
B u i l d i n g K n o w l e d g e B a s e s for t h e G e n e r a t i o n o f
S o f t w a r e D o c u m e n t a t i o n *

C4cile Paristand Keith V a n d e r L i n d e n :I
ITRI, University of Brighton

Lewes Road
Brighton BN2 4AT, UK

{clp,knvl}~itri.brighton.ac.uk

A b s t r a c t

Automated text generation requires a
underlying knowledge base fl'om which
to generate, which is often difficult to
produce. Software documentation is one
domain in which parts of this knowledge
base may be derived automatically. In
this paper, we describe DRAFTER, a n au-
thoring support tool for generating user-
centred software documentation, and in
particular, we describe how parts of its
required knowledge base can be obtained
automatically.

1 I n t r o d u c t i o n

Automated text generation is becoming an at trac-
tive technology because it, allows for the genera-
lion of text in different styles and in different lan-
guages from a single underlying knowledge base.
The well-known problem with the technology is
that this knowledge base is often difficult to build.
In most research generm, ion systems, this knowl-
edge base is essentially built by hand. No general
solution to this problem has been proposed be-
cause each application has its own domain specific
requirements.

It is clear, however, that for text generation
technology to heeome viable, there must be some

* This work is partially supported by the Engi-
neering and Physical Sciences Research Council (EP-
SitC) Grant J19221, by I~C/DAAD aaC Project 293,
by the Commission of the European Union Grant
LRE-62009, and by the Office of Naval Research Grant
N00014-96-1-0465.

t Starting this Fall, Dr. Paris' address will be
CSIRO, Division of Information Technology, Syd-
ney Laboratory, Building E6B, Macquarie University
Campus, North Ryde, Sydney, NSW 2113, Australia

* Starting this Fall, Dr. Vander Linden's address
will be Dept. of Mathematics and Compnter Science,
Calvin College, Grand Rapids, MI 49546, USA.

way to obtain at least portions of the knowledge
base automatically. There could be a progn~m
which automatically derives the knowledge base or
perhaps the knowledge base could be built as part
of manual processes that would have to be per-
formed anyway. Either way, the marginM cost of
adding text generation would be greatly reduced.

In this paper, we show tha t software documen-
tation is an at t ract ive application for multilingual
text generation because it is an area in which
pre-built knowledge bases are beconfing available.
This is due in large par t to the advancements in
the user interface design comnmnity which we will
review first. We then discuss the nature of the
knowledge base required for the generation of doc-
umentat ion and how parts of it might be derived
automatically. Finally, we illustrate this idea us-
ing DI{AFTEI{, a support tool for generating nml-
tilingual sot~ware documentation.

2 B a c k g r o u n d

Researchers in user interface design have started
to build tools which produce both code and docu-
mentation. These tools tend 1,o be based on a cei1-
tral inodel of the interface under developme.nt, the
interface modal, a formal representation which can
be used not only for code generation but also fbr
document generation, e.g., (Puerta and Szekely,
1994; Moriyon et al., 1994). Moriyon et al (1994),
for example, haw~ used the interface model in the
generation of on-line help. Their help messages
indicate the actions a user can perform in a par-
t i tular situation and what would result from these
actions. They report, however, that task-oriented
help is beyond the capabilities of their system;
task-oriented help would indicate why the user
might want to perform any of the actions that
are available.

In general, however, the doculnentation, pro-
dueed by these systems is limited in two main
ways: it does not correspond to task-oriented doc-
umentation, which is, however, what end-users re-

734

quire and it is usually based on siint)le template
generation, which does not allow flexibility with
regard to the style of the text t)rodueed or the
language that is used. These limitatioils stem, on
the one hand, fl'om the fact that interface mod-
els in general contain systcm-or'icnted informatiem
(e.g., what hat)pens when a but ton is pushed) but
1tot task-oriented inforlnation (e.g., why one might
want to push the button), and, on the other hand,
from the focus of the research, that is system and
interLtce design and not natural langm~ge genera-
tion.

In the 1)I{AI,"I'EII. projeel;, we have attcmt~ted I;()
address these two issues. We address the tirst
by providing reels that allow technical authors to
buiht richer interface models. These rMmr mod-
els integrate task information into the information
already available in interface models. This task in-
formation, which is commonly tbund in task mod-
els, e.g., G e M S (Card et al., 1983), supi)orts the
production of user-centred doeument;ttion. W'e
address the second by providing more general text
generation facilities whic.h supt)ort multiple styles
and multiple languages.

3 Represen t ing the users ' tasks

Early in the I)I{,AFTEI{ projee:t, we conducted in-
terviews with technical authors (me)stly soft;ware
clocmnentation sl)ecialists) in order I;t) understand
the docmnentat ion process as it, currently exists,
to see', if an authoring tool wouht be hell}tiff , and if
so how it inight be used. We found that technical
authors stm't the documentat ion process by le;~rn-
ing how 1;o use the interface in question, construct-
ing a user-oriented mental model of the product.
They Kequently have no input or, her than the soft-
ware itself. The authors indicated that they wouhl
weleollle tools to hell) them collect the apl)ropriate
information and create a formal representation of
the resulting model. Such a representation wouhl
supt)ort iterative construction of the doe,lmetlta-
tion and intbrmat:ion reuse.

Building our draft;lag tool, therefore, required
us first, to determine how to represent the model
of a task, and then to build tools for creating and
manipulat ing this model. Given that the gem-
eral structure of instructional texts is hierarchi-
cal, we chose a representation that e.xpresses a
hierart:hy of goals and sub-goals. The reI)resen-
tation is thus similar to the (;raditi(mal structures
found in AI plalming, e.g., (Sacerdoti, 1977), and
also to task models used in interface design, e.g.,
(Card et al., 1983). Because user documentation
frequently inchldes information other than the raw
actions to be performed, our representation allows

authors to include information not typically foulld
in traditional plan rel)resentations such as: /1ser-
oriented motiw~tional goals, helpflfl si(le-efl'e(;ts,
and general COlllliletltS.

As an example, consider the rei)resentatitm of
a sub-set of the procedure for retying a new file in
a Microsoft; WoM-like editor shown in Figm:e 1.
The owl,1 boxes in the figure ret)resent actions anti
the rectangh',s represent plans. Ea('h of the action
nodes in this sl;rueture rel)resent inter(:omw,(:i;e(t
complexes of procedural and descriptive instances.
For examl)le , the main us(;r goat of saving a do(;u.-
meat , represented in the figure by the action node
"Save ;L Document" , is implemented in the knowl-
edge base as a comple, x of instances repres(mting
the act;ion being tmrformed (in this case saving),
tim agent who performs action (the reader), the
t)atient on whom the aetioll is performed (the cur-
rent doeunmnt), etc. All of this itlforination is re-
quired to generate expressions of the action, but
1)resenting it would overly complicate the graph.

The links actually shown in tilt; figure are based
on the, procedural relations in the domain model.
For exalnple, the I)lan for saving a document
(Save-l)ocument-Plan) is linked to its goal (Save
A Do(:umelfl;), to its precondition (()t)e,n-Savc-
As), and to its sul)-at:tions of typing a name for the
(;llrrellt document (Tyl)e-Document-Name), open-
ing l;he fohler in which it is to t)e saved (Ot)ei>
l,'ohler), and clicking the Save tmtton (Choose-
Save-Ilutton). The precondition (Open-Save-As)
must be tmrformed before the sub-steps may t)e at-
tempted and is in turn linke(t to fllrther sub-plans
(Choosing-Plan and Clicking-Plan). This indi-
cates that the Save-As dialog box may be ope, ned
by either choosing the Save option from the file,
melm (Choose-Save-()t)tion) or (',licking the Save
butt tm on the tool bar (Click-Save-h:on).

'Fhis task model represents the procedures that
a user might perform when using an at)t)li(;ation
and is tim basis for generating user-(x;ntrt:(1 (lt)cu-
meal;aLien, slt(;h as olle of I)I{AFTEI['s texts shOWll
in Figm'e 4. It includes the users' high-level goals
(e.g., "save a document") as well as their low-
le, vel interf;tce manipulations ("choose the save
lmtton") .

4 Input from the Design Process

In our earlier work, we provided tools that sup-
l)orted 1;t1(; construction of the task nlodel t)y hand
(Paris et al., 1995). This went some way to ad-
dressing the, technical aut;hors' desire for a formal
model and tools to lmild it.. Building the model
Dora scratch, howe, ver, even with the, help of our
menu lmsed interface, was a tedious and lengthy

735

Precond / t ion [
...~Open Method 11 - - (Cho%se_gave Opton)l

Dialog) < " I
- - ~'-topen Method 2 1 E ~ , , ~ IdSn~ J

(Save A Document)~-~S'ave Docume'nt M e t h o d l ~ D ~ (- ~ a m e)

\ ~ i i - o n)

l (~aT~a~E-~i~) - - - -~ance l Save As Meth0dl-----# ~h~'e C~TEa ~utton)

Figure 1: The Saving Procedure Graph

process which could potentially have rendered tile
I)I{AFTEI{ system impractical. There was a clear
need for facilities to ease the input task. In line
with this, we noticed that certain elements of the
model were also present in the specifications de-
veloped in user interface design environments. In-
deed, we found that a number of the actions and
objects in the model could be automatical ly ac-
quired from a design tool, thus providing basic
building blocks from which the flfll model could
be constructed.

3b illustrate this idea, we have built our exam-
ple document editor application in VisualWorks,
a widely available interface design environment
(Vis, 1994). This tool allows one to define the
windows, dialog boxes, and other widgets relevant
for the application under develot)ment, and pro-
duces a prototype of the interface thus specified.
Its output also includes declarative specifications
of all the widgets. These specifications are thus
available to be exploited by other systems. In par-
tieular, we found that these specifications could be
readily transformed into a form appropriate for
the knowledge base required by a text; generation
system such as DRAFTEI/.. In our examt)le then, we
build a VisualWorks mock-up of our word process-
ing application, and I)RAI,'TEK derives task model
instmmes for all the windows and widgets in (;he
application (e.g., the Save-As dialog box and all its
widget, s) directly fl'om tile SmallTalk source code.
DItAFTEI{ is also able to infer the basic interface
actions tha t can be performed on the various in-
terface widgets and creates task model instances
for them as well. For example, the system auto-
matically defines a clicking action instance for any
"button" on the interface. Similarly, it c.reates
opening and (:losing actions for all "windows".

Although this set of instances does not ret)re-
sent all tile information that could, in principle,
be derived from the SmallTalk specitications of
the editor application, it nevertheless simplifies

greatly the technical author ' s task of knowledge
specification by providing the huilding blocks from
which higher-level procedures can be defined. In
tile case of out' admittedly simple example, seven
of the nine actions in the procedural s tructure are
automatical ly specified. The author is required
to specify only the main user goal action and the
three plan nodes. This is, t, hercfore, a step to-
wards aut;omatically building the knowledge base
required for the generation system. It is also a step
towards integrating the (lesign and documentat ion
processes, which is now widely recognised as be-
ing desirable. In our current work, we are investi-
gating how more of the design knowledge call be
made accessible ~md uiMel'standable to the tech-
nical authors, and what other tools would further
facilitate tile authors ' task. We are also looking
at a tighter integration of the design and docu-
mentat ion processes, one in which tile individuals
involved work together during design.

5 D R A F T E R

We. now describe I)I].AFTEI{> a technical authoring
tool which supports the construction of tile task
model discussed above and the drafting of multi-
lingual instructions from that inodel. We will fo-
cus on how it supports the author in augmenting
the information automatically acquired Dora the
interface design tool. I)RAFTEI/,'S general archi-
tecture, shown in Figure 2, is based on two inain
processing modules:

Tile Author Interface (shown oil the fitr
left of the diagram) allows authors to
build a task model and to control the
drafting process.
The Drafting rlbol (shown on tile far
right of the diagram) comI)rises two ma-
jor components: the Text Planner and
the Tactical Generator. The Te.xt Plan-
ner determines tile (:o,~t,e.nt and structure.

736

Figm'e 2:])a(;attow in DI{AI,"['E[{.

of the t, ext as well as the detailed slxu<::
l;ure of the scnl;en(;(;s (;hcr(;in.. The Tacl;i-
cal Cen(:ral;or t)(~rforlt'ls (;h(: SllFfacc re&l-
isation <)f (;tie Selll;ellCCS.

The. knowle<lge base (in the middl<: of (;}m figure)
mMerlies the task model built by the (;<x:hni<:al au=
Lhor. The DrafLing Tool takes this reprcscni;at, ioil
as input, and produces English an<l f,¥ench draf'ts
of t, he appropriaW, tul;orial inslxu<:tions. In this
s<:ction we de(;ail ea<',h of (;hese (:omponenl;s in (;he
<'.on(,ext of an exampl<,,

5 .1 T h e K n o w l e d g e B a s e

The knowl(,<tge base sut)porl;s (;he (:oilst;ru(;l;ion of
(;he (;ask mo<M discussed above. [(; is an hierarchi-
cal stru(:t, ur<: imph:menl;e<l in I ,OOM (MacGr(:gor,
1988). Th(; root is l,h(; l)(mman M(:rg<:(l Upl)er
Model (Bal;eman, 1995), an ontology <)f <listinc-
tions relevalfl; in (;xpressing actions, (>t)j(x;l;s, and
qualities in na.l;urat language. The know](;dge base
<:onl;ains t 'urther layers corr<:st)ouding 1;o: (1) (;h(:
conc(;t)l;s and relal;ions general to all insLru(:l;ions;
(2) those g<;ncral only Ix) software im;erfa(:cs; an<t
(3) l;hose Sl)(:<:iti<" t;o the chos(,qi soft;wa.r(~ apt)li(:a-
l;ion d<)mains (in ore' case text i)ro(:(:ssing (;<)<)Is).

Using (;lle I)I/AF'I'EI/. inl;erfa(:e, (,e(:hnical aul;htns
specify hi(!)'archi<:al (;ask m(>(Ms, su(:h as (;he one
shown in Figur(! 1, 1)y building nodes and <'.<m-
ne(:l;ing l;hem wil;h l;h(,, app rop r i a t e I))'o(:edm'al I'C,-
lal;ions. The low-le.vel buihling blocks of l;he (;ask
model are derived automal;i(:atly, and I)I{AI,'TI.;II.
alh)ws (;he (x'~chnical alll;hor 1;o (:Olltl(l(:(; [,h(}ill and
a<ld higherqevel (;ask inforula(;ion as ai)prot)riat(: ,
using an inl;(:rfa(:e bas(:<l on (:onlxolled language
and (;he use. of meims (x) guid(', l;he aul;hor.

5 . 2 T h e I n t e r f a c e

I)IIAI"TI';I~,S illL(~,rface is imph;ment>e<l in C,,IM mM
iIMudes l;he following modules:

* The Knowh'.dgc £'dil.or alh>ws l;h(! aul,hor
1;() <:Oll,ql;rtl(:l; all<t ltlailli;aill t,h(: t)ro(:t!tltll~/1
l'(:l)r(~st:nl;aI;iOll;

e '.Phe Knowh,dg<~ (,'raph, cr allows l;he au-
(;hot 1;o visualise (;he hierar<:hical sl;ru(:-
l;m:e of the procedura l represenl;at,ion;

. The Draft Tczt Viewer allows the aul;hor
1;o view and edil; (;h<'. aul;omal;i<:ally gen-
eral;ed English an<l Fren<:h drafl;s.

T h e s e fllllCl;ioils Call bc invoked from menus or
from mous(>s(;nsil;ivc ot)jtx:l;s in a sl;yle (:<)mmon
1;(> sysi;ems such as Moi:if.

5 . 2 . 1 T h e K n o w l e d g e E d i t o r

This 1;ool Inak<'.s the st;ru(:tm'e of t;hc knowledge
base on whi<:h l;h<: [;ask model is lmill; mot(: a c
cessiblc 1;<> l;he aul;hor. I(; allows the aul;hor (;o
per form t,wo basic tasks: (1) sp<'.<:ii~ying (;he ac.
t, ion nodt:s a t)pearing in l;hc Sl;l'tlt;l;llrc all([Ho[; yel;
<t<:rivcd fl'OlIl 1;11(: inl;erfact: designed tool; and (2)
linking exist ing nodes (,ogt:l;ht:r wit, h (;he al)propri-
a.(;(; plan insi;anc(;s and relal,ions. The. tirs(; of (;hese
(;asks is lmrfornmd using a. <:ontrolle<t nalalra.1 bm
guage inl;erfa<> wlfile the s<'.<:<md is done wit;h a
<lialog box lllc(:haltisill.

Specifying (;tie 11(}(l(;s at)l)eal.illg ill t;he t;ask
model involves stmcit'ying a flfll complex of t i l l
guist, ic cntil;ics and roh;-filh;rs (<;.g., a<:l.<)rs, acl;(~es,
desl;inai;ions). Be.<:ause. l;his stru<:tm'c m a y in<:hah,.
lIially instances inl,ercomlecl, cd lit pot;cnt, ially m t
inlalil;ivc ways, w(: have 1)r(>vi<l<:(1 a C(>nlx<>lle(1 Na(>
m'al l,anguag<, (CNI,) inlx:r['ac(: for I;|m mlI;h()r.

7 ;3 7

Tile interface is shown in Figure 3. This interface
allows the author to work in terms of sentences
rather than in terms of interconnected graphs.
Tile figure, for example, shows the author in the
process of specifying tile node Save A Document.
The top line of text (reader save [information])
shows the current state of the CNL specification.
Words in brackets must be further specified. This
is done by clicking on the word and selecting the
appropriate pat tern from a list of possible expan-
sions. In tile figure, the author has clicked on
[information] and is presented with a list of the
types of information from which [document] can
be selected. This process is driven by a controlled
natural language g rammar which specifies possible
expansions at each point of tile derivation. The
bo t tom line of text presents a flllly expanded de-
fault at each point in the derivation. In the figure,
this CNL text is "reader save current document"
which could be expressed in English in a mnnber
of ways including "Save the current document"
and "To save tile document".

Once the action nodes of the graph have been
created, or perhaps while they are being created,
the author has the ability to link them together us-
ing a set of predefined procedural relations: goal,
precondition, sub-action, side-effect, warning, and
cancellation. This is done with a graphical outlin-
ing mechanism. This mechanism allows authors to
drag actions from the ACTIONS pane and drop
them on the various procedural relation slots in
the workspace pane, or, alternatively, to create
new actions to fill the slots. The result is a proce-
dural hierarchy such as the one shown in Figure 1.

This interface allows the author to specify the
procedure in several ways. They may star t from
the main goal and work down tile structure, or
they may star t by specifying all the low-level ac-
tions and object and work up the structure.

5.2.2 The Knowledge Grapher

The Knowledge Grapher prevents tile author
from losing orientation by maintaining the cur-
rent s tate of the procedural structure in graphical
form. This form is like that shown in Figure 1. Be-
cause the nodes are mouse-sensitive, it allows the
author to iifitiate construction and maintenance
functions by clicking on the appropriate nodes in
tile graph. Authors can also invoke tile drafting
tool from the graph.

5.2.a The Draft Text Viewer

The author may draft multilingual instructions
oil any portion of tile procedural structure at any
point in the specification process. This task is
performed by the Drafting Tool which is briefly

described in tile next section. This tool pro-
duces a draft of the instructions in English and
French. These are presented to the author by tile
Draft Text Viewer. The presented text is mouse-
sensitive, allowing the author to access the knowl-
edge base entry for selected part of tile text. In
this way, the author can modify the underlying
knowledge base while working from the text. In
some cases the writer will decide to modify the
generated text rather than tile underlying knowl-
edge. For this purpose, a text editor is currently
provided.

5.3 The Drafting Tool

When the author initiates the Drafl;ing Tool (see
Figure 2), m~.AF'rl~t calls the Text Planner with
the discourse goal: make the user colnpetent to
perform tile action specified by the author. The
Text Planner selects the content appropriate for
the instructions and builds a deep representation
of the text to be generated. This portion of the
text plalming task is done by tile text planner de-
veloped by Moore and Paris (1993). Tile Text
Planner then specifies the detailed elements of the.
sentence structure. This portion of the task is
done by a descendent of IMAGENE (Vander Lin-
den and Martin, 1995).

Once complete, the text plans are passed to
the Tactical Generator which generates t, he actual
text in English and French. This task is performed
by tile English and French resources of tile Komet-
Penman Multi-Lingual development environment
(KPML) (Bateman, 1995), The drafts generated
for the example procedure are shown in Figm'e 4.

In these texts, we see. that the main nser goal,
that of saving a document, is given as a title to the
series of steps. Then, the steps to be perfi)rmed
to achieve this goal are given. More detail on the,
drafting process can be found elsewhere.

6 S u m m a r y

In this paper, we have shown that the knowl-
edge base required to produce user-oriented docu-
Inentation automatical ly can be partially obtained
from user interface tools and then augmented ap-
propriately by technical authors. We presented a
multilingual drafting tool which exploits output
fi'om an interface design tool and provides flexible
support to technical authors for augmenting the
interface model thus obtained in order to build the
task model required to generate documentation.
We argued tha t software docuinentation is thus
an at tract ive and realistic application for natural
language generation. In our current work, we are
extending the percentage of the model that can be

7 3 8

~[~ Define ~ctlan

"eader save [inf°rmai[c] t , 'i
/ [&pp°intment] I
/,,ame of [document] I

. ldescrJ.ptJon of [appointment}[
"eadersavecurlentldate of [<~ppoJnt t, /

/ . ~ t ~ t t,,,,~ of [~ppo±nt t l /
[s t o p time of [appointment]]

Figure 3: The Controlled Natural Language Interface

T o S a v e a D o c u m e n t
1. Choose Save ti'om tlm file menu.
-OR-
Click on the Saw~' icon.
Word displays the Save As dialog box.
2. Type the document name in the Save Cur-
rent Document As tield.
3. ()pen the fohter of the document.
4. Choose the Save button.
You can quit the Save As dialog box by choos-

ing the Cancel button.

En reg i s t r emen t d ' un documen t
1. Choisir Enregistrer dans le menu Fichier.
OU BIEN
Cliquer sur l'icone Enregistrer.
Word atlichera la zone de dialogue Enregistrer Sous.
2. Introduire lc titre du document dans la zone de
texte Enregistrer le Document.
3. Ouvrir le fichier du docmnent.
4. Choisir le bouton Enregistrer.
Vous pouvez quitter la zone de dialogue Enregistrer
Sous en choisissant le bouton Annuler.

Figure 4: Generated English and French Drafts

built automatically, so as to increase the use.tiff-
ness of the sysl;em and its potential marketability.
We are also planning to evaluate the systeln with
technical au/;hors.

References

John A. BateInan. 1995. KPML: The KOME'r-
Penman (Multilingual) Development Environ-
ment. ~Ik;ehnical report , Inst i tut fiir Integrierte
Publikations- und Informationssysteme (IPSI),
GMD, Darmstadt , July. Release 0.8.

S. K. Card, T. P. Moran, and A. Newell. 1983.
The Psychology of Human-Computer l'ntcrac-
tion. Lawrence Ear lbaum Associates, Ilillsdale,
N J .

Robert MacGregor. 1988. A Deductive Pat tern
Matcher. In Proceedings of the 1988 Conferertce
on Artificial Intelli.qence, St Paul, MN, August.
American Association of Artiticial Intelligence.

Johmma D. Moore and Cdcile L. Paris. 11993.
Planning text for advisory dialogues: Capturing
intentional and rhetorical information. Compu-
tational Linguistics, 1.9(4):651 694.

Rot)erto Moriyon, Pedro Szekely, and Robert
Neches. 1994. Automatic generation of hel l)

fi'om interface design models. In CHI'9d PTv-
cecdings, Boston, Mass. Computer [I l l n l a n [ii-
lea'actions.

Cdcile Paris, Kcith Vander Linden, Markus
Fischer, Anthony Hartley, Lyn Pemberton,
Richard Power, and Donia Scott,. 1995. A sup-
port tool for writing mnltilingual instructions.
In IJCAI-95, pages 1.398 1404.

Angel R. Puer ta and l 'edro Szekely. 1994. Model-
based interface development. CHI-94 Tutorial
Notes.

Em'l l). Sacerdoti. 1977. A Structurc for Plans
and Behavior. Elsevier, New York.

Keith Vander Linden and James It. Martin. 119!)5.
Expressing local rhetorical relations in instruc-
tional text;: A case-study of the purpose rela-
tion. Co'mputational Linguistics, 21(1):29 57,
March.

ParcPlace Systelns, hn:., 999 E. Arques Avenue,
Sunnyvale, CA 94086-4593, 11994. The Visual-
Works Docurner~,tation.

739

