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A B S T R A C T  

This paper presents an implementation 
of formal semantics as described in Keenan 
and Fa!tz's Boolean Semantics for Natural 
Langt~age [4]. The main characteristic of this 
implementation is that it avoids the intermediate 
step of translating NL into a formal language, 
such as an extended version of predicate 
calculus. My choice of not using any 
intermediate language, which Montague already 
suggested in Universal Grammar [5], makes 
my implementation free of the problems related 
to the syntax of such a language like binding 
the variables and resolving scope ambiguities. 
On the other hand, not translating NL into an 
intermediate language requires e v e r y  
d e n o t a t i o n  (i.e. semantic value) to be 
explicitly and accurately represented in a 
database. 

0. INTRODUCTION. 

In extens ional  semantics ,  each 
denotation corresponds to an object of the 
world° The world is the set of all the 
denotations. In the implementation that I shall 
present in this paper, the world will be 
represented by means of a database, more 
precisely a relational database. 

The structure of the database is 
designed in such a way that it makes explicit 
the s e m a n t i c  type  of each denotation. 
Although I will not always stick to the standard 
version of formal semantics when assigning 
semantic types to syntactic categories, I aim at 
accounting for the same range of phenomena 
that formal semantics deals with. 

The paper will be divided into five 
parts. First, I shall trace back research results 
to which my contribution can be related. Next, 

I describe the database. Then, I explain how 
the principles used to design the database meet 
the requirements of formal semantics. The 
fourth part is concerned with entailment while 
the last part mainly shows how one proceeds to 
interpret sentences. 

1. BACKGROUND. 

The topics which this work is 
concerned with have mainly been studied from 
three points of view. 

A first class of studies covers the 
problems encountered in trying to translate NL 
into a formal language. On the one hand, there 
is theoretical research aiming at such a 
translation, like PATR [7]. On the other hand, 
various kinds of inaccuracies of NL 
translations into logical form in view of 
accessing databases have been discussed, see 
[6] for example. 

A second field of research that need be 
mentioned is concerned with NL interfaces. 
Famous systems are described in [9] and [1]. 
There are important differences between these 
systems and my work since I am not aiming at 
accessing a knowledge base at all. The 
database that I use encodes NL meanings and it 
does so according to linguistic constraints. 
Traditionally, the database rather encodes a 
certain knowledge independent of the language 
used to talk about it. Problems specific to NL 
interfaces can be found in [3] and [81. 

From another point of view, there are 
works which are concerned with the question 
of the organisation of the knowledge base 
constituted by NL meanings, see [2]. The 
difference between my approach and ones like 
[2], is that I am sticking to the theory of formal 
semantics. Consequently, I do not (yet) 
address questions about the structure of the 
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lexicon nor do I treat pragmatic phenomena like 
common sense inferences. 

2. THE DATABASE. 

The structure of the database is 
dependent on the semantic properties of the 
denotations. More specifically, the structure of 
the database is dependent on the fact that 
denotations are classified into different types 
and specifically recognized as the denotations 
of such and such syntactic categories. 

Each denotation of each constituent is a 
value in the database. Some of the denotations 
result from the composit ion of other 
denotations. Which denotations can be 
composed with which other ones are properties 
of their type. These properties are not encoded 
as such. The overall structure of the database 
shows how the semantic types combine with 
each other. Consequent ly ,  complex 
denota t ions  (denotat ions  of complex 
expressions) are represented by a t o m i c  
values, but the fact that they are complex is 
deduced from the structure of the database. 
Consider the case of noun phrase denotations. 
The denotation of a determiner combines with 
the denotation of a common noun. This 
combination yields the denotation of a noun 
phrase, i.e., an atomic value in the database. 
The representation of this denotation is 
c o n n e c t e d  (in the sense of relational 
databases) to the representations of the 
denotations of the noun and of the determiner. 
Therefore, it can be recognized as a complex 
denotation. 

The design of the database is dependent 
on the fact that we need an explicit means to 
recognize the type of each denotation 
represented in it. Within the formalism of 
relational databases, defining types of 
denotations amounts to defining a relation for 
each such type. 

A relation is formally defined as an n- 
tuple of formal attributes. By f o r m a l  
a t t r i b u t e  is meant a way to identify the 
attribute (a position in the relation or a name) 
and the definition of the set of its possible 
values. The extension of a relation is the set 
of all well-formed n-tuples of attribute values 
for the corresponding formal attributes. (An 
ill-formed n-tuple has at least one non-possible 
value for a formal attribute.) 

Relations each represent a type. Each 
of them has (at least) one attribute whose 
domain is the set of denotations of the 

corresponding type. For example, the relation 
which corresponds to the type of noun phrases 
has an attribute whose values are noun phrase 
denotations. Each denotation is an a tomic  
value of the attribute of the relation. 
Furthermore, each such value actually belongs 
to an n-tuple belonging to the extension of the 
relation. (This is due to the fact that the set- 
theoretical model of the world, i.e. the 
database, contains all the denotations built on 
an ontology constituted by a set of entities, IJ, 
and the truth values.) 

The structure of the database captures 
the (degree of) complexity of a denotation by 
connecting the relation which represents the 
semantic type assigned to the corresponding 
syntactic category with the relations which 
represent the semantic types assigned to the 
constituents of a complex expression of the 
same syntactic category. For example, a 
proper name has a complex denotation because 
it belongs to the syntactic category of noun 
phrases. Therefore, its denotation belongs to 
the extension of the relation representing the 
type of noun phrases. Since there are noun 
phrases constituted by a determiner and a 
common noun, the relation representing the 
type of noun phrases actually connects to the 
relations representing respectively the types of 
determiners and of common nouns. Hence, the 
structure of the relation associated to the type of 
noun phrases and, in particular, of proper 
names, shows that they are complex 
expressions. 

To the extent that we need to define the 
connections which show the respective 
complexity of each type of denotation, a 
relation is actually defined for each semantic 
type. For example, we shall define relations 
like Tn, Tdet, Tnp, Tvp standing, respectively, 
for the type of denotations of common nouns, 
determiners, noun phrases, verb phrases. 

Still, there is a problem in defining 
connections. The problem is that, in formal 
semantics, expressions of different syntactic 
categories can have the same semantic type. 
For example, common nouns and intransitive 
verbs share the same type. Now, the 
complexity of the denotation of a noun phrase 
is encoded in the fact that it is connected to the 
denotation of a common noun. On the 
contrary, the denotation of a verb phrase must 
be connected to the denotation of a simple verb 
and to the denotations of complements. In 
general, we not only need to define relations as 
counterparts of semantic types, but, where 
expressions of different syntactid categories 
collapse into the same type, their types must 
nevertheless correspond to different relations. 
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With respect to the example, the relation Tv 
(the type; of simple verbs) cannot be the same 
as the relation Tn, because Tvp connects to Tv 
while Tnp connects to Tn. 

Notice that it is true of all the syntactic 
categories that they have one and only one 
relation as semantic counterpart. Sometimes 
however, the relation could be defined as the 
sum of several relations. For example the 
complex relation Tvp has several mutually 
exclusive sets of connections. It connects to 
the relation Tv and the relation Tnp, or to the 
relation Tv and the relation Tpp or the relation 
Tvp and the relation Tpp, etc. 

Let me illustrate these principles by 
showing the definition of two relations. The 
Trip relation is defined as a triple of formal 
attributes: 

Tnp= <[np],Tn,Tdet> 
where it is understood that the possible values 
of the first attribute are noun phrase 
denotations, the possible values of the second 
attribute are pointers to noun denotations, and 
the possible values of the third attribute are 
pointers to determiner denotations. Notice that 
proper names have dummy values for Tn and 
Tdet. 

Relations which encode simple types, 
i.e. types of lexical categories, cannot be 
encoded the same way as relations 
corresponding to complex expressions: they 
have no connections since they do not have any 
constituents. Instead, they are generally 
defined by pairs of attributes, the first one 
instantiates to a denotation of the type in 
question and the second one to the symbolic 
expression which is the item. For example, 
Tn, which represents the type of simple 
common nouns, will be defined by the pair: 

Tn = <[n],"n"> 
where it is understood that the possible values 
of the first attribute are common noun 
denotations while the possible values of the 
second attribute are the nouns themselves 
considered as symbolic expressions. As 
expected, the role of the second attribute in a 
relation such as Tn is to anchor the denotation 
of simple expressions into the lexicon. 

In summary, the design of the database 
meets the two following principles: 
- i) relations that correspond to types of lexical 
categories have two attributes: the first one has 
as domain the set of denotations of all the 
lexical items which belong to the lexical 
category in question, and the second one has as 
domain those items themselves regarded as 
symbolic expressions. 

- ii) relations that correspond to types of non° 
lexical categories have one attribute whose 
domain is the set consisting of all the 
denotat ions of all these expressions. 
Moreover, they have other attributes, one for 
each of their constituents. These attributes 
have as domain the extension of the relations 
corresponding to the types of these 
constituents. 

These principles ensure that denotations 
are submit ted  to the pr inciple  of 
c o m p o s i t i o n a l i t y  which states that the 
denotation of a complex expression is a 
compound of the denotat ions  of' its 
constituents. (It is important to understand that 
we want to be able to check that denotations are 
submitted to composit ionali ty.)  How 
compositionality constrains the definitions of 
the relations will now be illustrated on Tn and 
Tnp. 

In the extension of a relation like Tn, all 
the pairs of values have the property that the 
first value is the denotation of the second one. 
We augment the schema of the database with 
the constraint on Tn that: [["n"]] = [n]. In the 
extension of relations like Tnp, all the n-tuples 
are required to satisfy the constraint that the 
value of the first attribute, i.e. the np 
denotation, is the denotation of an np whose 
constituents, i.e. the determiner and the noun, 
have as respective denotations the ones 
connected to by the remaining attributes of the 
n-tuple. For Tnp, we augment the schema of 
the database with the constraint that: 
C(Tn,Tdet) = [rip], where C operates the 
composition of its arguments. 

3. THEORETICAL PRINCIPLES MET BY 
THE DATABASE. 

Let us summarize how principles of 
formal semantics are taken into account in 
designing the database: 
i) we restrict ourselves to extensional 
semantics. Therefore, every denotation must 
be represented and must correspond to one 
object of the (unique) world. 
ii) the word is the smallest unit that receives a 
denotation, the sentence is the biggest one. 
iii) all the expressions that are well-formed 
syntactic consUtuents have a denotation. 
iv) all the denotations are encoded in the 
extension of a specific relation, that is, all the 
denotations have a type defined i1~ ~:i~e database. 
v) denotations of complex expressions are 
connected to the denotations of the constituents 
that are contained in those expressions. 

3 379 



The theory of databases states that 
relational databases are logically equivalent to a 
first order language whose predicates are the 
relations. In this first order language, the 
extensions of the predicates are the sets of 
tuples of argument values on which the 
"relat ion-predicates" evaluate to true. 
Therefore, the fact that the database is 
interpreted as a first order language ensures that 
all the denotations have a type and their type is 
explicitly attached to them. 

4. ENTAILMENT. 

What kinds of things are the denotations 
is indispensable to know in order to define 
what it means for an expression to entail 
another expression (of the same category). 

Let us distinguish between attributes 
that point to other relations, attributes that are 
instantiated to symbolic expressions and 
attributes that take as values the denotations of 
the type represented by the relation they are 
attributes of. Only the last kind of attributes are 
concerned with entaihnenc 

According to formal semantics, attribute 
values that represent denotations are sets. (Do 
not forget that they are atomic from the point of 
view of the structure of the database.) Some 
(primitive) entities are implicitly defined. 
Then, all the denotations (except for the 
denotations of sentences) are sets of entities, or 
sets of sets of entities, or functions whose 
domain and range are such kinds of sets. Let 
me use the meta-variable X which ranges over 
the sets of entities, while Y ranges over sets of 
sets of entities. The set structure of the world 
is the following: 
Tn X 
Trip (rip's in subject position) y 
Tnpconnection(complement np's) X -> X 
Tv X 
Tvp X 
Tdet X->  Y 
Tprep Y -> (X -> X) 
Tpp X -> X 
Tadv X -> X 

Wha t  is en t a i lmen t ,  in the 
implementation? First, for expressions which 
denote functions, the fact that a certain 
expression entails another one is given by the 
fact that the respective expressions in which 
each of them appears (with other constituents) 
entail each other. For example, we will not say 
that "most" entails "some", but rather that 
"most Xs" entails "some Xs". This being so, 
functions can be represented by symbols, either 

names (the lexical items) or connections. 
Now, representing functions by symbols rather 
than by the sets of pairs argument-result 
implies that entailment cannot  be defined on 
the relations representing functional types. 

For relations not corresponding to 
functional types, i.e. Tn, Tnp, Tv and Tvp, 
entailment is defined by means of set inclusion. 
Let tl and t2 be two tuples of Tnp, tl entails t2 
if the attribute value which is the np denotation 
in tl is a subset of the attribute value which is 
the np denotation in t2. Take another example. 
Assume that Tvp has four attributes: the first 
one is the denotation of the vp, e.g. eat an 
apple, the third one is the denotation of the verb 
without the complement whose denotation is 
the value of the fourth attribute, i.e. eat : 

Tvp([eat an apple],W,[eat] ,  [an apple]) 
Now, anything that has necessarily the 
property of eating an apple has the property of 
eating. So, for Tvp=(y 1,W,y2,Z), we set the 

general constraint that y2 ~ yl .  We will say 

that y2 D yl  is an axiom that belongs to the 
definition of the Tvp relation. Crucially, 
objects that would not meet the axioms 
characterizing the extension of the relation to 
which they belong cannot correspond to objects 
of the world. In the example, if eating an apple 
does not entail eating, then the two expressions 
fail to have acceptable denotations. 

5. THE SKETCH OF A SEMANTIC 
I N T E R P R E T O R  AND S E N T E N C E  
DENOTATIONS. 

The denotations of sentences are truth 
values. I have not insisted on the way sentence 
denotations are encoded but one might expect 
that there is a relation Ts = <[s],Tnp,Tvp>. 
Although this agrees with the principles of the 
database, it is not the solution that I have 
adopted. 

Assume that there is no Ts relation. We 
must nevertheless ensure that the interpretor 
will provide sentences with the truth values 
they denote. Furthermore, we would like to 
show how these truth values depend on the 
denotations of the constituents of the sentence 
because we want to represent  how 
compositionality is respected. 

The basic operation for interpreting an 
expression, that is for assigning it its 
denotation, is the selection of values in the 
database. How is the interpretor meant to 
select denotations actually encoded in the 
database? 
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The interpretor proceeds in parallel with 
a syntactic parser which yields (at least) the 
constituent structure of the expressions. 
Imagine that the information that the parser 
sends Io the interpretor is the context-free rule 
used by the parser in parsing such expression 
to be interpreted. For example, suppose that 
the rule: 

np -> det,  n 
parses the given expression. And suppose that 
the interpretor knows that the category np is the 
category of an expression of the type of noun 
phrases, hence of the relation Tnp. Likewise, 
n corresponds to Tn and det to Tdet. 

Knowing that the above context-free 
rule applies, the interpretor can perform the 
selection of a tuple in the Tnp relation. The 
schema of the selection to perform will be 

written: Z Tn,Tdet (Tnp). The specific selection 
to perform in order to interpret a specific noun 
phrase requires the interpretor to instantiate the 
parameters of the selection, Tn and Tdet, to the 
denotations of the noun and the determiner, 
respectively. The output of the instantiated 
selection: 

Z [men],[mostl(Tnp) 
is: 

T n p ( [ m o s t  m e n ] , [ m e n ] , [ m o s t ] )  ^ 
[most] ( [men])  = [most men] 

Notice that I use a logical notation to note the 
output of the interpretor. This output is, itself, 
a r e l a t i ona l  d a t a b a s e  containing one 
relation, the extension of which is constituted 
by one tuple which satisfies the second 
conjunct of the formula. In the example, the 
tuples consists of attribute values such that 
[most]( [men])  = [most men] 
is true. 

The way the interpretor selects the 
denotation of a noun phrase can be easily 
generalized to the other types of expressions. I 
immediately turn to the case of sentences. 

Let us assume that there is only one rule 
to parse sentences, namely : 

S -> np,vp 
Since there is no Ts type, there is no selection. 
Nevertheless, the pseudo-schema of selection 
corresponding to this rule is defined by 

I; Tvp.Vnp 0 
(to use a notation coherent with the one used 
for the: other selections). The denotation that 
such a "selection" will yield is a formula 
interpretable as the truth value denoted by the 
sentence. I shall represent this formula by ~ .  

The way in which (~ is assumed to 
yield either truth value conforms to the account 
of standard formal semantics: it consists in 

checking whether the property, i.e. the set, 
denoted by the verb phrase is a member of the 
set of properties denoted by the noun phrase. 

The outputs of Z Tvp,Tnp 0. are more 
than just ~ .  Indeed, in order to show that 
compositionality is respected, we must show 
explici t ly what are the denotations of 
constituents which combine to yield the truth 
value. The latter denotations involve 
denotations of their own constituents. 
Therefore, the denotation of a sentence will be 
logically represented by an asser t ion.  This 
assertion is the logical conjunction of the 
denotations of all the constituents of the 
sentence. For example, the sentence: Most  
men eat an apple denotes: 

Tdet("most") A Tn(yl,"men") A 

Tnp(y2,yl,"most") A [most](yl)  = (y2) A 

Tv(y3,"eat",l) ^ 

TdetCa") ^ Tn(y4,"apple") ^ 

Tnp(y5,y4,"a")  A [a](y4)  = (y5) a 

Tvp(y6,"eat",y3,y5) A y3 _D y6 A 

y6 ~; y2 

where ~ = y6 e y2. 

It is easy to predict that sentences 
having the same constituent structure as Most  
men eat an apple will each be interpreted by an 
assertion of the same form as this one. 

The computational counterpart of such 
an assertion is a database contained in the 
original database. (We call such a database a 
view in the computational terminology.) In 
summary, all the sentences that share the same 
syntactic structure denote assertions equivalent 
to databases having the same structure (but 
different extensions, of course). Thus, the 
denotation of a sentence has iconic properties 
and its structure is of the same kind as that of 
the representation of the world. We shall say 
that it is a possible fact, where "fact" means 
that the denotation of the sentence is a part of 
the world, while "possible" means that its 
structure conforms to that of the world. 

Since ~ has been defined independently 
from any relation of the database, false 
sentences can have the same kind of denotation 
as do true sentences° By this, I want to 
emphasize the fact that, when ~ does not yield 
the value true, it does not follow that the 
assertion is ill-formed. On the contrary, the 
fact that a false sentence fails to denote the 
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actual state of the world does not prevent it 
from denoting a possible fact as long as its 
denotation is a well-fomled assertion. 

6. CONCLUSION. 

I have presented the main principles of 
my implementation of formal semantics. If I 
had more space to do so, I could now develop 
two crucial issues: I could show how the 
process of interpreting an expression parallels 
its syntactic parsing and prove that the structure 
of the database allows to cover the same range 
of phenomena as formal semantics does. 

Other important issues that must be 
dealed with include further phenomena related 
to coordination, negation, passive and other 
constructions in which quantifiers appear to 
have a non trivial behavior. I am currently 
pursuing these developments on the basis of 
empirical linguistic data. My hypothesis is that 
they can be accounted for without changing the 
design of the system presented so far, and even 
without augmenting it much. 

Let me finally stress that it is useful to 
-know that the database is logically equivalent to 
a first-order language. Indeed, this fact gives a 
synthetic view of the behavior of the system 
and allows us to envisage further developments 
in the direction of non-monotonic logic. 
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