
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 561–570, Prague, June 2007. c©2007 Association for Computational Linguistics

Generating Lexical Analogies Using Dependency Relations

Andy Chiu, Pascal Poupart, and Chrysanne DiMarco
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

{pachiu,ppoupart,cdimarco}@uwaterloo.ca

Abstract

A lexical analogy is a pair of word-pairs
that share a similar semantic relation. Lex-
ical analogies occur frequently in text and
are useful in various natural language pro-
cessing tasks. In this study, we present a
system that generates lexical analogies au-
tomatically from text data. Our system dis-
covers semantically related pairs of words
by using dependency relations, and applies
novel machine learning algorithms to match
these word-pairs to form lexical analogies.
Empirical evaluation shows that our system
generates valid lexical analogies with a pre-
cision of 70%, and produces quality output
although not at the level of the best human-
generated lexical analogies.

1 Introduction

Analogy discovery and analogical reasoning are ac-
tive research areas in a multitude of disciplines, in-
cluding philosophy, psychology, cognitive science,
linguistics, and artificial intelligence. A type of anal-
ogy that is of particular interest in natural language
processing is lexical analogy. A lexical analogy is a
pair of word-pairs that share a similar semantic rela-
tion. For example, the word-pairs (dalmatian, dog)
and (trout, fish) form a lexical analogy because dal-
matian is a subspecies of dog just as trout is a sub-
species of fish, and the word-pairs (metal, electric-
ity) and (air, sound) form a lexical analogy because
in both cases the initial word serves as a conductor
for the second word. Lexical analogies occur fre-

quently in text and are useful in various natural lan-
guage processing tasks. For example, understanding
metaphoric language such as “the printer died” re-
quires the recognition of implicit lexical analogies,
in this case between (printer, malfunction) and (per-
son, death). Lexical analogies also have applica-
tions in word sense disambiguation, information ex-
traction, question-answering, and semantic relation
classification (see (Turney, 2006)).

In this study, we present a novel system for gen-
erating lexical analogies directly from a text cor-
pus without relying on dictionaries or other seman-
tic resources. Our system uses dependency relations
to characterize pairs of semantically related words,
then compares the similarity of their semantic rela-
tions using two machine learning algorithms. We
also present an empirical evaluation that shows our
system generates valid lexical analogies with a pre-
cision of 70%. Section 2 provides a list of defini-
tions, notations, and necessary background materi-
als. Section 3 describes the methods used in our
system. Section 4 presents our empirical evalua-
tion. Section 5 reviews selected related work. Fi-
nally, Section 6 concludes the paper with suggested
future work and a brief conclusion.

2 Definitions

A word-pair is a pair of entities, where each entity
is a single word or a multi-word named entity. The
underlying relations of a word-pair (w1, w2) are the
semantic relations1 between w1 and w2. For exam-

1Here ‘semantic relations’ include both classical relations
such as synonymy and meronymy, and non-classical relations
as defined by Morris and Hirst (2004).

561

ple, the underlying relations of (poet, poem) include
produces, writes, enjoys, and understands. A lexical
analogy is a pair of word-pairs that share at least one
identical or similar underlying relation.

A key linguistic formalism we use is dependency
grammar (Tesnière, 1959). A dependency gram-
mar describes the syntactic structure of a sentence
in a manner similar to the familiar phrase-structure
grammar. However, unlike phrase-structure gram-
mars which associate each word of a sentence to
the syntactic phrase in which the word is contained,
a dependency grammar associates each word to its
syntactic superordinate as determined by a set of
rules. Each pair of depending words is called a
dependency. Within a dependency, the word being
depended on is called the governor, and the word
depending on the governor is called the dependent.
Each dependency is also labelled with the syntac-
tic relation between the governor and the dependent.
Dependency grammars require that each word of a
sentence have exactly one governor, except for one
word called the head word which has no governor at
all. A proposition p that is governor to exactly one
word w1 and dependent of exactly one word w2 is
often collapsed (Lin and Pantel, 2001); that is, the
two dependencies involving p are replaced by a sin-
gle dependency between w1 and w2 labelled p.

The dependency structure of a sentence can be
concisely represented by a dependency tree, in
which each word is a node, each dependent is a child
of its governor, and the head word is the root. A de-
pendency path is an undirected path through a de-
pendency tree, and a dependency pattern is a depen-
dency path with both ends replaced by slots (Lin and
Pantel, 2001). Figure 1 illustrates various depen-
dency structures of the sentence, rebels fired rockets
at a military convoy, after each word is lemmatized.

3 Methods

We consider lexical analogy generation as a se-
quence of two key problems: data extraction and
relation-matching. Data extraction involves the
identification and extraction of pairs of semantically
related words, as well as features that characterize
their relations. Relation-matching involves match-
ing word-pairs with similar features to form lexi-
cal analogies. We describe our methods for solving

these two problems in the following subsections.

3.1 Data Extraction
Extracting Word-Pairs

To identify semantically related words, we rely
on the assumption that highly syntactically related
words also tend to be semantically related — a hy-
pothesis that is supported by works such as Levin’s
(1993) study of English verbs. As such, the de-
pendency structure of a sentence can be used to ap-
proximate the semantic relatedness between its con-
stituent words. Our system uses a dependency parser
to parse the input text into a set of dependency trees,
then searches through these trees to extract depen-
dency paths satisfying the following constraints:

1. The path must be of the form noun-verb-noun.

2. One of the nouns must be the subject of the
clause to which it belongs.

Each of these paths is then turned into a word-pair
by taking its two nouns. The path constraints that we
use are suggested by the subject-verb-object (SVO)
pattern commonly used in various relation extraction
algorithms. However, our constraints allow signifi-
cantly more flexibility than the SVO pattern in two
important aspects. First, our constraints allow an
arbitrary relation between the verb and the second
noun, not just the object relation. Hence, word-pairs
can be formed from a clause’s subject and its loca-
tion, time, instrument, and other arguments, which
are clearly semantically related to the subject. Sec-
ondly, searching in the space of dependency trees in-
stead of raw text data means that we are able to find
semantically related words that are not necessarily
adjacent to each other in the sentence.

It is important to note that, although these con-
straints improve the precision of our system and tend
to identify effectively the most relevant word-pairs,
they are not strictly necessary. Our system would be
fully functional using alternative sets of constraints
tailored for specific applications, or even with no
constraints at all.

Using the sentence in Figure 1 as an example, our
system would extract the dependency paths “rebel
subj← fire

obj→ rocket” and “rebel
subj← fire at→ con-

voy”, and would thus generate the word-pairs (rebel,
rocket) and (rebel, convoy).

562

Figure 1: Dependency structures of “rebels fired rockets at a military convoy” after lemmatization

Extracting Features
Recall that each word-pair originates from a de-

pendency path. The path, and in particular the mid-
dle verb, provides a connection between the two
words of the word-pair, and hence is a good in-
dication of their semantic relation. Therefore, for
each word-pair extracted, we also extract the depen-
dency pattern derived from the word-pair’s depen-
dency path as a feature for the word-pair. We further
justify this choice of feature by noting that the use
of dependency patterns have previously been shown
to be effective at characterizing lexico-syntactic re-
lations (Lin and Pantel, 2001; Snow et al., 2004).

Using Figure 1 as an example again, the depen-

dency patterns “
subj← fire

obj→ ” and “
subj←

fire at→ ” would be extracted as a feature of (rebel,
rocket) and (rebel, convoy), respectively.

Filtering
Word-pairs and features extracted using only de-

pendency relations tend to be crude in several as-
pects. First, they contain a significant amount of
noise, such as word-pairs that have no meaningful
underlying relations. Noise comes from grammati-
cal and spelling mistakes in the original input data,
imperfect parsing, as well as the fact that depen-
dency structure only approximates semantic related-
ness. Secondly, some of the extracted word-pairs
contain underlying relations that are too general or
too obscure for the purpose of lexical analogy gen-
eration. For example, consider the word-pair (com-
pany, right) from the sentence “the company exer-
cised the right to terminate his contract”. The two
words are clearly semantically related, however the
relation (have or entitled-to) is very general and it
is difficult to construct satisfying lexical analogies

from the word-pair. Lastly, some features are also

subject to the same problem. The feature “
subj←

say
obj→ ”, for example, has very little characteri-

zation power because almost any pair of words can
occur with this feature.

In order to retain only the most relevant word-
pairs and features, we employ a series of refining
filters. All of our filters rely on the occurrence
statistics of the word-pairs and features. Let W =
{wp1, wp2, ..., wpn} be the set of all word-pairs and
F = {f1, f2, ..., fm} the set of all features. Let Fwp

be the set of features of word-pair wp, and let Wf

be the set of word-pairs associated with feature f .
Let O(wp) be the total number of occurrences of
word-pair wp, O(f) be the total number of occur-
rences of feature f , and O(wp, f) be the number of
occurrences of word-pair wp with feature f . The
following filters are used:

1. Occurrence filter: Eliminate word-pair wp if
O(wp) is less than some constant Kf1 , and
eliminate feature f if O(f) is less than some
constant Kf2 . This filter is inspired by the sim-
ple observation that valid word-pairs and fea-
tures tend to occur repeatedly.

2. Generalization filter: Eliminate feature f if
|Wf | is greater than some constant Kf3 . This
filter ensures that features associated with too
many word-pairs are not kept. A feature that
occurs with many word-pairs tend to describe
overly general relations. An example of such

a feature is “
subj← say

obj→ ”, which in
our experiment occurred with several thousand
word-pairs while most features occurred with
less than a hundred.

563

3. Data sufficiency filter: Eliminate word-pair wp
if |Fwp| is less than some constant Kf4 . This
filter ensures that all word-pairs have sufficient
features to be compared meaningfully.

4. Entropy filter: Eliminate word-pair wp if its
normalized entropy is greater than some con-
stant Kf5 . We compute a word-pair’s entropy
by considering it as a distribution over features,
in a manner that is analogous to the feature en-
tropy defined in (Turney, 2006). Specifically,
the normalized entropy of a word-pair wp is:

−
∑

f∈Fwp
p(f |wp) log (p(f |wp))

log |Fwp|

where p(f |wp) = O(wp,f)
O(wp) is the conditional

probability of f occurring in the context of wp.
The normalized entropy of a word-pair ranges
from zero to one, and is at its highest when the
distribution of the word-pair’s occurrences over
its features is the most random. The justifica-
tion behind this filter is that word-pairs with
strong underlying relations tend to have just a
few dominant features that characterize those
relations, whereas word-pairs that have many
non-dominant features tend to have overly gen-
eral underlying relations that can be character-
ized in many different ways.

3.2 Relation-Matching

Central to the problem of relation-matching is that of
a relational similarity function: a function that com-
putes the degree of similarity between two word-
pairs’ underlying relations. Given such a function,
relation-matching reduces to simply computing the
relational similarity between every pair of word-
pairs, and outputting the pairs scoring higher than
some threshold Kth as lexical analogies. Our sys-
tem incorporates two relational similarity functions,
as discussed in the following subsections.

Latent Relational Analysis

The baseline algorithm that we use to compute
relational similarity is a modified version of Latent
Relational Analysis (LRA) (Turney, 2006), that con-
sists of the following steps:

1. Construct an n-by-m matrix A such that the
ith row maps to word-pair wpi, the jth column
maps to feature fj , and Ai,j = O(wpi, fj).

2. Reduce the dimensionality of A to a con-
stant Ksvd using Singular Value Decomposi-
tion (SVD) (Golub and van Loan, 1996). SVD
produces a matrix Â of rank Ksvd that is the
best approximation of A among all matrices of
rank Ksvd. The use of SVD to compress the
feature space was pioneered in Latent Semantic
Analysis (Deerwester et al., 1990) and has be-
come a popular technique in feature-based sim-
ilarity computation. The compressed space is
believed to be a semantic space that minimizes
artificial surface differences.

3. The relational similarity between two word-
pairs is the cosine measure of their correspond-
ing row vectors in the reduced feature space.
Specifically, let Âi denote the ith row vector of
Â, then the relational similarity between word-
pairs wpi1 and wpi2 is:

Âi1 · Âi2∥∥∥Âi1

∥∥∥
2
+

∥∥∥Âi2

∥∥∥
2

The primary difference between our algorithm
and LRA is that LRA also includes each word’s
synonyms in the computation. Synonym inclusion
greatly increases the size of the problem space,
which leads to computational issues for our system
as it operates at a much larger scale than previous
work in relational similarity. Turney’s (2006) exten-
sive evaluation of LRA on SAT verbal analogy ques-
tions, for example, involves roughly ten thousand re-
lational similarity computations2. In contrast, our
system typically requires millions of relational sim-
ilarity computations because every pair of extracted
word-pairs needs to be compared. We call our algo-
rithm LRA-S (LRA Without Synonyms) to differen-
tiate it from the original LRA.

Similarity Graph Traversal
While LRA has been shown to perform well in

computing relational similarity, it suffers from two
2The study evaluated 374 SAT questions, each involving 30

pairwise comparisons, for a total of 11220 relational similarity
computations.

564

limitations. First, the use of SVD is difficult to inter-
pret from an analytical point of view as there is no
formal analysis demonstrating that the compressed
space really corresponds to a semantic space. Sec-
ondly, even LRA-S does not scale up well to large
data sets due to SVD being an expensive operation
— computing SVD is in general O(mn·min(m, n))
(Koyuturk et al., 2005), where m, n are the number
of matrix rows and columns, respectively.

To counter these limitations, we propose an alter-
native algorithm for computing relational similarity
— Similarity Graph Traversal (SGT). The intuition
behind SGT is as follows. Suppose we know that
wp1 and wp2 are relationally similar, and that wp2

and wp3 are relationally similar. Then, by transi-
tivity, wp1 and wp3 are also likely to be relation-
ally similar. In other words, the relational similar-
ity between two word-pairs can be reinforced by
other word-pairs through transitivity. The actual al-
gorithm involves the following steps:

1. Construct a similarity graph as follows. Each
word-pair corresponds to a node in the graph.
An edge exists from wp1 to wp2 if and only
if the cosine measure of the two word-pairs’
feature vectors is greater than or equal to some
threshold Ksgt, in which case, the cosine mea-
sure is assigned as the strength of the edge.

2. Define a similarity path of length k, or k-
path, from wp1 to wp2 to be a directed acyclic
path of length k from wp1 to wp2, and de-
fine the strength s(p) of a path p to be the
product of the strength of all of the path’s
edges. Denote the set of all k-paths from wp1

to wp2 as P(k,wp1, wp2), and denote the sum
of the strength of all paths in P(k, wp1, wp2)
as S(k, wp1, wp2).

3. The relational similarity between word-pairs
wpi1 and wpi2 is:

α1S(1, wp1, wp2) +
α2S(2, wp1, wp2) +

. . .

αKl
S(Kl, wp1, wp2)

where Kl is the maximum path length to con-
sider, and α1, . . ., αKl

are weights that are

learned using least-squares regression on a
small set of hand-labelled lexical analogies.

A natural concern for SGT is that relational simi-
larity is not always transitive, and hence some paths
may be invalid. For example, although (teacher,
student) is relationally similar to both (shepherd,
sheep) and (boss, employee), the latter two word-
pairs are not relationally similar. The reason that
this is not a problem for SGT is because truly simi-
lar word-pairs tend to be connected by many transi-
tive paths, while invalid paths tend to occur in iso-
lation. As such, while a single path may not be in-
dicative, a collection of many paths likely signifies
a true common relation. The weights in step 3 en-
sure that SGT assigns a high similarity score to two
word-pairs only if there are sufficiently many tran-
sitive paths (which are sufficiently strong) between
them.

Analogy Filters
As a final step in both LSA-R and SGT, we fil-

ter out lexical analogies of the form (w1,w2) and
(w1,w3), as such lexical analogies tend to express
the near-synonymy between w2 and w3 more than
they express the relational similarity between the
two word-pairs. We also keep only one permuta-
tion of each lexical analogy: (w1,w2) and (w3,w4),
(w3,w4) and (w1,w2), (w2,w1) and (w4,w3), and
(w4,w3) and (w2,w1) are different permutations of
the same lexical analogy.

4 Evaluation

Our evaluation consisted of two parts. First, we eval-
uated the performance of the system, using LRA-S
for relation-matching. Then, we evaluated the SGT
algorithm, in particular, how it compares to LRA-S.

4.1 System Evaluation

Experimental Setup
We implemented our system in Sun JDK 1.5. We

also used MXTerminator (Reynar and Ratnaparkhi,
1997) for sentence segmentation, MINIPAR (Lin,
1993) for lemmatization and dependency parsing,
and MATLAB3 for SVD computation. The exper-
iment was conducted on a 2.1 GHz processor, with

3http://www.mathworks.com

565

the exception of SVD computation which was car-
ried out in MATLAB running on a single 2.4 GHz
processor within a 64-processor cluster. The input
corpus consisted of the following collections in the
Text Retrieval Conference Dataset4: AP Newswire
1988–1990, LA Times 1989–1990, and San Jose
Mercury 1991. In total, 1196 megabytes of text data
were used for the experiment. Table 1 summarizes
the running times of the experiment.

Process Time
Sentence Segmentation 20 min
Dependency Parsing 2232 min
Data Extraction 138 min
Relation-Matching 65 min

Table 1: Experiment Running Times

The parameter values selected for the experiment
are listed in Table 2. The filter parameters were se-
lected mostly through trial-and-error — various pa-
rameter values were tried and filtration results exam-
ined. We used a threshold value Kth = 0.80 to gener-
ate the lexical analogies, but the evaluation was per-
formed at ten different thresholds from 0.98 to 0.80
in 0.02 decrements.

Kf1 Kf2 Kf3 Kf4 Kf5 Ksvd

35 10 100 10 0.995 600

Table 2: Experiment Parameter Values

Evaluation Protocol
An objective evaluation of our system is difficult

for two reasons. First, lexical analogies are by defi-
nition subjective; what constitutes a ‘good’ lexical
analogy is debatable. Secondly, there is no gold
standard of lexical analogies to which we can com-
pare. For these reasons, we adopted a subjective
evaluation protocol that involved human judges rat-
ing the quality of the lexical analogies generated.
Such a manual evaluation protocol, however, meant
that it was impractical to evaluate the entire output
set (which was well in the thousands). Instead, we
evaluated random samples from the output and in-
terpolated the results.

4http://trec.nist.gov/

In total, 22 human judges participated in the eval-
uation. All judges were graduate or senior under-
graduate students in English, Sociology, or Psychol-
ogy, and all were highly competent English speak-
ers. Each judge was given a survey containing 105
lexical analogies, 100 of which were randomly sam-
pled from our output, and the remaining five were
sampled from a control set of ten human-generated
lexical analogies. All entries in the control set were
taken from the Verbal Analogy section of the Stan-
dard Aptitude Test5 and represented the best possi-
ble lexical analogies. The judges were instructed to
grade each lexical analogy with a score from zero to
10, with zero representing an invalid lexical analogy
(i.e., when the two word-pairs share no meaningful
underlying relation) and ten representing a perfect
lexical analogy. To minimize inter-judge subjectiv-
ity, all judges were given detailed instructions con-
taining the definition and examples of lexical analo-
gies. In all, 1000 samples out of the 8373 generated
were graded, each by at least two different judges.

We evaluated the output at ten threshold values,
from 0.98 to 0.80 in 0.02 decrements. For each
threshold, we collected all samples down to that
threshold and computed the following metrics:

1. Coverage: The number of lexical analogies
generated at the current threshold over the
number of lexical analogies generated at the
lowest threshold (8373).

2. Precision: The proportion of samples at the
current threshold that scored higher than three.
These are considered valid lexical analogies.
Note that this is significantly more conservative
than the survey scoring. We want to ensure very
poor lexical analogies were excluded, even if
they were ‘valid’ according to the judges.

3. Quality: The average score of all samples at the
current threshold, divided by ten to be in the
same scale as the other metrics.

4. Goodness: The proportion of samples at the
current threshold that scored within 10% of the
average score of the control set. These are con-
sidered human quality.

5http://www.collegeboard.com/

566

Note that recall was not an evaluation metric be-
cause there does not exist a method to determine the
true number of lexical analogies in the input corpus.

Result
Table 3 summarizes the result of the control set,

and Figure 2:Left summarizes the result of the lex-
ical analogies our system generated. Table 4 lists
some good and some poor lexical analogies our sys-
tem generated, along with some of their shared fea-
tures.

Coverage Precision Quality Goodness
N/A 1.00 0.97 0.90

Table 3: Result of the Control Set

As Figure 2 shows, our system performed fairly
well, generating valid lexical analogies with a preci-
sion around 70%. The quality of the generated lex-
ical analogies was reasonable, although not at the
level of human-generation. On the other hand, a
small portion (19% at the highest threshold) of our
output was of very high quality, comparable to the
best human-generated lexical analogies.

Our result also showed that there was a correspon-
dence between the score our system assigned to each
generated lexical analogy and its quality. Precision,
quality, and goodness all declined steadily toward
lower thresholds: precision 0.70–0.66, quality 0.54–
0.49, and goodness 0.19–0.14.

Error Analysis
Despite our aggressive filtration of irrelevant

word-pairs and features, noise was still the most sig-
nificant problem in our output. Most low-scoring
samples contained at least one word-pair that did not
have a meaningful and clear underlying relation; for
examples, (guy, ball) and (issue, point). As men-
tioned, noise originated from mistakes in the input
data, errors in sentence segmentation and parsing,
as well as mismatches between dependencies and
semantic relatedness. An example of the latter in-
volved the frequent usage of the proposition “of ”
in various constructs. In the sentence “the com-
pany takes advantage of the new legislation”, for
example, the dependency structure associates com-
pany with advantage, whereas the semantic relation
clearly lies between company and legislation. All

three of our evaluation metrics (precision, quality,
and goodness) were negatively affected by noise.

Polysemic words, as well as words which were
heavily context-dependent, also posed a problem.
For example, one of the lexical analogies generated
in the experiment was (resolution, house) and (leg-
islation, senate). This lexical analogy only makes
sense if “house” is recognized as referring to the
House of Representatives, which is often abbrevi-
ated as “the House” in news articles. Polysemy also
negatively affected all three of our evaluation met-
rics, although to a lesser extent for precision.

Finally, our system had difficulties differentiat-
ing semantic relations of different granularity. The
underlying relations of (relation, country) and (tie,
united states), for example, are similar, yet they do
not form a good lexical analogy because the rela-
tions are at different levels of granularity (countries
in general in the former, and a particular country
in the latter). Undifferentiated granularity affected
quality and goodness, but it did not have a signifi-
cant effect on precision.

4.2 SGT Evaluation
To evaluate how SGT compares to LRA-S, we
repeated the experiment using SGT for relation-
matching. We set Kl (maximum path length) to 3,
and Ksgt (cosine threshold) to 0.2; these values were
again determined largely through trial-and-error. To
train SGT, we used 90 lexical analogies graded by
human judges from the previous experiment. In or-
der to facilitate a fair comparison to LRA-S, we se-
lected Kth values that allowed SGT to generate the
same number of lexical analogies as LRA-S did at
each threshold interval.

Running on the same 2.1 GHz processor, SGT
finished in just over eight minutes, which is almost
a magnitude faster than LRA-S’ 65 minutes. SGT
also used significantly less memory, as the similar-
ity graph was efficiently stored in an adjacency list.
The sets of lexical analogies generated by the two
algorithms were quite similar, overlapping approxi-
mately 50% at all threshold levels.

The significant overlap between SGT and LRA-S’
outputs allowed us to evaluate SGT using the sam-
ples collected from the previous surveys instead of
conducting a new round of human grading. Specifi-
cally, we identified previously graded samples that

567

Figure 2: System Evaluation Results

Good Examples Shared Features

(vietnam, cambodia) and (iraq, kuwait)
subj← invade

obj→ ,
subj← pull out

of→
(building, office) and (museum, collection)

subj← house
obj→ ,

subj← consolidate
obj→

(stock market, rally) and (student, march)
subj← stage

obj→
(researcher, experiment) and (doctor, surgery)

subj← perform
obj→

(gainer, loser) and (decline, advance)
subj← outnumber

obj→
(book, shelf) and (picture, wall) with← line

subj→ ,
subj← remain on→

(blast, car) and (sanction, economy)
subj← damage

obj→ ,
by← destroy

subj→
Poor Examples Shared Features

(president, change) and (bush, legislation)
subj← veto

obj→
(charge, death) and (lawsuit, federal court)

subj← file in→
(relation, country) and (tie, united states)

obj← severe
subj→

(judge, term) and (member, life)
subj← sentence to→

(issue, point) and (stock, cent)
subj← be down→ ,

subj← be
up→

Table 4: Examples of Good and Poor Lexical Analogies Generated

had also been generated by SGT, and used these
samples as the evaluation data points for SGT. At the
lowest threshold (where 8373 lexical analogies were
generated), we were able to reuse 533 samples out
of the original 1000 samples. Figure 2:Right sum-
marizes the performance of the system using SGT
for relation-matching.

As the figure shows, SGT performed very simi-
larly to LRA-S. Both SGT’s precision and quality
scores were slightly higher than LRA-S, but the dif-
ferences were very small and hence were likely due
to sample variation. The goodness scores between
the two algorithms were also comparable. In the
case of SGT, however, the score fluctuated instead

of monotonically decreased. We attribute the fluctu-
ation to the smaller sample size.

As the samples were drawn exclusively from the
portion of SGT’s output that overlapped with LRA-
S’ output, we needed to ensure that the samples were
not strongly biased and that the reported result was
not better than SGT’s actual performance. To val-
idate the result, we conducted an additional experi-
ment involving a single human judge. The judge was
given a survey with 50 lexical analogies, 25 of which
were sampled from the overlapping portion of SGT
and LRA-S’ outputs, and 25 from lexical analogies
generated only by SGT. Table 5 summarizes the re-
sult of this experiment. As the table demonstrates,

568

the results from the two sets were comparable with
small differences. Moreover, the differences were
in favour of the SGT-only portion. Therefore, either
there was no sampling bias at all, or the sampling
bias negatively affected the result. As such, SGT’s
actual performance was at least as good as reported,
and may have been slightly higher.

Precision Quality Goodness
Overlap 0.76 0.56 0.28
SGT-Only 0.88 0.62 0.2

Table 5: Overlap vs. SGT-Only

We conclude that SGT is indeed a viable alter-
native to LRA-S. SGT generates lexical analogies
that are of the same quality as LRA-S, while be-
ing significantly faster and more scalable. On the
other hand, an obvious limitation of SGT is that it is
a supervised algorithm requiring manually labelled
training data. We claim this is not a severe limitation
because there are only a few variables to train (i.e.,
the weights), hence only a small set of training data
is required. Moreover, a supervised algorithm can
be advantageous in some situations; for example, it
is easier to tailor SGT to a particular input corpus.

5 Related Work

The study of analogy in the artificial intelligence
community has historically focused on computa-
tional models of analogy-making. French (2002)
and Hall (1989) provide two of the most complete
surveys of such models. Veale (2004; 2005) gen-
erates lexical analogies from WordNet (Fellbaum,
1998) and HowNet (Dong, 1988) by dynamically
creating new type hierarchies from the semantic
information stored in these lexicons. Unlike our
corpus-based generation system, Veale’s algorithms
are limited by the lexicons in which they oper-
ate, and generally are only able to generate near-
analogies such as (Christian, Bible) and (Muslim,
Koran). Turney’s (2006) Latent Relational Analy-
sis is a corpus-based algorithm that computes the re-
lational similarity between word-pairs with remark-
ably high accuracy. However, LRA is focused solely
on the relation-matching problem, and by itself is in-
sufficient for lexical analogy generation.

6 Conclusion and Future Work

We have presented a system that is, to the best of our
knowledge, the first system capable of generating
lexical analogies from unstructured text data. Em-
pirical evaluation shows that our system performed
fairly well, generating valid lexical analogies with
a precision of about 70%. The quality of the gen-
erated lexical analogies was reasonable, although
not at the level of human performance. As part
of the system, we have also developed a novel al-
gorithm for computing relational similarity that ri-
vals the performance of the current state-of-the-art
while being significantly faster and more scalable.
One of our immediate tasks is to complement depen-
dency patterns with additional features. In particu-
lar, we expect semantic features such as word defini-
tions from machine-readable dictionaries to improve
our system’s ability to differentiate between differ-
ent senses of polysemic words, as well as different
granularities of semantic relations. We also plan to
take advantage of our system’s flexibility and relax
the constraints on dependency paths so as to gen-
erate more-varied lexical analogies, e.g., analogies
involving verbs and adjectives.

A potential application of our system, and the
original inspiration for this research, would be to
use the system to automatically enrich ontologies
by spreading semantic relations between lexical ana-
logues. For example, if words w1 and w2 are related
by relation r, and (w1, w2) and (w3, w4) form a lex-
ical analogy, then it is likely that w3 and w4 are also
related by r. A dictionary of lexical analogies there-
fore would allow an ontology to grow from a small
set of seed relations. In this way, lexical analogies
become bridges through which semantic relations
flow in a sea of ontological concepts.

Acknowledgments

We thank the reviewers of EMNLP 2007 for valu-
able comments and suggestions. This work was sup-
ported in part by the Ontario Graduate Scholarship
Program, Ontario Innovation Trust, Canada Foun-
dation for Innovation, and the Natural Science and
Engineering Research Council of Canada.

569

References
Scott Deerwester, Susan T. Dumais, George W. Furnas,

Thomas K. Landauer, and Richard Harshman. 1990.
Indexing by latent semantic analysis. Journal of the
American Society for Information Science, 41:391–
407.

Dong Zhen Dong. 1988. What, how and who? Pro-
ceedings of the International Symposium on Electronic
Dictionaries. Tokyo, Japan.

Christine Fellbaum, editor. 1998. WordNet — An Elec-
tronic Lexical Database. MIT Press.

Robert French. 2002. The computational modeling
of analogy-making. Trends in Cognitive Sciences,
6(5):200–205.

Gene Golub and Charles van Loan. 1996. Matrix Com-
putations. Johns Hopkins University Press, third edi-
tion.

Rogers Hall. 1989. Computational approaches to ana-
logical reasoning: A comparative analysis. Artificial
Intelligence, 39:39–120.

Mehmet Koyuturk, Ananth Grama, and Naren Ramakr-
ishnan. 2005. Compression, clustering, and pattern
discovery in very high-dimensional discrete-attribute
data sets. IEEE Transactions on Knowledge and Data
Engineering, 17(4):447–461.

Beth Levin 1993. English Verb Classes and Alter-
nations: A Preliminary Investigation. University of
Chicago Press.

Dekang Lin. 1993. Principle-based parsing without
overgeneration. Proceedings of the 31st Annual Meet-
ing on ACL, pp 112–120. Columbus, USA.

Dekang Lin and Patrick Pantel. 2001. Discovery of infer-
ence rules for question answering. Natural Language
Engineering, 7(4):343–360.

Jane Morris and Graeme Hirst. 2004. Non-classical lex-
ical semantic relations. Proceedings of the Compu-
tational Lexical Semantics Workshop at HLT-NAACL
2004, pp 46–51. Boston, USA.

Jeffrey C. Reynar and Adwait Ratnaparkhi. 1997. A
maximum entropy approach to identifying sentence
boundaries. Proceedings of the 5th Conference on Ap-
plied Natural Language Processing, pp 16–19. Wash-
ington, USA.

Gerard Salton, A. Wong, and C.S. Yang. 1975. A vector
space model for automatic indexing. Communications
of the ACM, 13(11):613–620.

Rion Snow, Daniel Jurafsky, and Andrew Ng. 2004.
Learning syntactic patterns for automatic hypernym
discovery. Proceedings of the 2004 Neural Infor-
mation Processing Systems Conference. Vancouver,
Canada.

Lucien Tesnière. 1959. Éléments de Syntaxe Structurale.
Librairie C. Klincksieck, Paris.

Peter D. Turney. 2006. Similarity of semantic relations.
Computational Linguistics, 32(3):379–416.

Tony Veale, Jer Hayes, and Nuno Seco. 2004. The Bible
is the Christian Koran: Discovering simple analogical
compounds. Proceedings of the Workshop on Com-
putational Creativity in 2004 European Conference on
Case-Based Reasoning. Madrid, Spain.

Tony Veale. 2005. Analogy generation with HowNet.
Proceedings of the 2005 International Joint Confer-
ence on Artificial Intelligence. Edinburgh, Scotland.

570

