
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 887–896, Prague, June 2007. c©2007 Association for Computational Linguistics

A Probabilistic Approach to Diachronic Phonology

Alexandre Bouchard-Côté∗ Percy Liang∗ Thomas L. Griffiths† Dan Klein∗
∗Computer Science Division †Department of Psychology

University of California at Berkeley
Berkeley, CA 94720

Abstract

We present a probabilistic model of di-
achronic phonology in which individual
word forms undergo stochastic edits along
the branches of a phylogenetic tree. Our ap-
proach allows us to achieve three goals with
a single unified model: (1) reconstruction
of both ancient and modern word forms, (2)
discovery of general phonological changes,
and (3) selection among different phyloge-
nies. We learn our model using a Monte
Carlo EM algorithm and present quantitative
results validating the model.

1 Introduction

Modeling how languages change phonologically
over time (diachronic phonology) is a central topic
in historical linguistics (Campbell, 1998). The ques-
tions involved range from reconstruction of ancient
word forms, to the elucidation of phonological drift
processes, to the determination of phylogenetic re-
lationships between languages. However, this prob-
lem has received relatively little attention from the
computational community. What work there is has
focused on the reconstruction of phylogenies on the
basis of a Boolean matrix indicating the properties
of words in different languages (Gray and Atkinson,
2003; Evans et al., 2004; Ringe et al., 2002; Nakhleh
et al., 2005).

In this paper, we present a novel framework, along
with a concrete model and experiments, for the prob-
abilistic modeling of diachronic phonology. We fo-
cus on the case where the words are etymological

cognates across languages, e.g. French faire and
Spanish hacer from Latin facere (to do). Given
this information as input, we learn a model acting
at the level of individual phoneme sequences, which
can be used for reconstruction and prediction, Our
model is fully generative, and can be used to reason
about a variety of types of information. For exam-
ple, we can observe a word in one or more modern
languages, say French and Spanish, and query the
corresponding word form in another language, say
Italian. This kind of lexicon-filling has applications
in machine translation. Alternatively, we can also
reconstruct ancestral word forms or inspect the rules
learned along each branch of a phylogeny to identify
salient patterns. Finally, the model can be used as a
building block in a system for inferring the topology
of phylogenetic trees. We discuss all of these cases
further in Section 4.

The contributions of this paper are threefold.
First, the approach to modeling language change at
the phoneme sequence level is new, as is the spe-
cific model we present. Second, we compiled a new
corpus1 and developed a methodology for quantita-
tively evaluating such approaches. Finally, we de-
scribe an efficient inference algorithm for our model
and empirically study its performance.

1.1 Previous work
While our word-level model of phonological change
is new, there have been several computational inves-
tigations into diachronic linguistics which are rele-
vant to the present work.

The task of reconstructing phylogenetic trees
1nlp.cs.berkeley.edu/pages/historical.html
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for languages has been studied by several authors.
These approaches descend from glottochronology
(Swadesh, 1955), which views a language as a col-
lection of shared cognates but ignores the structure
of those cognates. This information is obtained from
manually curated cognate lists such as the data of
Dyen et al. (1997).

As an example of a cognate set encoding, consider
the meaning “eat”. There would be one column for
the cognate set which appears in French as manger
and Italian as mangiare since both descend from the
Latin mandere (to chew). There would be another
column for the cognate set which appears in both
Spanish and Portuguese as comer, descending from
the Latin comedere (to consume). If this were the
only data, algorithms based on this data would tend
to conclude that French and Italian were closely re-
lated and that Spanish and Portuguese were equally
related. However, the cognate set representation has
several disadvantages: it does not capture the fact
that the cognate is closer between Spanish and Por-
tuguese than between French and Spanish, nor do
the resulting models let us conclude anything about
the regular processes which caused these languages
to diverge. Also, the existing cognate data has been
curated at a relatively high cost. In our work, we
track each word using an automatically obtained
cognate list. While our cognates may be noisier,
we compensate by modeling phonological changes
rather than boolean mutations in cognate sets.

There has been other computational work in this
broad domain. Venkataraman et al. (1997) describe
an information theoretic measure of the distance be-
tween two dialects of Chinese. Like our approach,
they use a probabilistic edit model as a formaliza-
tion of the phonological process. However, they do
not consider the question of reconstruction or infer-
ence in multi-node phylogenies, nor do they present
a learning algorithm for such models.

Finally, for the specific application of cog-
nate prediction in machine translation, essentially
transliteration, there have been several approaches,
including Kondrak (2002). However, the phenom-
ena of interest, and therefore the models, are ex-
tremely different. Kondrak (2002) presents a model
for learning “sound laws,” general phonological
changes governing two completely observed aligned
cognate lists. His model can be viewed as a special
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Figure 1: Tree topologies used in our experiments. *Topology
3 and *Topology 4 are incorrect evolutionary tree used for our
experiments on the selection of phylogenies (Section 4.4).

case of ours using a simple two-node topology.
There is also a rich literature (Huelsenbeck et al.,

2001) on the related problems of evolutionary biol-
ogy. A good reference on the subject is Felsenstein
(2003). In particular, Yang and Rannala (1997), Mau
and Newton (1997) and Li et al. (2000) each inde-
pendently presented a Bayesian model for comput-
ing posteriors over evolutionary trees. A key dif-
ference with our model is that independence across
evolutionary sites is assumed in their work, while
the evolution of the phonemes in our model depends
on the environment in which the change occurs.

2 A model of phonological change

Assume we have a fixed set of word types (cog-
nate sets) in our vocabulary V and a set of languages
L. Each word type i has a word form wil in each lan-
guage l ∈ L, which is represented as a sequence of
phonemes and might or might not be observed. The
languages are arranged according to some tree topol-
ogy T (see Figure 1 for examples). One might con-
sider models that simultaneously induce the topol-
ogy and cognate set assignments, but let us fix both
for now. We discuss one way to relax this assump-
tion and present experimental results in Section 4.4.

Our generative model (Figure 3) specifies a dis-
tribution over the word forms {wil} for each word
type i ∈ V and each language l ∈ L. The genera-
tive process starts at the root language and generates
all the word forms in each language in a top-down
manner. One appealing aspect about our model is
that, at a high-level, it reflects the actual phonolog-
ical process that languages undergo. However, im-
portant phenomena like lexical drift, borrowing, and
other non-phonological changes are not modeled.
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Our generative model can be summarized as fol-
lows:

For each word i ∈ V :
−wiROOT ∼ LanguageModel
For each branch (k → l) ∈ T :
−θk→l ∼ Dirichlet(α) [choose edit params.]
−For each word i ∈ V :
−−wil ∼ Edit(wik, θk→l) [sample word form]

In the remainder of this section, we describe each
of the steps in the model.

2.1 Language model
For the distribution w ∼ LanguageModel, we used a
simple bigram phoneme model. The phonemes were
partitioned into natural classes (see Section 4 for de-
tails). A root word form consisting of n phonemes
x1 · · ·xn is generated with probability

plm(x1)
n∏

j=2

plm(xj | NaturalClass(xj−1)),

where plm is the distribution of the language model.

2.2 Edit model
The stochastic edit model y ∼ Edit(x, θ) describes
how a single old word form x = x1 · · ·xn changes
along one branch of the phylogeny with parameters
θ to produce a new word form y. This process is
parameterized by rule probabilities θk→l, which are
specific to branch (k → l).

The generative process is as follows: for each
phoneme xi in the old word form, walking from
left to right, choose a rule to apply. There are
three types of rules: (1) deletion of the phoneme,
(2) substitution with another phoneme (possibly the
same one), or (3) insertion of another phoneme, ei-
ther before or after the existing one. The prob-
ability of applying a rule depends on a context
(NaturalClass(xi−1), NaturalClass(xi+1)). Figure 2
illustrates the edits on an example. The context-
dependence allows us to represent phenomena such
as the fact that s is likely to be deleted only in word-
final contexts.

The edit model we have presented approximately
encodes a limited form of classic rewrite-driven seg-
mental phonology (Chomsky and Halle, 1968). One

# C V C V C #

# f o k u s #

# f w O k o #

# C V V C V #

f → f / # V
o → w O / C C
k → k / V V
u → o / C C
s → / V #

Edits applied Rules used

Figure 2: An example of edits that were used to transform
the Latin word FOCUS (/fokus/) into the Italian word fuoco
(/fwOko/) (fire) along with the context-specific rules that were
applied.

could imagine basing our model on more modern
phonological theory, but the computational proper-
ties of the edit model are compelling, and it is ade-
quate for many kinds of phonological change.

In addition to simple edits, we can model some
classical changes that appear to be too complex to be
captured by a single left-to-right edit model of this
kind. For instance, bleeding and feeding arrange-
ments occur when one phonological change intro-
duces a new context, which triggers another phono-
logical change, but the two cannot occur simultane-
ously. For example, vowel raising e → i / c might
be needed before palatalization t → c / i. Instead
of capturing such an interaction directly, we can
break up a branch into two segments joined at an in-
termediate language node, conflating the concept of
historically intermediate languages with the concept
of intermediate stages in the application of sequen-
tial rules.

However, many complex processes are not well-
represented by our basic model. One problem-
atic case is chained shifts such as Grimm’s law in
Proto-Germanic or the Great Vowel Shift in English.
To model such dependent rules, we would need
to use a more complex prior distributions over the
edit parameters. Another difficult case is prosodic
changes, such as unstressed vowel neutralizations,
which would require a representation of supraseg-
mental features. While our basic model does not
account for these phenomena, extensions within the
generative framework could capture such richness.

3 Learning and inference

We use a Monte Carlo EM algorithm to fit the pa-
rameters of our model. The algorithm iterates be-
tween a stochastic E-step, which computes recon-
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eiA→BθA→B

eiB→CθB→C eiB→D θB→D

Figure 3: The graphical model representation of our model: θ
are the parameters specifying the stochastic edits e, which gov-
ern how the words w evolve. The plate notation indicates the
replication of the nodes corresponding to the evolving words.

structions based on the current edit parameters, and
an M-step, which updates the edit parameters based
on the reconstructions.

3.1 Monte Carlo E-step: sampling the edits

The E-step needs to produce expected counts of how
many times each edit (such as o → O) was used in
each context. An exact E-step would require sum-
ming over all possible edits involving all languages
in the phylogeny (all unobserved {e}, {w} variables
in Figure 3). Unfortunately, unlike in the case of
HMMs and PCFGs, our model permits no tractable
dynamic program to compute these counts exactly.

Therefore, we resort to a Monte Carlo E-step,
where many samples of the edit variables are col-
lected, and counts are computed based on these sam-
ples. Samples are drawn using Gibbs sampling (Ge-
man and Geman, 1984): for each word form of a
particular language wil, we fix all other variables in
the model and sample wil along with its correspond-
ing edits.

In the E-step, we fix the parameters, which ren-
ders the word types conditionally independent, just
as in an HMM. Therefore, we can process each word
type in turn without approximation.

First consider the simple 4-language topology in

Figure 3. Suppose that the words in languages A,
C and D are fixed, and we wish to infer the word
at language B along with the three corresponding
sets of edits (remember the edits fully determine the
words). There are an exponential number of possi-
ble words/edits, but it turns out that we can exploit
the Markov structure in the edit model to consider all
such words/edits using dynamic programming, in a
way broadly similar to the forward-backward algo-
rithm for HMMs.

Figure 4 shows the lattice for the dynamic pro-
gram. Each path connecting the two shaded end-
point states represents a particular word form for
language B and a corresponding set of edits. Each
node in the lattice is a state of the dynamic pro-
gram, which is a 5-tuple (iA, iC , iD, c1, c2), where
iA, iC and iD are the cursor positions (represented
by dots in Figure 4) in each of the word forms of
A,C and D, respectively; c1 is the natural class of
the phoneme in the word form for B that was last
generated; and c2 corresponds to the phoneme that
will be generated next.

Each state transition involves applying a rule
to A’s current phoneme (which produces 0–2
phonemes in B) and applying rules to B’s new 0–2
phonemes. There are three types of rules (deletion,
substitution, insertion), resulting in 30+32+34 = 91
types of state transitions. For illustration, Figure 4
shows the simpler case where B only has one child
C. Given these rules, the new state is computed by
advancing the appropriate cursors and updating the
natural classes c1 and c2. The weight of each tran-
sition w(s → t) is a product of the language model
probability and the rule probabilities that were cho-
sen.

For each state s, the dynamic program computes
W (s), the sum of the weights of all paths leaving s,

W (s) =
∑
s→t

w(s → t)W (t).

To sample a path, we start at the leftmost state,
choose the transition with probability proportional
to its contribution in the sum for computing W (s),
and repeat until we reach the rightmost state.

We applied a few approximations to speed up the
sampling of words, which reduced the running time
by several orders of magnitude. For example, we
pruned rules with low probability and restricted the
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An example of a dynamic programming lattice

...

...

... ... ... ... ... ... ...

...

patr • ia

# C V C C
# p a t r

• V #
a #

patr • ja

x [T1] p1
ed(i → /C V) x

x [T3] plm(j | C) p1
ed(i → j/C V) p2

ed(j → j/C V) x

x [T11] plm(j | C) plm(i | C) p1
ed(i → j i/C V) p2

ed(j → j/C V) p2
ed(i → /C V) x
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Figure 4: The dynamic program involved in sampling an intermediate word form given one ancient and one modern word form.
One lattice node is expanded to show the dynamic program state (represented by the part not grayed out) and three of the many
possible transitions leaving the state. Each transition is labeled with the weight of the transition, which is the product of the relevant
model probabilities. At the bottom, the 13 types of state transitions are shown.

state space of the dynamic program by limiting the
deviation in cursor positions.

3.2 M-step: updating the parameters

The M-step is standard once we have computed
the expected counts of edits in the E-step. For
each branch (k → l) ∈ T in the phylogeny,
we compute the maximum likelihood estimate
of the edit parameters {θk→l(x → β / c1 c2)}.
For example, the parameter corresponding to
x = /e/, β = /e s/, c1 = ALVEOLAR, c2 = # is
the probability of inserting a final /s/ after an /e/
which is itself preceded by an alveolar phoneme.
The probability of each rule is estimated as follows:

θk→l(x → β / c1 c2) =
#(x → β / c1 c2) + α(x → β / c1 c2)− 1∑
β′ #(x → β′ / c1 c2) + α(x → β′ / c1 c2)− 1

,

where α is the concentration hyperparameter of the
Dirichlet prior. The value α − 1 can be interpreted
as the number of pseudocounts for a rule.

4 Experiments

In this section we show the results of our experi-
ments with our model. The experimental conditions
are summarized in Table 1, with additional informa-

Experiment Topology Heldout
Latin reconstruction (4.2) 1 la:293
Italian reconstruction (4.2) 1 it:117
Sound changes (4.3) 2 None
Phylogeny selection (4.4) 2, 3, 4 None

Table 1: Conditions under which each of the experiments pre-
sented in this section were performed. The topology indices
correspond to those displayed in Figure 1. Note that by condi-
tional independence, the topology used for Spanish reconstruc-
tion reduces to a chain. The heldout column indicates how many
words, if any, were heldout for edit distance evaluation, and
from which language.

tion on the specifics of the experiments presented in
Section 4.5. We start with a description of the corpus
we created for these experiments.

4.1 Corpus

In order to train and evaluate our system, we
compiled a corpus of Romance cognate words.
The raw data was taken from three sources: the
wiktionary.org website, a Bible parallel cor-
pus (Resnik et al., 1999) and the Europarl corpus
(Koehn, 2002). From an XML dump of the Wik-
tionary data, we extracted multilingual translations,
which provide a list of word tuples in a large num-
ber of languages, including a few ancient languages.
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The Europarl and the biblical data were processed
and aligned in the standard way, using combined
GIZA++ alignments (Och and Ney, 2003).

We performed our experiments with four lan-
guages from the Romance family (Latin, Italian,
Spanish, and Portuguese). For each of these lan-
guages, we used a simple in-house rule-based sys-
tem to convert the words into their IPA represen-
tations.2 After augmenting our alignments with
the transitive closure3 of the Europarl, Bible and
Wiktionary data, we filtered out non-cognate words
by thresholding the ratio of edit distance to word
length.4 The preprocessing is constraining in that we
require that all the elements of a tuple to be cognates,
which leaves out a significant portion of the data be-
hind (see the row Full entries in Table 2). However,
our approach relies on this assumption, as there is no
explicit model of non-cognate words. An interest-
ing direction for future work is the joint modeling of
phonology with the determination of the cognates,
but our simpler setting lets us focus on the proper-
ties of the edit model. Moreover, the restriction to
full entries has the side advantage that the Latin bot-
tleneck prevents the introduction of too many neol-
ogisms, which are numerous in the Europarl data, to
the final corpus.

Since we used automatic tools for preparing our
corpus rather than careful linguistic analysis, our
cognate list is much noiser in terms of the pres-
ence of borrowed words and phonemeic transcrip-
tion errors compared to the ones used by previous
approaches (Swadesh, 1955; Dyen et al., 1997). The
benefit of our mechanical preprocessing is that more
cognate data can easily be made available, allowing
us to effectively train richer models. We show in the
rest of this section that our phonological model can
indeed overcome this noise and recover meaningful
patterns from the data.

2The tool and the rules we used are available at
nlp.cs.berkeley.edu/pages/historical.html.

3For example, we would infer from an la-es bible align-
ment confessionem-confesión (confession) and an es-it Eu-
roparl alignment confesión-confessione that the Latin word con-
fessionem and the Italian word confessione are related.

4To be more precise we keep a tuple (w1, w2, . . . , wp) iff
d(wi,wj)

l̄(wi,wj)
≤ 0.7 for all i, j ∈ {1, 2, . . . , p}, where l̄ is the mean

length |wi|+|wj |
2

and d is the Levenshtein distance.

Name Languages Tuples Word forms
Raw sources of data used to create the corpus
Wiktionary es,pt,la,it 5840 11724
Bible la,es 2391 4782
Europarl es,pt 36905 73773

it,es 39506 78982
Main stages of preprocessing of the corpus
Closure es,pt,la,it 40944 106090
Cognates es,pt,la,it 27996 69637
Full entries es,pt,la,it 586 2344

Table 2: Statistics of the dataset we compiled for the evaluation
of our model. We show the languages represented, the number
of tuples and the number of word forms found in each of the
source of data and pre-processing steps involved in the creation
of the dataset we used to test our model. By full entry, we mean
the number of tuples that are jointly considered cognate by our
preprocessing system and that have a word form known for each
of the languages of interest. These last row forms the dataset
used for our experiments.

Language Baseline Model Improvement
Latin 2.84 2.34 9%
Spanish 3.59 3.21 11%

Table 3: Results of the edit distance experiment. The language
column corresponds to the language held-out for evaluation. We
show the mean edit distance across the evaluation examples.

4.2 Reconstruction of word forms

We ran the system using Topology 1 in Figure 1 to
demonstrate the the system can propose reasonable
reconstructions of Latin word forms on the basis of
modern observations. Half of the Latin words at the
root of the tree were held out, and the (uniform cost)
Levenshtein edit distance from the predicted recon-
struction to the truth was computed. Our baseline is
to pick randomly, for each heldout node in the tree,
an observed neighboring word (i.e. copy one of the
modern forms). We stopped EM after 15 iterations,
and reported the result on a Viterbi derivation using
the parameters obtained. Our model outperformed
this baseline by a 9% relative reduction in average
edit distance. Similarly, reconstruction of modern
forms was also demonstrated, with an improvement
of 11% (see Table 3).

To give a qualitative feel for the operation of the
system (good and bad), consider the example in Fig-
ure 5, taken from this experiment. The Latin dentis
/dEntis/ (teeth) is nearly correctly reconstructed as
/dEntes/, reconciling the appearance of the /j/ in the
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/dEntis/

/djEntes/ /dEnti/

i → E
E→ j E

s→

Figure 5: An example of a Latin reconstruction given the Span-
ish and Italian word forms.

Spanish and the disappearance of the final /s/ in the
Italian. Note that the /is/ vs. /es/ ending is difficult
to predict in this context (indeed, it was one of the
early distinctions to be eroded in vulgar Latin).

While the uniform-cost edit distance misses im-
portant aspects of phonology (all phoneme substitu-
tions are not equal, for instance), it is parameter-free
and still seems to correlate to a large extent with lin-
guistic quality of reconstruction. It is also superior
to held-out log-likelihood, which fails to penalize er-
rors in the modeling assumptions, and to measuring
the percentage of perfect reconstructions, which ig-
nores the degree of correctness of each reconstructed
word.

4.3 Inference of phonological changes

Another use of our model is to automatically recover
the phonological drift processes between known or
partially known languages. To facilitate evaluation,
we continued in the well-studied Romance evolu-
tionary tree. Again, the root is Latin, but we now add
an additional modern language, Portuguese, and two
additional hidden nodes. One of the nodes charac-
terizes the least common ancestor of modern Span-
ish and Portuguese; the other, the least common an-
cestor of all three modern languages. In Figure 1,
Topology 2, these two nodes are labelled vl (Vulgar
Latin) and ib (Proto-Ibero Romance) respectively.
Since we are omitting many other branches, these
names should not be understood as referring to ac-
tual historical proto-languages, but, at best, to col-
lapsed points representing several centuries of evo-
lution. Nonetheless, the major reconstructed rules
still correspond to well known phenomena and the
learned model generally places them on reasonable
branches.

Figure 6 shows the top four general rules for
each of the evolutionary branches in this experiment,

ranked by the number of times they were used in the
derivations during the last iteration of EM. The la,
es, pt, and it forms are fully observed while the
vl and ib forms are automatically reconstructed.
Figure 6 also shows a specific example of the evolu-
tion of the Latin VERBUM (word/verb), along with
the specific edits employed by the model.

While quantitative evaluation such as measuring
edit distance is helpful for comparing results, it is
also illuminating to consider the plausibility of the
learned parameters in a historical light, which we
do here briefly. In particular, we consider rules on
the branch between la and vl, for which we have
historical evidence. For example, documents such
as the Appendix Probi (Baehrens, 1922) provide in-
dications of orthographic confusions which resulted
from the growing gap between Classical Latin and
Vulgar Latin phonology around the 3rd and 4th cen-
turies AD. The Appendix lists common misspellings
of Latin words, from which phonological changes
can be inferred.

On the la to vl branch, rules for word-final dele-
tion of classical case markers dominate the list (rules
ranks 1 and 3 for deletion of final /s/, ranks 2 and
4 for deletion of final /m/). It is indeed likely that
these were generally eliminated in Vulgar Latin. For
the deletion of the /m/, the Appendix Probi contains
pairs such as PASSIM NON PASSI and OLIM NON
OLI. For the deletion of final /s/, this was observed
in early inscriptions, e.g. CORNELIO for CORNE-
LIOS (Allen, 1989). The frequent leveling of the
distinction between /o/ and /u/ (rules ranked 5 and 6)
can be also be found in the Appendix Probi: COLU-
BER NON COLOBER. Note that in the specific ex-
ample shown, the model lowers the orignal /u/ and
then re-raises it in the pt branch due to a latter pro-
cess along that branch.

Similarily, major canonical rules were discovered
in other branches as well, for example, /v/ to /b/
fortition in Spanish, /s/ to /z/ voicing in Italian,
palatalization along several branches, and so on. Of
course, the recovered words and rules are not per-
fect. For example, reconstructed Ibero /tRinta/ to
Spanish /tReinta/ (thirty) is generated in an odd fash-
ion using rules /e/ to /i/ and /n/ to /in/. Moreover,
even when otherwise reasonable systematic sound
changes are captured, the crudeness of our fixed-
granularity contexts can prevent the true context
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r → R / many environments

e → / #

i → / #

t → d / UNROUNDED UNROUNDED

u → o / many environments

v → b / initial or intervocalic

t → t e / ALVEOLAR #

z → s / ROUNDED UNROUNDED

/werbum/ (la)

/verbo/ (vl)

/veRbo/ (ib)

/beRbo/ (es) /veRbu/ (pt)

/vErbo/ (it)

s → / #

m → /
u → o / many environments

w → v / # UNROUNDED

u → o / ALVEOLAR #

e → E / many environments

i → / many environments

i → e / ALVEOLAR #

a → 5 / ALVEOLAR #

n → m / UNROUNDED ALVEOLAR

o → u / ALVEOLAR #

e → 1 / BILABIAL ALVEOLAR

m →
u → o
w → v

r → R

v → b o → u

e → E

Figure 6: The tree shows the system’s hypothesised derivation of a selected Latin word form, VERBUM (word/verb) into the modern
Spanish, Italian and Portuguese pronunciations. The Latin root and modern leaves were observed while the hidden nodes as well as
all the derivations were obtained using the parameters computed by our model after 15 iterations of EM. Nontrivial rules (i.e. rules
that are not identities) used at each stage are shown along the corresponding edge. The boxes display the top four nontrivial rules
corresponding to each of these evolutionary branches, ordered by the number of time they were applied during the last E round of
sampling. Note that since our natural classes are of fixed granularity, some rules must be redundantly discovered, which tends to
flood the top of the rule lists with duplicates of the top few rules. We summarized such redundancies in the above tables.

from being captured, resulting in either rules apply-
ing with low probability in overly coarse environ-
ments or rules being learned redundantly in overly
fine environments.

4.4 Selection of phylogenies

In this experiment, we show that our model can be
used to select between various topologies of phylo-
genies. We first presented to the algorithm the uni-
versally accepted evolutionary tree corresponding to
the evolution of Latin into Spanish, Portuguese and
Italian (Topology 2 in Figure 1). We estimated the
log-likelihood L∗ of the data under this topology.
Next, we estimated the log-likelihood L′ under two
defective topologies (*Topology 3 and *Topology
4). We recorded the log-likelihood ratio L∗ − L′

after the last iteration of EM. Note that the two like-
lihoods are comparable since the complexity of the
two models is the same.5

We obtained a ratio of L∗ − L′ = −4458 −
(−4766) = 307 for Topology 2 versus *Topology
3, and −4877− (−5125) = 248 for Topology 2 ver-
sus *Topology 4 (the experimental setup is described
in Table 1). As one would hope, this log-likelihood
ratio is positive in both cases, indicating that the sys-
tem prefers the true topology over the wrong ones.

While it may seem, at the first glance, that this re-
sult is limited in scope, knowing the relative arrange-

5If a word was not reachable in one of the topology, it was
ignored in both models for the computation of the likelihoods.

ment of all groups of four nodes is actually sufficient
for constructing a full-fledged phylogenetic tree. In-
deed, quartet-based methods, which have been very
popular in the computational biology community,
are precisely based on this fact (Erdos et al., 1996).
There is a rich literature on this subject and approxi-
mate algorithms exist which are robust to misclassi-
fication of a subset of quartets (Wu et al., 2007).

4.5 More experimental details

This section summarizes the values of the parame-
ters we used in these experiments, their interpreta-
tion, and the effect of setting them to other values.

The Dirichlet prior on the parameters can be in-
terpreted as adding pseudocounts to the correspond-
ing edits. It is an important way of infusing par-
simony into the model by setting the prior of the
self-substitution parameters much higher than that
of the other parameters. We used 6.0 as the prior on
the self-substitution parameters, and for all environ-
ments, 1.1 was divided uniformly across the other
edits. As long as the prior on self-substitution is
kept within this rough order of magnitude, varying
them has a limited effect on our results. We also ini-
tialized the parameters with values that encourage
self-substitutions. Again, the results were robust to
perturbation of initialization as long as the value for
self-substitution dominates the other parameters.

The experiments used two natural classes for
vowels (rounded and unrounded), and six natural
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classes for consonants, based on the place of ar-
ticulation (alveolar, bilabial, labiodental, palatal,
postalveolar, and velar). We conducted experi-
ments to evaluate the effect of using different natural
classes and found that finer ones can help if enough
data is used for training. We defer the meticulous
study of the optimal granularity to future work, as it
would be a more interesting experiment under a log-
linear model. In such a model, contexts of different
granularities can coexist, whereas such coexistence
is not recognized by the current model, giving rise
to many duplicate rules.

We estimated the bigram phoneme model on the
words in the root languages that were not heldout.
Just as in machine translation, the language model
was found to contribute significantly to reconstruc-
tion performance. We tried to increase the weight of
the language model by exponentiating it to a power,
as is often done in NLP applications, but we did
not find that it had any significant impact on per-
formance.

In the reconstruction experiments, when the data
was not reachable by the model, the word used in
the initialization was used as the prediction, and
the evolution of these words were ignored when re-
estimating the parameters. Words were initialized
by picking at random, for each unobserved node, an
observed node’s corresponding word.

5 Conclusion

We have presented a novel probabilistic model of
diachronic phonology and an associated inference
procedure. Our experiments indicate that our model
is able to both produce accurate reconstructions as
measured by edit distance and identify linguisti-
cally plausible rules that account for the phonologi-
cal changes. We believe that the probabilistic frame-
work we have introduced for diachronic phonology
is promising, and scaling it up to richer phylogenetic
may indeed reveal something insightful about lan-
guage change.
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