model C to find the highest-
ranked parse compatible with the annotation, and
derived Model D from the combined counts from
this and the previous training data. We then used
Model D to rank the parses for the unannotated
in-domain data (PBIOTB unsupervised), and de-
rived Model E from the combined counts from the
highest-ranked parses for all of the training and de-
velopment data. We then iterated this process two
more times over the unannotated datasets (each with
an increasing number of examples though increas-
ingly less relevant to the test data). The performance
over our out-of-domain PTB-derived test data re-
mains approximately the same for all these models.
Therefore, we chose to use Model G for the blind
test as it incorporates most information from the in-
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Mdl. Data Init. Prec. Rec. F1

A Uniform - 71.06 69.00 70.01
PTB

B Unambig. A 75.94 73.16 74.53
C Ambig. B 77.88 75.11 76.47

PBIOTB
D Supervised C 77.86 75.09 76.45
E Unsup. 1 D 77.98 75.25 76.59
F Unsup. 2 E 77.85 75.19 76.50
G Unsup. 3 F 77.76 75.09 76.41

CHILDES
H Unsup. 1 C 78.34 75.59 76.94

Table 1: Performance of Successive Bootstrapping
Models

Score Avg. Std
PCHEMTB - labelled 55.47 65.11 09.64
PCHEMTB - unlab.ed 62.79 70.24 08.14
CHILDES - unlab.ed 45.61 56.12 09.17

Table 2: Official Scores

domain data. For the CHILDES data we performed
one iteration of unsupervised adaptation in the same
manner starting from Model C.

3 Evaluation

For the blind test submission we used Models G and
H to parse the PCHEMTB and CHILDES data, re-
spectively. We then mapped our GR output from
the highest-ranked parses to the DR scheme and an-
notation format required by the CoNLL evaluation
script. Our reported results are given in Table 2.

We used the annotated versions of the blind test
data supplied after the official evaluation to assess
the degree of adaptation of the parser to the in-
domain data. We mapped from the DR scheme and
annotation format to our GR format and used our
evaluation script to calculate the precision, recall
and microaveraged F1 score for the unadapted mod-
els and their adapted counterparts on the blind test
data, given in Table 3. The results for CHILDES
show no evidence of adaptation to the domain. How-
ever, those for PCHEMTB show a statistically sig-
nificant (Wilcoxin Signed Ranks) improvement over
the initial model. The generally higher scores in

Model Test Data Prec. Rec. F1

C PCHEMTB 71.58 73.69 72.62
G PCHEMTB 72.32 74.56 73.42
C CHILDES 82.64 65.18 72.88
H CHILDES 81.71 64.58 72.14

Table 3: Performance of (Un)Adapted Models

Table 3, as compared to Table 2, reflect the differ-
ences between the task annotation scheme and our
GR representation as well as those of the evaluation
schemes, which we discuss in the next section.

4 Discussion

The biggest issue for us participating in the shared
task was the difficulty of reconciling the DR an-
notation scheme with our GR scheme, given the
often implicit and sometimes radical underlying
differences in linguistic assumptions between the
schemes.

Firstly, the PoS tagsets are different and ours con-
tains three times the number of tags. Given that the
grammar uses these tags as preterminal categories,
this puts us at a disadvantage in mapping the anno-
tated training and development data to optimal input
to train the (semi-)supervised models.

Secondly, there are 17 main types of GR rela-
tion and a total of 46 distinctions when GR sub-
types are taken into account – for instance the GR
ncsubj has two subtypes depending on whether the
surface subject is the underlying object of a passive
clause. The DR scheme has far fewer distinctions
creating similar difficulties when creating optimal
(semi-)supervised training data.

Thirdly, the topology of the dependency graphs
is often significantly different because of reversed
head-dependent bilexical relations and their knock-
on effects – for instance, the DR AUX relation treats
the (leftmost) auxiliary as head and modifiers of the
verb group attach to the leftmost auxiliary, while the
GR scheme treats the main verb as (semantic) head
and modifiers of the verb group attach to it.

Fourthly, the treatment of punctuation is very dif-
ferent. The DR scheme includes punctuation mark-
ers in DRs which attach to the root of the subgraph
over which they have scope. By contrast, the GR
scheme does not output punctuation marks directly
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but follows Nunberg’s (1990) linguistic analysis of
punctuation as delimiting and typing text units or
adjuncts (at constituent boundaries). Thus the GR
scheme includes text (adjunct) relations and treats
punctuation marks as indicators of such relations –
for instance, for the example The subject GRs – nc-
subj, xsubj and csubj – all have subtypes., RASP
outputs the GR (ta dash GRs and) indicating that
the dash-delimited parenthetical is a text adjunct of
GRs with head and, while the DR scheme gives
(DEP GRs and), and two (P and –) relations cor-
responding to each dash mark.

Although we attempted to derive an optimal and
error-free mapping between the schemes, this was
hampered by the lack of information concerning the
DR scheme, lack of time, and the very different ap-
proaches to punctuation. This undoubtedly limited
our ability to train effectively from the PTB data and
to adapt the trained parser using the in-domain data.
For instance, the mean average unlabelled F1 score
between the GRs mapped from the annotated PTB
training data and closest matching set of GRs output
by RASP for this data is 84.56 with a standard de-
viation of 12.41. This means that the closest match-
ing derivation which is used for training the initial
model is on average only around 85% similar even
by the unlabelled measure. Thus, the mapping pro-
cedure required to relate the annotated data to RASP
derivations is introducing considerable noise into the
training process.

Mapping difficulties also depressed our official
scores very significantly. In training and adapting
we found that bootstrapping based on unlabelled de-
pendencies worked better in all cases than utilizing
the labelled mapping we derived. For the official
submission, we removed all ta, quote and passive
GRs and mapped all punctuation marks to the P re-
lation with head 0. Furthermore, we do not generate
a root relation, though we assumed any word that
was not a dependent in other GRs to have the depen-
dent ROOT. In our own evaluations based on map-
ping the annotated training and development data to
our GR scheme, we remove all P relations and map
ROOT relations to the type root which we added
to our GR hierarchy. We determined the semantic
head of each parse during training so as to compare
against the root GR and better utilize this additional
information. In the results given in Table 1 over our

DepBank test set, the effect of removing the P de-
pendencies is to depress the F1 scores by over 20%.
For the CHILDES and PCHEMTB blind test data,
our F1 scores improve by over 7% and just under 9%
respectively when we factor out the effect of P rela-
tions. These figures give an indication of the scale
of the problem caused by these representional differ-
ences.

5 Conclusions

The main conclusion that we draw from this experi-
ence is that it is very difficult to effectively relate lin-
guistic annotations even when these are inspired by
a similar (dependency-based) theoretical tradition.
The scores we achieved were undoubtedly further
depressed by the need to use a partially-supervised
boostrapping approach to training because the DR
scheme is less informative than the GR one, and by
our decision to use an entirely unlexicalized parse
ranking model for these experiments. Despite these
difficulties, performance on the PCHEMTB dataset
using the adapted model improved significantly over
that of the unadapted model, suggesting that boot-
strapping using confidence-based self-training is a
viable technique.
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