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Introduction 

The transcription of orthographic words into 
phonetic symbols is one the principal steps of a 
text-to-speech system[l]. In such a system a 
suitable phonetic pronunciation must be supplied, 
without human intervention, for every word in 
the text. No dictionary, however large, will 
contain all words, let alone proper names, 
technical terms and other textual items 
commonly found in unrestricted texts. 
Consequently, an automatic transcription 
components is usually considered essential. 

ttand-written rule sets, defining the transcription 
of a letter in its context to some sound, view the 
process as that of parsing with a context- 
sensitive grammar. This approach to 
transcription has been challenged more recently 
by a variety of methods such as Neural nets[2], 
Perceptrons[3], Markov Models[4], and 
Decision Trees[5]. Some approaches have used 
additional information such as prefixes and 
suffixes[8], syllable boundaries[3], sometimes 
combined with the use of parts-of-speech to 
assist in the disambiguation of multiple 
pronunciations. In the phonetic transcription of 
proper names special techniques can be 
employed to improve accuracy[9] such as 
detecting the language of origin of the name and 
using different spelling to sound rules. Each 
method has its own advantages and 
disadvantages in terms of computational speed, 
complexity and cost. However, none of these 
methods by itself is completely adequate. 

The present method uses the two-step 
conversion process described elsewhere[i,3] in 
which the structure of the word plays a central 
role. First the orthographic word is divided into 
its syllables, and secondly the syllable sequence is 
converted to a phonetic string. This not only 
accords with linguistic intuition, but it also 

allows the two processes to be handled by 
different techniques, choosing the technique 
most suited to each step. The question of 
whether a moq)hological or ,~yllabic 
decomposition of the word might produce better 
results is not thrther analysed here. (For the 
present study data was available for syllables and 
not for morphs, so in the sense the comparison 
could not be carried out by the techniques 
proposed). The effects of other factors, such as 
part-of speech tagging, domain-dependent 
information, and other information sources, were 
ignored, although these could be useful in 
practical systems. 

The technique proposed for syllabification is 
based on the principle of Hidden Markov 
Modelling, well known in speech recognition[7]. 
This presupposes the existence of some training 
material containing words in both their 
orthographic and syllabic tbrm. Using this data a 
model of syllable sequences can be designed and 
trained to identit~y syllable boundaries. Once the 
most likely syllable division of the word has been 
tbund the phonetic transcription can be produced 
by a variety of direct transcription methods, such 
as the one used here based on Decision Trees[5]. 
The training of such a method presupposes the 
existence of some training data containing words 
in both their syllabic and phonetic forms. Using 
the latter data a Decision Tree can be trained to 
transcribe syllables in context into phone 
sequences. The advantage of using decision 
trees is that they not only learn general rules, but 
also capture idiosyncratic special cases 
automatically. The resulting process should 
perform transcription with high accuracy. 

Such a two-stage approach has been shown to 
yield improvements[3] but only where perfect 
syllabification information is available, 
consequently a reliable syllabification technique 
is required. The remainder of this paper 
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discusses only the syllabification process in 
detail, since the decision tree methodology is 
well described elsewhere[5], whereas the 
syllabification algorithm proposed is novel. An 
experiment using a very large set of word- 
syllable-pronunciation strings was used to train 
the two models, and then tests performed to 
determine the accuracy of the resulting 
transcription. 

A Maximum Likelihood Model of 
syllabification 

The purpose of this step is to make explicit the 
hidden syllable boundaries in the observed 
words. These often, but not always coincide 
with the molphological boundaries of the 
constituent parts of each word. However, so as 
not to confuse the question of the derivation of a 
word from its roots, prefixes and suffixes, with 
the question of the pronunciation of the word in 
small discrete sections of vowels and consonants, 
the term molphology is not used here. Strictly 
speaking the term syllable might be more 
accurately applied only after transcription to 
phonemes. However, we shall use it here to 
apply to such pronunciation units described 
orthographically. The purpose of such analysis is 
to obtain information which will be used by the 
phonetic transcription stage to make better 
judgements on the pronunciation of consonant 
and vowel clusters in particular. 

For example, the consonant cluster ph in the 
word loophole might be pronounced / f /  by 
analogy with the same cluster in the word 
telephone. However, it might also be 
pronounced as /ph/ by analogy with the same 
cluster in the word tophat. The deciding factor 
is where the syllable boundary lies in the word. 
The most plausible structure for the word 
telephone is tele tphone, or possibly, 
te+le+phone, and for tophat is top+hat. So a 
possible syllable structure for the word loophole 
might be loop+hole, or alternatively loo-tphole, 
or maybe looph ~ole. The syllable model needs 
to determine what the true, but unobserved, 
syllable sequence is, given only the observed 
evidence of the orthographic characters. This 
can be modelled as a decoding problem in which 

a hidden sequence of states (syllables) gives rise 
to an observed sequence of symbols (letters). 
We need to discover the underlying sequence of 
states which gave rise to the observations. The 
complexity arises since the states and 
observations do not align in a simple way[l 1]. 
Syllable models of a similar type have been 
proposed for prosody[12] but not for 
transcription, whereas direct models of 
transcription have been attempted[4]. 

Let a orthographic word, W, be defined as a 
sequence of letters, w 1,w 2 ..... %. Let a syllabic 
word, S, be defined as a sequence of syllables, 
s~,s 2 ..... s,,. The observed letter sequence, IV, 
then arises from some hidden sequence of 
syllables, S, with conditional probability I'(WIS), 
There are a finite number of such syllable 
sequences, of which the one given by 
max P(WIN) where the maximisation is taken 
over all possible syllable sequences, is the 
maximum likelihood solution, and intuitively, the 
most plausible analysis. By the well-know Bayes 
theorem, it is possible to rewrite this expression 
a s :  

max [ P(WI S)] = max 1_t'(5'1W)P(S) I 
v -  "1  

s L p(nO J 

In this equation it is interesting to interpret the 
P(SIW) as a probability distribution capturing 
the facts of syllable division, while the P(S) is a 
different distribution capturing the facts of 
syllable sequences. The latter model thus 
contains information such as which syllables 
form prefixes and suffixes, while the former 
captures some of the facts of word construction 
in the usage of the language. Note that the term 
P(W), which models the sequence of letters, is 
not required in the maximisation process, since it 
is not a function of S. Given the existence of 
these two distributions there is, in principle, a 
well-understood method of estimating the 
parameters, and performing the decoding[7]. 
The estimation is provably capable of finding a 
local optimum[13], and is thus dependent on 
finding good initial conditions to train from. In 
this application the initial conditions are provided 
by supervised training data obtained from a 
dictionary. 
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A variety of  expansions of  the terms t'(SIW) and 
1'(S) can be derived, depending on the 
computational cost which is acceptable, and the 
amount of  training data available. There is thus a 
family of  models of  increasing complexity which 
can be used in a methodical way to obtain better 
modelling, and thus more accurate processing 

The function P(SIW) can be simply modelled as 
# t  

l l 

which has the wdue 0 eveuwhere , except when 
s, = w: . . . ,  % tbr any j k, when it has the value 1. 

This simply says that each syllable is spelled the 
same way as the letters which compose it. This 
points the way to a more sophisticated model of 
syllabification which incorporates spelling 
changes at syllable boundaries, but this will not 
be attempted here. Another application of  the 
approach might be in a model of  inflexional or 
derivational morphology where spelling changes 
arc observed at morph boundaries. 

The function P(S) can be modelled most simply 
as a bi-gram distribution, where the 
approximation is made that; 

:'(s,l.,', ..... s, :'(s, ls, ,) 
i ] i 2 

Such a simple model can capture many 
interesting effects of  syllable placements adjacent 
to other syllables, and adjacent to boundaries. 
However, it would not be expected that subtle 
effects o f  syllabification due to longer range 
effects, if they exist, could be captured this way. 

An efficient computational scheme for 
syllabification 

One complication exists before either the Viterbi 
decoding algorithm[7] for determining the 
desired syllable sequence, or the Forward- 
Backward parameter estimation algorithm[7] can 
be used. This is due to the combinatorial 
explosion of  state sequences due to the fact that 
potential syllables may overlap the same letter 
sequences, as shown in the example above with 
the word telephone. 1'his leads to the decoding 
and training algorithms becoming O(n 3) rather 

than O(n 2) in computational complexity, as 
usual tbr this type of problem. The difficulty can 
be overcome by the use of  a technique from 
context-fi-ee parsing[14], namely the use of  a 
substring table. The method will be briefly 
described. 

A word of  length, n, can contain n ~ /2  
substrings, any of which may potentially be 
syllables of  the word. Using the method of  
tabular layout familiar from the Cocke-Kasami- 
Younger (CKY) parsing algorithm, these 
substrings can be conveniently represented as a 
triangular table, 71, ~-: {1~,} (see diagram below). 

Where the table contains a non-zero element the 
index number of  a unique syllable can be tbund. 
'['he first step in parsing the word is to generate 
all the possible substrings and check them against 
a (able of  possible syllables. Even [br long 
words with 20 or 30 letters, this is not a 
prohibitive calculation. If  the letter string is 
identified as a possible syllable then the unique 
identi~ing number of  the syllable can be entered 
into the table. 

(note: dots used as abbrev ia t ion  in 

h igher  nodes  for s impl ic i ty)  

tele I elep I lepl 

tel I ele I lep 
. . . .  4 . . . . .  

te I el I le 

t t e I I 

t e I 

- -  4 - -  , 

° L ' A  ? k 
e p h o n e 

The computa t iona l  s t ructure used for f inding the syl lable sequence  

The bigram sequence model can now be 
calculated by the following algorithm, which is 
an adaptation of  the fi~miliar CKY algorithm: 

for each letter w[i], i=l,...,n 
for each starting syllable position 

t[i,j],j=l,...,n+l-i 
for each ending syllable position 

t[i+j-l,k],k=l ..... n-i-j 
let x-t[i,j] and y-t[i+j-1] 
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compute P(s(y)[s(x)) 

In this way it is possible to calculate all the 
possible syllable sequences which apply to the 
given word without being overwhelmed by a 
search for all possible syllable sequences. 

A methodology for constructing a 
syllabifier 

The following methodology can be used to build 
a practical implementation of the technique 
outlined above: 

. 

2. 

3. 

Collect a list of possible syllables. 
From the observed data of orthographic- 
syllabic word pairs, construct an initial 
estimate of P (M)=  l-IP(milmi_~). This is 

the bi-gram model of syllable sequences. 
Using another list of words, not present in 
the initial training data, use the Forward- 
Backward algorithm to improve the estimates 
of the bi-gram model. (This step is optional 
if the original data is sufficiently large, since 
the hand annotated text may be superior to 
the maximum likelihood solution generated 
by the Forward-Backward algorithm.) 

To decode a given orthographic word into its 
underlying syllable sequence, first construct a 
table of the possible syllables in the manner given 
above. Use the variant of the parsing algorithm 
described above to obtain a value for the most 
likely syllable sequence which could have given 
rise to the observed spelling in a way consistent 
with the Viterbi algorithm for strict HMM's. 

Training and testing the model 

A large collection of words was obtained for 
which orthography, syllable boundaries and 
pronunciations were available[l 1], ultimately 
from a machine readable dictionary, the Collins 
English Dictionary. As described[ll] the 
original data was extracted from a type-setting 
tape in which the words were listed in the usual 
forms with abbreviations, run-ons, and other 
typographical devices. These were first 
regularised by a combination of human and 

programmed conversioned so that no difficulties 
were encountered in the current experiment. 

The word entries were then divided into training 
data (220,000 words) and test data (5,000 
words) by randomly extracting words. It was 
observed that the 220,000 words in the training 
text were composed of sequences of syllables 
taken from a set of 27,000 unique syllable types. 
An initial estimate of the syllable bi-gram model 
can be directly computed by observation. This 
initial model was able to decode the training data 
with 96% accuracy and the test data with 89% 
accuracy. This indicates the requirement for a 
smoothing technique to generalise the 
parameters of the bi-gram syllable model. Such 
smoothing may reduce the accuracy of the model 
on the training data, but should improve it on the 
test data. 

A further 100,000 words, not previously seen in 
the dictionary, were obtained from a corpus of 
100 million words of Newspaper articles 
(available on published CD ROM from the 
Guardian and Independent newspapers). 
Numeric items, tbrmatting words, and other 
textual items not suitable for this test were 
omitted. Assuming that no new syllable types 
are required to model this data, the training 
procedure described above was used to adapt the 
initial statistics obtained by direct inspection. 
The performance of the model on the training 
text was 94% and on the test data 92%. This 
indicates that some generalisation had occurred 
which made the model less specific to the initial 
training text, but more robust on the test text. 

The affect of this syllable model on the overall 
pronunciation system is as follows: The basic 
decision tree transcription system when working 
directly from orthography to phonemes has a 
word correct accuracy of 86% on training text 
and 78% on test data. (the result for training 
data is not 100% as expected because of 
smoothing and other generalisations in the 
decision tree construction process). With the use 
of syllables as marked, and a new decision tree 
grown on the syllable marked training data, the 
overall system has a word accuracy rate of 92% 
on the training data and 89% on the test data. 
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Conclusions 

A method of determining syllable boundaries has 
been shown. The method can be improved by 
the use of a tri-syllable model and by the use of 
more training data. Other extensions could be 
explored quite easily. The method does not find 
new syllable types. For this some type of 
unsupervised clustering method is required. The 
method leaves unsolved the treatment of unusual 
or idiosyncratic textual conventions, notations, 
and numeric information. It seems that rule- 
based techniques will still be needed. 

While the more serious question still to be 
answered for TTS systems lie elsewhere, for 
example in prosody[10], the inability of systems 
to perform transcription with high accuracy 
makes this still an open question. The problem 
of transcription is also of interest in Speech 
Recognition[6] where there is a need to generate 
phonetic baseforms of words which are included 
in the recognisers' vocabulary. In this case the 
work required to generate a pronouncing 
dictionary fbr a large vocabulary in a new 
domain, including many technical terms and new 
jargon not previously seen, calls tbr an 
automatic, rather than manual technique. 

In the wider context the method applied here is 
another example of self-organising methods 
applied to Natural Language Processing. While 
these methods have found a fundamental place in 
speech processing (for example, speech 
recognition) they have yet to be seriously 
adopted for language processing. It is a 
possibility that many more specific tasks in 
language processing may be amenable to 
treatment by self-organising methods, with a 
consequent improvement in the reliability and 
ease of replication of the NLP systems which 
incorporate them. 

References 

1. J.Allen, MS.Hunnicutt and D.Klatt, From 
]'ext to Speech, Cambridge University 
Press,Cambridge, 1987. 

2. S.M.Lucas and R.i.Damper, Syntactic 
neural networks .fi~r bi-directional text- 

phonetics, tP 127-141 in Talking Machines, 
ed G.Bailly and C.Benoit, North Holland, 
19911. 

3. W.A.Ainsworth and NP.Warren, 
Appfication of Mu#ilayer Perceptrons in 
Text-m-Speech Synthesis Systems, pp 256- 
288 of Neural Networks fi~r Vision, Speech 
cmd Natural Language, ed D.J.Myers and 
C.Nightingale, Chapman Hall, 1992. 

4. S.Parfitt and R.ASharman, A hi-directional 
model of Eng, lish t'ronunciation, pp 801- 
804, Proceedings of EuroSpeech 91, Genoa, 
199l. 

5. L.R.Bahl, P.V. deSouza, 
P.S.Gopalakrishnan, D.Nahamoo and 
M.A. Picheny, (~ontext-dependent Modelling 
of Phones in Contitmous Speech using 
Decision ]'rees, IEEE ICASSP 1992. 

6. F.Jelinek, et al., ]he develotmlent of a large- 
vocabuklty discrete wotff Speech 
Recognition system, 11,51,21,; Trans, Speech 
and Signal Processing, 1985." 

7. l,.Rabiner, 7'u/orial on ltidden Markov 
Models' and Selected Atplications in Speech 
Recognition, Proc IEEE vol 77, no 2. 
pp257-286, 1989. 

8. S.R.Hertz, J.Kadin, and K.J.Karplus, ]he 
l)elta Rule l.)evelopment System fi~r Speech 
Synthesis from Text, Proc IEEE vol 73 no 
11. pp 1589-1601, 1985. 

9. K.Church, P/vnouncing proper names, 
ACL Chicago, 1985. 

10. R.Collier, H.C.Van Lecuwen and 
L.F.Willems, Speech Synthesis Today and 
7@norrow, l'hilips Journal of Research and 
Development, vol 47 no 1, pp 15-34, 1992. 

II. S.G.Lawrence and G.Kaye, Alignment of 
phonemes with their cot7"e,ponding 
orthoL, raphy, Computer Speech and 
Language vol 1, pp 153-165, 1986. 

12. MGiustiniani, A.Falaschi and P.Pierucci, 
Automatic inference of a Syllabic Prosodic 
Model Eurospeech pp 197-200, 1991. 

13. B.Merialdo, On the locality of the l;orward- 
Backward Algorithm, IEEE Transactions on 
Speech and Audio Processing, pp 255-257 
vol 1 no. 2, April 1993. 

14. A.VAho and J.D.Ullman, "lhe theory of 
patwing; #'anslalion and compiling, 
Prentice-Hall, 1972. 

12~3 


