
An Efficient Implementa t ion of P A T R
for Categorial Unif icat ion Grammar

Todd Yampol
Stanford University

Lauri Karttunen
Xerox PARC and CSLI

1 I n t r o d u c t i o n

This paper describes C-PATR, a new C im-
plementation of the PATR-II formalism [4, 5]
for unification-based grammars. It includes
innovations that originate with a project for
developing an efficient translator from En-
glish to first-order logic [2], most notably the
extension of the standard unifcation algo-
rithm for list values [section 3]. In addition
the unifier and a chart parser tuned for cate-
gorial grammars, the system (C-PATR) con-
tains a set of tools necessary for grammar
development. These tools include facilities
for hier,~rehical lexicon design and interactive
grammar debugging [section 4].

2 G r a m m a r Fo~:ma~ism

2.1 PATR-I][as i m p l e m e n t e d
in C - P A T R

PATR-II is a formalism for describing gram-
mars in terms of feature structures. C-
PATR supports two equivalent notational
systems for representing feature structures,
path equations and attribute-value matrices.
Path equations can be used to define a hier-
archical system of templates [section 4] that
encode linguistic generalizations. Internally,
feature structures as are represented as di-
rected graphs (DGs). PATR-style feature
structures are capable of describing a wide
variety of unification-based grammars. The
present version of C-PATR is designed to
support only pure categorial grammars. It
does not support the use of explicit phrase
structure rules, thus C- PATR is not an ex-
haustive implementation of PATR.

2.2 Ca tegor i a l g r a m m a r s as fea ture
s t r u c t u r e s

A categorial grammar represents syntactic
relations in a completely lexical fashion, i.e.
without explicit phrase structure rules. Lex-
ical items belong to basic or functor cate-
gories. A basic category is inert, in that it
does not seek to combine with other cate-
gories. Functor categories perforln the bulk
of the work by actively seeking to combine
with other categories. A functor category
specifies the category of its argument, a direc-
tion in which to search for the argument, and
the category of the result that is produced by
applying the functor to its argument. With
only this simple machinery, it is possible to
describe a wide range of syntactic phenom-
ena.

In C-PATR, basic categories are those with
NONE as the value of the argument at-
tribute. (NONE is a regular atomic value
that is given special status by the parser.)
Functor categories must have values speci-
fied for the argument, direction, and result
attributes (see Figure 1).

The parsing algorithm manages the forma-
tion of constituents through the application
of functors to their arguments [see section
3]. The argument and result attributes can
contain information other than simple cate-
gory designations. For example, the sample
grammar in the appendix uses these slots to
place constraints on the argument, to pass in-
formation from the argument to the functor,
and to construct a semantic representation.

cat:N]
argument:NONEJ

Figure 1: Traditional categorial descriptions

argument: [cat:NP]]

direction:left

result:[cat:S] J

of Noun (basic) and V-intrans (a functor)

3 Unification and Parsing
Algorithms

C-PATR offers two varieties of unification. A
standard unification algorithm (adapted from
D-PATR [1]) is used in creating the internal
representation of a grammar, while a more
complex algorithm featuring list unification
[see below] is employed by the parser. The
parser itself is a fairly standard active chart
parser (also adapted from D-PATR).

3.1 O p t i m i z i n g pa r s ing
and unification

Function application is the only composi-
tional technique used by C-PATRs parser.
More powerful techniques such as functional
composition and type-raising are not used.
In parsing a non-trivial sentence, hundreds
of unifications are attempted, hence the data
types and algorithms that C-PATR employs
during unification must be optimized in order
to achieve efficient parsing. In order to per-
form quick comparisons while keeping sym-
bol names readily available, a symbol in C-
PATR is designated to be the location in
memory of its print name, maintained on a
letter tree, where each unique symbol-name
has only one entry.

3.2 List unification

Merging partial information by unification is
not sufficient for the description of all the
correspondences between syntactic and se-
mantic representation. A case in point is
the semantics of conjoined noun phrases [2].
An appropriate semantic representation for a
sentence like b and c are small is aconjoined
formula, small(b) A small(c). Such represen-
tations cannot be derived by pure unification

420

because two instances of the logical predi-
cate small with different arguments must be
produced from a single instance of the word
small. The same difficulty arises with re-
ciprocal pronouns (each other) and numeral
determiners. C-PATR solves this problem
by extending unification to list values, with
an effect that is similar to abstraction and
lambda conversion in logic. For example, a
conjoined noun phrase, such as b and c, may
require that the verb phrase it combines with
has a list-valued semantic representation. If
the verb phrase, such as are small, is not of
that type, the unifier simply coerces the ar-
gument to a list value thereby producing two
copies of its semantic translation.

The algorithm for list unification is quite
straightforward. (1) Two lists can be unified
if they have the same number of elements,
and if each corresponding pair of elements is
unifiable. (2) Two lists of unequal lengths are
not unifiable. (3) To unify a list of length n
with a simple DG (non-list), coerce the non-
list into a list by making n copies of the non-
list, unifying each instance the non-list with
a successive element of the list. (4) If any sin-
gle sub-unification fails, then the whole uni-
fication fails. In our system, list values are
represented as feature structures using the
special attributes first and rest (analogous to
CAR and CDR in Lisp).

3.3 C h a r t P a r s e r

C-PATRs chart parser is a simplified version
of general chart parsing algorithm. In a cat-
egorial grammar, all constituents are formed
from two pieces (a functor and an argument),
thus the parser need only consider binary
rules.

The parser includes a subsumption filter
[1]. Just before an edge is added to the

chart, the filter checks if there are any iden-
tical edges spanning the same nodes as the
candidate edge. If there are any such edges,
then the duplicate edge is not placed on the
chart. Subsumption checking eliminates re-
dundant analyses, and improves parsing effi-
ciency :for grammars that have many differ-
ent ways to reach the same analysis. When a
more complete parsing record is desired, the
subsumption filter can be toggled off.

4 S p e c i a l F e a t u r e s

4.1 H i e r a r c h i c a l lex icon des ign

C-PATR allows the user to specify a gram-
mar in terms of a hierarchical system of tem-
plates. The grammar is divided into two
parts, a set of templates and a set of lexical
entries. Each template consists of a name
(designated by an Q-sign) followed by a set
of explicit path equations and references to
other templates [see Appendix A]. The path
equations are compiled into directed graphs.
When a template is referred to within an-
other template definition the latter inherits
the path equations of the former. The sample
grammar makes use of template inheritance
in the entries for @ Vt r ans , @Ga, and @O
[see Appendix]. A template can also be used
in a path equation (as in the sample gram-
mat's entries for @ V \ V s t e m and @Par t i -
cle) to define a complex value.

The format of the lexicon file is identical
to that of the template file except that the
labels for lexical entries do not begin with
@-signt~. While a number of path equations
usually constitute the body of a template,
a typical lexical entry contains few explicit
path equations. If a set of templates is well
constructed, the list of template names men-
tioned in a lexical entry constitutes a mean-
ingful high-level description of the word. [see
Appendix B]. Path equations mentioned in
a lexical entry should describe only the id-
iosyncratic properties of the word. The form
of the entry is automatically assigned to the
attribute lez unless specified otherwise.

4.2 I n t e r a c t i v e g r a m m a r debugg ing
a n d lexicon compi l i ng

In designing a grammar, the user specifies
templates or expanded lexical entries within
a text file. C-PATR then compiles the text
into an internal representation for the parser.
This compilation task has been optimized to
allow for reasonable interactive grammar de-
velopment and debugging on small personal
computers. On a Sun- 4, a 100K source
grammar compiles into a 140K binary form in
5 seconds. On a Mac-II, the same task takes
30 seconds. To improve the grammar loading
efficiency on the Macintosh, C-PATR pro-
vides a facility for pre-compiling the gram-
mar. The Mac resource file created by pre-
compilation loads in less than 2 seconds.

4.3 Serv ices p rov ided by C - P A T R

C-PATR is driven by single character com-
mands. These are summarized in Figure 2:

Type a sentence to parse or:
n to see contents of edge number n
b to run a batch test
f to toggle subsumption filter
1 to view lexical entries for a word
m to view a micro-dump of chart
1 to load a new lexicon
o to specify an output file
p to review phrase that was parsed
q to quit
t to toggle result print format
s to view a short dump of chart
t to view logical translation(s)
u to unify two arbitrary edges
v to toggle variable style
w to list words
x to view extra long chart dump
z to zap expanded lexicon to a file

Figure 2: C-PATR command summary

3
421

5 Conclusion

C-PATR has advantages in size, speed, and
portability over its predecessors. By choos-
ing C as our implementation language, we
gained in all three areas. Earlier PATR im-
plementations, written in Lisp and Prolog,
require the high overhead of an interpreter.
C- PATRs 135k of source code compiles into
a 58k stand-alone application on the Mac,
and an 82k stand-alone on the Sun-4. C-
PATR is an order of magnitude faster than
D-PATR. C-PATR has been compiled on the
Macintosh and on various Unix systems.

There are currently plans to enhance C-
PATRs existing syntactic component with a
two-level morphological analyzer [3]. The
sample grammars treatment of yonda [see
Appendix] is an example of how one might
make use of morphologically analyzed forms.

C-PATR is available through the Center
for the Study of Language and Information
at Stanford.

Acknowledgements

Thank,~ to the Center for the Study of Lan-
guage and Information and the Symbolic
Systems Program for their generous support
of this project. Also, thanks to Dorit Ben-
shalom for offering many valuable sugges-
tions that directly influenced the design of
C-PATR.

Bibliography

[1] Karttunen, Lauri, D-PATR, A development
environment for unification-based gram-
mars, Report No. CSLI-86-81, Center for
the Study of Language and Information,
Stanford, California, 1986.

[2] Karttunen, Lauri, Translating from English
to Logic in Tarski's World, In the Proceed-
ings of of ROCLING-II, September 22-24,
Sun- Moon Lake, Taiwan, 1989, pp 43-72.

[3] Koskenniemi, Kimmo, Two-Level Morphol-
ogy: A General Computational Model for
Word-Form Recognition and Production,
Publications No. 11, Department of Gen-
eral Linguistics, University of Helsinki,
Helsinki, Finland, 1983.

[4] Shieber, Stuart, An Intro-
duction to Unification-based Approaches to
Grammar, CSLI Lecture Note Series, Vol-
ume 4, Chicago University Press, Chicago,
Illinois, 1986.

[5] Shieber, Stuart, Parsing and Type Infer-
ence for Natural and Computer Languages,
Technical Note 460, Stanford Research In-
ternational, Menlo Park, California, 1989.

Appendix: Grammar for
a fragment of Japanese
created in C - P A T R

A Templates for Japanese

@Basic
<argument> = NONE.

@Functor-left
<direction> = left.

@Functor-right
<direction> = right.

@V
@Basic
<cat> = Vstem
<semantics pred> = <lex> .

@Vtrans
@V
<syntax ga> -- <semantics agent>
<syntax o> -- <semantics theme>.

422

4

@V\Vstem
(~Functor-left
, : ca t> = V\Vstem
<argument cat> = Vstem
,:result> = @Basic
<:result cat> = V
,:result morphology> = <morphology>
,:result syntax> = <argument syntax>
,:result semantics> =

<argument semantics> .

@Past <morphology tense> = past.

@Informal <morphology level> = informal.

@Noun
@Basic
<cat > : N
<:semantics ind> = <lex> .

@Particle
@tihnctor-left
<:cat> : Particle
<:argument cat> :: N
<:result cat> :- NP
<:result> = @Functor-right
<result argument cat> ::: V
<:result result> = @B~:~sic
<:result result cat> =

<result argument cat>
<:result result semantics> =

<result argument semantics>
<:result result morphology> =

<result argument morphology> .

@Ga
@Particle
<:result argument syntax ga> :

< argument semantics ind>
<:result result syntax ga> : filled
<:result result syntax o> :

<result argument syntax o> .
@O

@Particle
<:result argument syntax o> =

<argument semantics ind>
<result result syntax ga> =

<result argument syntax ga>
<:result result syntax o> = filled.

B Unexpanded lexical entries

john @Noun.
hon @Noun.
ga @Ga.
o QO.

yom

@Vtrans
<lex> = yomu.

-ta
@V\Vstem
@Past
@Informal.

C Sample expanded entry
for the particle ga

cat:Particle

argument: semantics: [

L
direction:left

cat:NP

argument:

cat:V
morphology:#2

syntax: [ga :# l] o:#3 j
semantics:#4

result: direction:right

result:

cat:V
morphology:#2

syntax: [o:#3ga:filled]]

semantics:#4

argument:NONE

lex:ga

5

423

1-) S a m p l e C - P A T R s e s s i o n

Welcome to C-PATR!

lexicon type:
1. templates (.tem file)
2. expanded lexicon (.xlx file)
- . - > 1
What is the template file? col ing. tem
What is the lexicon file? coling.lex

Loading attribute ranking done

- templates -
#.Basic
#.Functor-left
#.Functor-right
#-V
#.Vtrans
#.VkVstem
#.Past
#.Informal
#.Noun
#-Particle
#-Ga
#-O

- lexical items -
john
hon
ga
O

yom
-ta

: , john ga hon o yom -ta
[john read a book. Note that yonda has been
morphologically analyzed.]
john ga hon o yom -ta
number of parses: 1
0.100 seconds
11 edges, 31 dgs, 79 avs

> m

[C-PATR command to list the span of each
edge]
0. john
1. ga
2. john ga
3. hon
4 .0
5. hon o
6. yom
7. -ta
8. yom-ta
9. hon o yom -ta
10. john ga hon o yom -ta

>10
[C-PATR command to display edge #10,
which contains the parse]

content:
[cat:V
morphology:[levehinformal

tense:past]
syntax: [ga:filled

o:filled]
semantics:[pred:yomu

agent:john
theme:hon]

argument:NONE]

parse tree:
V[NP[N<john>

Particle<ga>]
V[NP[N<hon>

Particle<o>]
V[Vstem<yom>

V\Vstem<-ta>]]]

>q

bye!

424 6

