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Abstract 
We propose formalisms and concepts 
which allow to make precise the 
m'gmnents in controversies over the 
adequacy of competing models of 
language, and over their formal 
equivalence. 

1. Introduction 

It is customary to judge the success of scientific 
models by their agreement or otherwise with the 
observed data. For example, linguists require of 
grammm's that they generate the tight sentences, 
but also that they correctly classify the sentences 
and phi'ases as to the categories and constructions 
they belong to. Our purpose is provide a formal 
account of the elusive concept of expressive power 
with respect to the kinds of categories and 
constructions that a grammar (of a given type) can 
reflect. The principal concept will be definability 
of relations in a logical formalism corresponding to 
a given grarmnar type in this language, specifically 
definability without the use of disjunction in the 
defining tbrmula. Our results can be summar~ed 
as follows: 

1. We cast CFGs in a logical formalism. We 
then progressively enrich the formalism to 
express the parametrization of categories and 
of constructions in various ways as well as by 
allowing metarules and transformations. 

2. We then prove a number of theorems about 
what can and cannot be done in a given 
formalism, focusing on the definability of 
categories and constructions (both taken as 
relations in the logic). 

a. Definability is characterized precisely for 
the first time, and we distinguish various 
kinds, of which nondisjunctive definability 
corresponds closely the notion of 
capturing a linguistic generalization in a 
grammar. 

b. Agreement is not definable in CF 
theories, but can be defined in 
theories/grammars with attributes. 

c. Constructions whose variants differ in 
word order and/or in the number of 
constituents cannot be captured even by 
CFGs with attributes, but can in slightly' 
more powerful models. 

d. Constructions as above but where the 
order and/or the number of constituents 
correlate ('agree') with some other t~ature 
require inherently more powerful systems. 
We show how such patterns can be 
captured if we parametrize concatenation 
and the number of constituents (for the 
first time, something other than categories 
gets parametrized). 

e. The same generalizations can be captured 
via transformations or metarules. 
Cn'ammars with transformations and 
metarules can be treated as particular 
cases of a certain formal proof system. 

f. Various extended notions of definability 
are considered; for example, the binary 
relation between pairs of trees related by a 
metarule or transformation, and the 
notion of definability across a class of 
grammars. 

2. Definability 

2.1 Expressive power 

The expressive power of a logical theory depends 
on four factors: 

1. The formal language L in which the theory is 
written; 
Example: FOL (the First Order Ix~c)  is 

more expressive than the Propositional 
Calculus 
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2. The class of WFF of well-formed formulas of 
I4 
Example: FOL is more expressive than Horn 

Clauses, but the latter are easily computable 
(no function symbols in both cases). 

3. Axioms of the theory; 
Example. Two theories expressed in the 

same language, such as L = (+ ,*,=, < ,1), can 
have completely different properties. For 
instance the axiomatization of real numbers in 
L gives a decidable theory, and hence any 
formula written in L is either provable or 
disprovable from the axioms, But the 
axiomatization of natural numbers in the same 
language does not decide all formulas, i.e. 
there are formulas written in L which cannot 
be proved or disproved from the axioms. 

4. Rules of inference; 
Example. With Modus Ponens A, A---,B // B 

one can prove more than just with the rule 
A I/ A v B .  

We shall deal mostly with 1,2 and 4, and allow 3 
to correspond to a translation into a logical 
language of the context free part of a grammar. As 
we have already mentioned, the difference between 
TGs and MGs has something to do with 4. 

2 .2  C o n t e x t  Free  T h e o r i e s  

Using granamars we can talk about which notions 
cml be defined, or expressed, thereby only in an 
intuitive sense. The reason for that lies in the fact 
that '%eing defined/definable" is a property of a 
predicate, therefore a proper language for studying 
expressive power of different grammars, and 
grammatical formalisms is logic. Then we can talk 
about non-defibility or definability of notions such 
as Passive(x) or Passive of(x,y) formally, in a 
logical system. It turns out that definability of such 
a concept depends on a formal language in which a 
grammar is written. Thus it may happen that two 
grammars prove "sentencehood" of the exactly the 
same classes of strings, but it is possible to define 
such a predicate in one of those theories and not in 
the other. 

We begin with CFGs. Since we are going to be 
concerned with definability, we first translate CFGs 
into CFTs (Context Free Theories). The 
translation works as follows. A CF production like 
H -~ &B2 ... 11, goes into 
H(xt.x2 . . . . .  x,) ~ B,(xO&&(x~ )& ... &B,(x,)  (note 

that all the variables are different); H ~ a.G 
and H --* a.b are replaced by t l (a .x)  ~ G(x) 
and H ( a. b ) , respectively. 

For the sake of the uniformity of notation we will 
represent a rule of the form H,--B~&B= as 
[H, [Bi, B=]]. (The the rule of substitution will 
correspond to the resolution). 

Proposition 
translation. 
proves S(s). 

I. Let G be a CFG and G' its 
A string s belongs to L(G) iff G' 

2.3 The Undefinability of Agreement 

We turn to a simple example, namely, agreement 
between NPs and VPs. Consider a sample CFT: 

S(x.y) <- NP_sing_fem(x) & VP sing_fem(y). 
S(x.y) <-  NP_sing mat(x) & VP sing_mat(y). 
S(x.y) <- NP sing_neu(x) & VP sing_neu(y). 
S(x.y) <- NP_plur_fern(x) & VP plur_fem(y). 
S(x.y) <- NP plur_mal(x) & VP plur_mal(y). 
S(x.y) <- NP_plurneu(x) & VP plurneu(y) .  

In order to prove that agreement cannot be 
captured here, we need to specify what that would 
mean. It is easy to show that well-defined relations 
such as numberagree(number ,x ,y )  or 
agree(number, x,y) are only definable in CFT if the 
defining formula.uses disjunction. But traditionally 
disjunction in grammatical description is a standard 
notation for two (or more) unrelated phenomena. 
Thus, disjunction is not forbidden, but when it 
occurs, it impfies the factual claim about the 
referents of the disjuncts are distinct linguistic 
phenomena. In the case before us, that would be 
saying that singular and plural agreement are not 
the same phenomenon. It is not, of course, the 
business of logic to inquire into whether in fact 
number agreement in some language is a unitary 
phenomenon. It is rather the business of' logic to 
provide the tools for the linguist scientist who, on 
whatever basis, makes such determinations, to 
capture formally the theories that he develops, 

Accordingly, we first assume a special notion of 
definability, defined as follows: 
Definition. A relation p is &-definable in a CFT 

theory T if there is a formula 

(*)  / ' ( x , ,  ... ,x,,) ,-- & ... & &. 

B(x ,  x i . . . .  ) & ... 
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s.t. the tuples (a, .... , a~), which can be proven from 
T +  (*) to satisfy P(...), are exactly those belonging 
to the relation p. 
A category c is &-definable in a CFT theory T if 

the one argument relation corresponing to c is. 

ltowever, some categories ttms defined are spurious 
in that they cannot be used in proving 
sentencehood. We want to rule these out. 

I.et Lnf(G) be the language that contains only 
those categories which appear in the  formulas 
[S,[ . . . ] ]  which are derivable in. (the CFT 
con'esponding to) the grammar. From now on, by 
(&-)definability we shall understated the 
(&-)definability in L ~ G ) .  Moreover, the notion 
of 'category' will be analogously restricted. Tiffs 
allows us to avoid spurious categories as in 2.4 
below. 

We wil! also refer to constructions which are 
I.wo~place relations between a grammatical category 
(the category the construction yields) and a string 
,ff grmnmatical categories (which the construction 
i:; made up of). 

2.4 Spurious categories 

(;onsider a g)-amrnar like: 
S o > NPsg VPsg 
~;-> NPplVPpl  
N P s - >  Det Ns 
N P p - >  Det Np 
NP - > Det N 
ins - > dog, cat .. . .  
Np - > dogs, cats .... 
N - > dog, dogs, cat, cats . . . .  

It is possible to introduce a symbol that 
corresponds to the category NP, but it c,'mnot be 
used in deriving sentences from the stm't symbol. 
Our definition allows such spurious category 
symbols to appear in formulas of CFT, but at the 
same time it prevents them from having ~ly 
iHtluence on what categories are definable in the 
formalism. This simple example clearly shows that 
an appeal to intuitions would be insufficent to talk 
about expressive power of the two grammars. 

2.5 Some Results 

Theorem 2. I ra  CFT T contains 
S(x.y) ~- NI'I - atl(x) & VPt - ah(y) 

S(x .y)  ~ NP2 - att(x) & VP2 -- at,(y) 
and both NP~-.~ at,(x) and VP, - ale(x) 

satisfiable for both i. Then the relation 
agreement agree(aq,x,y) is not &-definable. 

a r e  

of 

P r o p o s i t i o n  3. The relation agree(number,x,y)  is not 
&-definable in the above CFT. 

Theorem 3. The category NP is not &-definable or 
definable tbr this language in CFT. 

Notice that linguists often do allow categories such 
as NP, but not constructions (such as the 
subject-predicate construction or passive) or 
features of constructions (such as agreement) to be 
described disjunctively. This is especially true of 
lexical categories. It is thus instructive that, as 
shown, the phenomenon of agreement means that 
certain categories are not definable at all, even with 
disjunction. 

3. Attributes and Constructions 

We will talk now about a logic corresponding to 
CFGs with attributes. We will show that such 
logics provide an inherently more expressive theory 
of categories, ahd in particular allow us to define 
the category N P  and VP in a language with 
number or gender agreement. 

However, the use of attributes does not lead to an 
all-powerful theory of constructions, ,and 
consequently certain linguistic generalizations are 
missed by grammars with attributes. This leads to 
the introduction of more powerful devices. All the 
formal languages we consider, if not first order, can 
be formalized as weak second order system in an 
obvious way. 

3.1 Word Order and Selection Variation 

Attribute theories clearly cannot treat as a single 
construction two forms with different word order. 
That is, they cannot &-define a relation R(Cat,x) ,  
where Cat is some grammatical category and x 
ranges over a set of strings of categories identical 
except with respect to word order. This defect can 
be remedied by allowing an ID/LI '  tbrmat for 
rules, which we formalize in a very similar way. 
(Details omitted.) Iiowever, this formalism if the 
variants with different orders do not differ in any 
other way. What is more interesting is what 
happens with ex;unples in which the choice of 
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attributes for some element is correlated with a 
choice of word order. For example, English has a 
slightly different class of verbs in "inverted" 
sentences than others, e.g. Aren't I smart? vs. *I 
aren't smart. There is no way to connect 

V ] with the V< NP order, as opposed to + #wert 

V - invert] and the NP < V order. It was precisely 
l 

to handle cases like this that metarules were 
introduced in GPSG model of grammar, and it is 
one of the reasons for transformations as well. 

By parmnetrizing word order, we can capture the 
word order phenomena like those in English 
inverted sentences. Thus, we could have a grammar 
with a parametrized concatenation operator cone 
with values, such that 0 eonc(a,b,c)--_ abc, whereas 
1 conc(a,b,c) =bac, for example. We can now state 
a single rule of the form 

conc(NP,..[ AnvUX], VP) ....... j 

to handle the subject-aux inversion facts. 

requires a formal language with something like the 
Kleene star, and require more space than we have 
in this paper. The idea is roughly this: We have 
introduced a set of sublanguages of Lnf(G) to avoid 
spurious categories. Now, we make one more 
restriction: let LnJ(NP) be the language that 
contains only those categories except NP which 
appear in the RHS of the formulas [NP, [ RIfS ]] 
wtfich are derivable in (the CFT corresponding to) 
the grammar. Similarly, for other 
categories/symbols. The (&-)definability of a 
construction X are defined as for other relations, 
except that the defining formula must belong to 
Z.n/(ag. 

Theorem 4. Constructions with two variants which 
differ by the order or number of constituents are 
not &-definable in attribute grammars. 

Theorem 5. Constructions with two variants which 
differ by the order or number of constituents 
together with a difference in some other element 
are not &-definable in attribute grammars with 
ID/LP and parentheses. 

Attribute theories also cannot handle variation in 
selection, i.e., the arity of a construction. This is 
easily remedied by formalizing the parenthesis 
notation of BNF which is often used to abbreviate 
CFG's--when we write, itfformally, a rule like 
A-,B((~, for example. It is harder, to handle the 
correlation between some attribute of one element 
and the presence or absence of some other element. 
For instance, many analyses of English postulate 
separate constructions of the VP depending on the 
class of the verb, e.g., transitive (V NP), 
ditransitive (V NP NP), transitive- prepositional (V 
NP PP), and so on. It has also been observed that 
each of these corresponds to a passive form in 
which one NP is missing (although a PP of the 
form by NP is optionally possible instead, this is 
irrelevant for our purpose). Again, if it were just 
the presence or absence of the object NP that 
distinguished the two voices, we could use the 
parenthesis device. However, the form of the verb 
also changes from active (e.g. sees) to passive (e.g. 
is seen). Such phenomena, which can be handled 
with metarules or transformations, also cannot be 
handled with attribute grammars. 

The problem of the definability of constructions is 
a more complicated one. The results below have 
been obtained for formulas of the standard first 
order language. A correct account of recursion 

Now, consider an extension of attribute grammars 
which parametrizes the presence/absence of 
constituents. Thus, we write rules like, where ont 
is a parameter controling ' the appearance or 
absence of an element (i.e., +ont(X) means X 
appears, -ont(JO that it does not), 

V 
VP-~ [c~ active] ~ ont(NP) 

Now we can &-define the different kinds of 
transitive constructions, by using ont to control 
whether the object NP is realized (in the active) or 
null (in the passive). 

Now, the use of this device allows us to &-define 
the three different kinds of transitive constructions, 
but not the passive construction, which still 
requires disiunction (for the same reason that the 
active requires disjunction). This is exactly the 
same as with metarules and transformations (as w e  
will see below). The formalism provides no way of 
making the verb class attributes (trans, ditrans, 
trans prep) agree with the number and kind of 
constituent to the right of the verb (NP vs. NP NP 
vs. NP PP). Some linguists don't mind this, but we 
will show below how that can also be done (what 
is required is a way of making the verb class 
attribute agree with the number and kind of 
constituent following the verb). In order to 
&-define passive, we would need a more powerful 
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kind of' parameter, which can control the number 
and kind of constituents, which we call sel 

VP-~ X sel 

And combining the two (ont and sel), we can 
describe both the transitive and the passive by a 
rule like: 

I ] VP -~ NP.X sel. y ont(NP) X 
[ y vo ,ce  

However, historically such devices as cone, ont, and 
sel have been unavailable, and instead, 
transformations and metarules have been used to 
obtain essentially the same effect, llence, we 
proceed to show how the power of these models 
can be represented 

4. Derivability, WGs and M-grammars 

[S(x.y), [NP(x), VP(y)]] 
[NP(u.w), [ADJ(u), NP(w)]] 

[S(u.w.y), [[NP(u.w), [ADJ(u), NP(w)]], VP(y)]]. 

Clearly, with this rule we can prove about a 
string that it is an S if it is generated by the 
corresponding context free grammar. In a 
natural way we can extend this definition of an 
inference rule to cover attribute grammars: 
attributes can be treated simply as constraints. 

A metarule in an M-grammar such as 
VP -- > X N P / / V P [ I ' A S ]  --> X (PP) 

which relates passive and active, can be 
treated as an inference rule. 

[VP(xy), [X(x), NPO')]] 

[VP(x.z)(PAs), IX(x), m,(t,y.z)]] 

A transformation in a T G  can be understood 
exactly the s,-une way, as a rule Treel//7'ree2. 

We will consider very simple kinds of TGs and 
MGs, which operate on (sub)trees of  depth one. 
This is enough to capture GPSG use of metarules, 
but not the fifll power of conventional TG. The 
more general model will be discussed briefly, but 
for our purposes it is more convenient sometimes 
to consider special cases, which make the 
demonstrations simpler. 

The TGs and gr,'unmars with metarules (M-Gs) 
deal not only with strings but a!so with trees. To 
compare them we have to use a common 
formalism. Let q" be a collection of  trees (over 
some alphabet with terminals, non-terminals, and 
perhaps other symbols), where each tree is a pair 
[Node, Sons], where Sore is a list of trees. "Iqaen 
each rule of a context free grammar can be 
represerrted as a tree of depth one (the definition of 
depth being obvious), e.g. 
[S(x.y), [NP(x), VP(v)]], or [N(dog), [(p]]. 

We need now to establish the following 
interpretation: 

• Trees, as defined above, will be intepreted as 
formulas; 

• The rules of proof will be expressed in the 
Gentzen style: Tree l ,Tree2 / /Tree3  ; 

• One of the rules of proof will be substitution, 
as ill 

The difference between TG and grammars with 
metarules (M-Gs) can be now expressed in the 
definition of a proof. 

• In the case of TGs a proof of a formula I~ is a 
sequence (P, Q) where 

1. P is a sequence of formulas f] . . . . .  lZk 
such that each F~ is a fommla 
corresponding to a context free rule of the 
grammar or is obtained from [}, ( j <  i) 
by the rule of substitution, and l;k is 
[S(...), [RIlS]], where RIIS contains 
only the terminal symbols (i.e. Fk 
represents a fully expanded tree). 

2. Q is a sequence Fk, . , , 1~ ,  where each 
formula is obtained from the previous one 
by a rule corresponding to a 
transformation. 

• For M-Gs a proof of a formula I'~, is a 
sequence (PI, Q, P) where 

1. PI is a collection of  formulas of depth 
one; 

2. Q -- formulas/trees obtained by applying 
metarules; 

3. P -- formulas/trees obtained by applying 
the rule of substitution. 

These definitions allow us to show that a variety of 
constructions not allowable by CFG's  or attribute 
grammars are definable by MG's  and TG's. Also, 
we obtain a rather neat characterization of' the 
similarities and differences between TG's  ,and 
MG's. 
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5. Other Notions of Definability 

The notion of &-definability of categories and 
constructions is not the only one that we could 
have employed. One alternative would be to look 
at what relations are definable. For instance, Sells 
(p.93) remarks that it is impossible to express 
Subject-Subject- Raising as a metarule. From our 
perspective this of course still holds true, but we 
can also see that one can easily define a relation 
SSR(t , , t2)  which holds only if the first tree has been 
obtained by subject raising from the ~econd tree: 

S S R ( t l ,  t2) , -  
t I = [S ( seem.y . z ) ,  [seem, N P ~ ) ,  VP(z)]]  

& t 2 = [S ly . seems . z ) ,  [ N P ( y ) ,  seems, VP(z)]]  

("seem" stands for all verbs of this class). 

Another extension would be to consider 
definability of categories, constructions, or relations 
not for a single grammar but across an (itffmite) 
class of grammars. For example, we have seen that 
in a language of CFT a definition of agreement can 
be given only by a disjunctive formula, but it can 
be given, so long as we confine ourselves to a 
single grammar. 

However, in linguistics there is precedent for 
(informal) arguments that some notion, while 
definable for each grammar of a class, cannot be 
defined for the whole class. Ttfis idea leads to a 
new notion of definability: 

Definition. A property Pr  is definable over/across 
a class of theories C , if there is a formula F(x)  
s.t. for any T in C, and any term t of the language, 
we have Pr(t) iff T +  F(x )  proves P(t). 
Similarly, one defines &-definabality across C. ( 

Pr(t) means that it holds in any model of 7). 

Let's concentrate on the agreement wrt gender. 
Notice that the assumption that agreement exists 
and that it should be somehow expressible in a 
grammar (using disjunctions or not) is an empirical 
statement. We could express it formally by 
augmenting our language with a (higher order) 

device detecting the presence of a substring 'fern' in 
a predicate as in 
S(x .y )  ~ N P  - s ing - f e r n ( x )  & V P  - sing - f e r n ( y ) .  

We will be interested in a subclass of CFT that 
allow formulas of the sort: 

S(x .y )  ~ N P  - at! - a h - ...at N - f e r n ( x )  & 

V P -  at 1 - ...at N - f e m ( y )  

Assuming that we can talk about agreement 
formally, we can formulate and prove the following 
fact. 

Theorem 6. Agreement with respect to an attribute 
is not definable across the class CFT of context 
free theories. 

We now see that much stronger results can be 
achieved across languages than for one language. 
For a single CFT, we can only that agreement is 
not &-definable, but for the CFT's  as a class we 
have just seen that it is not defmable at all. 

6. Conclusions 

We proved a' number of results about the 
expressive power of a number of grammatical 
formalisms, not just CFGs, but also others that 
resemble more closely what linguists actually work 
with. More important, we have proposed a 
method which can b e  extended to any class of 
grammars for characterizing precisely what 
relations, constructions, and categories this kind of 
grammar can "capture". In the process, we have 
clarified the notion of category, defined for the first 
time the notion of construction, and proposed a 
number of grammatical devices that have not been 
considered before, and cast a new light on the 
problem of the relation of metarules, 
transformations, and extensions of phrase structure, 
such as parametrizing categories (i.e., using 
attributes) and parametrizing constructions. We 
believe that the crucial step was dealing not directly 
with grammars but with correspondbag logical 
theories for such grarmnars, and this will continue 
to prove fruitful in the future. 
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