
A N I M P L E M E N T A T I O N O F F O R M A L S E M A N T I C S I N T H E
F O R M A L I S M O F R E L A T I O N A L D A T A B A S E S .

Claire VANDERHOEFT
D~partement de Linguistique G~n(rale, CP175

UniversitY, Libre de Bruxelles
50, avenue Roosevelt

1050 Bruxelles
Belgique

E-mail: XOOIO6@BBRBFUOI.bitnet

A B S T R A C T

This paper presents an implementation
of formal semantics as described in Keenan
and Fa!tz's Boolean Semantics for Natural
Langt~age [4]. The main characteristic of this
implementation is that it avoids the intermediate
step of translating NL into a formal language,
such as an extended version of predicate
calculus. My choice of not using any
intermediate language, which Montague already
suggested in Universal Grammar [5], makes
my implementation free of the problems related
to the syntax of such a language like binding
the variables and resolving scope ambiguities.
On the other hand, not translating NL into an
intermediate language requires e v e r y
d e n o t a t i o n (i.e. semantic value) to be
explicitly and accurately represented in a
database.

0. INTRODUCTION.

In extens ional semantics , each
denotation corresponds to an object of the
world° The world is the set of all the
denotations. In the implementation that I shall
present in this paper, the world will be
represented by means of a database, more
precisely a relational database.

The structure of the database is
designed in such a way that it makes explicit
the s e m a n t i c type of each denotation.
Although I will not always stick to the standard
version of formal semantics when assigning
semantic types to syntactic categories, I aim at
accounting for the same range of phenomena
that formal semantics deals with.

The paper will be divided into five
parts. First, I shall trace back research results
to which my contribution can be related. Next,

I describe the database. Then, I explain how
the principles used to design the database meet
the requirements of formal semantics. The
fourth part is concerned with entailment while
the last part mainly shows how one proceeds to
interpret sentences.

1. BACKGROUND.

The topics which this work is
concerned with have mainly been studied from
three points of view.

A first class of studies covers the
problems encountered in trying to translate NL
into a formal language. On the one hand, there
is theoretical research aiming at such a
translation, like PATR [7]. On the other hand,
various kinds of inaccuracies of NL
translations into logical form in view of
accessing databases have been discussed, see
[6] for example.

A second field of research that need be
mentioned is concerned with NL interfaces.
Famous systems are described in [9] and [1].
There are important differences between these
systems and my work since I am not aiming at
accessing a knowledge base at all. The
database that I use encodes NL meanings and it
does so according to linguistic constraints.
Traditionally, the database rather encodes a
certain knowledge independent of the language
used to talk about it. Problems specific to NL
interfaces can be found in [3] and [81.

From another point of view, there are
works which are concerned with the question
of the organisation of the knowledge base
constituted by NL meanings, see [2]. The
difference between my approach and ones like
[2], is that I am sticking to the theory of formal
semantics. Consequently, I do not (yet)
address questions about the structure of the

i 377

lexicon nor do I treat pragmatic phenomena like
common sense inferences.

2. THE DATABASE.

The structure of the database is
dependent on the semantic properties of the
denotations. More specifically, the structure of
the database is dependent on the fact that
denotations are classified into different types
and specifically recognized as the denotations
of such and such syntactic categories.

Each denotation of each constituent is a
value in the database. Some of the denotations
result from the composit ion of other
denotations. Which denotations can be
composed with which other ones are properties
of their type. These properties are not encoded
as such. The overall structure of the database
shows how the semantic types combine with
each other. Consequent ly , complex
denota t ions (denotat ions of complex
expressions) are represented by a t o m i c
values, but the fact that they are complex is
deduced from the structure of the database.
Consider the case of noun phrase denotations.
The denotation of a determiner combines with
the denotation of a common noun. This
combination yields the denotation of a noun
phrase, i.e., an atomic value in the database.
The representation of this denotation is
c o n n e c t e d (in the sense of relational
databases) to the representations of the
denotations of the noun and of the determiner.
Therefore, it can be recognized as a complex
denotation.

The design of the database is dependent
on the fact that we need an explicit means to
recognize the type of each denotation
represented in it. Within the formalism of
relational databases, defining types of
denotations amounts to defining a relation for
each such type.

A relation is formally defined as an n-
tuple of formal attributes. By f o r m a l
a t t r i b u t e is meant a way to identify the
attribute (a position in the relation or a name)
and the definition of the set of its possible
values. The extension of a relation is the set
of all well-formed n-tuples of attribute values
for the corresponding formal attributes. (An
ill-formed n-tuple has at least one non-possible
value for a formal attribute.)

Relations each represent a type. Each
of them has (at least) one attribute whose
domain is the set of denotations of the

corresponding type. For example, the relation
which corresponds to the type of noun phrases
has an attribute whose values are noun phrase
denotations. Each denotation is an a tomic
value of the attribute of the relation.
Furthermore, each such value actually belongs
to an n-tuple belonging to the extension of the
relation. (This is due to the fact that the set-
theoretical model of the world, i.e. the
database, contains all the denotations built on
an ontology constituted by a set of entities, IJ,
and the truth values.)

The structure of the database captures
the (degree of) complexity of a denotation by
connecting the relation which represents the
semantic type assigned to the corresponding
syntactic category with the relations which
represent the semantic types assigned to the
constituents of a complex expression of the
same syntactic category. For example, a
proper name has a complex denotation because
it belongs to the syntactic category of noun
phrases. Therefore, its denotation belongs to
the extension of the relation representing the
type of noun phrases. Since there are noun
phrases constituted by a determiner and a
common noun, the relation representing the
type of noun phrases actually connects to the
relations representing respectively the types of
determiners and of common nouns. Hence, the
structure of the relation associated to the type of
noun phrases and, in particular, of proper
names, shows that they are complex
expressions.

To the extent that we need to define the
connections which show the respective
complexity of each type of denotation, a
relation is actually defined for each semantic
type. For example, we shall define relations
like Tn, Tdet, Tnp, Tvp standing, respectively,
for the type of denotations of common nouns,
determiners, noun phrases, verb phrases.

Still, there is a problem in defining
connections. The problem is that, in formal
semantics, expressions of different syntactic
categories can have the same semantic type.
For example, common nouns and intransitive
verbs share the same type. Now, the
complexity of the denotation of a noun phrase
is encoded in the fact that it is connected to the
denotation of a common noun. On the
contrary, the denotation of a verb phrase must
be connected to the denotation of a simple verb
and to the denotations of complements. In
general, we not only need to define relations as
counterparts of semantic types, but, where
expressions of different syntactid categories
collapse into the same type, their types must
nevertheless correspond to different relations.

3 7~ 2

With respect to the example, the relation Tv
(the type; of simple verbs) cannot be the same
as the relation Tn, because Tvp connects to Tv
while Tnp connects to Tn.

Notice that it is true of all the syntactic
categories that they have one and only one
relation as semantic counterpart. Sometimes
however, the relation could be defined as the
sum of several relations. For example the
complex relation Tvp has several mutually
exclusive sets of connections. It connects to
the relation Tv and the relation Tnp, or to the
relation Tv and the relation Tpp or the relation
Tvp and the relation Tpp, etc.

Let me illustrate these principles by
showing the definition of two relations. The
Trip relation is defined as a triple of formal
attributes:

Tnp= <[np],Tn,Tdet>
where it is understood that the possible values
of the first attribute are noun phrase
denotations, the possible values of the second
attribute are pointers to noun denotations, and
the possible values of the third attribute are
pointers to determiner denotations. Notice that
proper names have dummy values for Tn and
Tdet.

Relations which encode simple types,
i.e. types of lexical categories, cannot be
encoded the same way as relations
corresponding to complex expressions: they
have no connections since they do not have any
constituents. Instead, they are generally
defined by pairs of attributes, the first one
instantiates to a denotation of the type in
question and the second one to the symbolic
expression which is the item. For example,
Tn, which represents the type of simple
common nouns, will be defined by the pair:

Tn = <[n],"n">
where it is understood that the possible values
of the first attribute are common noun
denotations while the possible values of the
second attribute are the nouns themselves
considered as symbolic expressions. As
expected, the role of the second attribute in a
relation such as Tn is to anchor the denotation
of simple expressions into the lexicon.

In summary, the design of the database
meets the two following principles:
- i) relations that correspond to types of lexical
categories have two attributes: the first one has
as domain the set of denotations of all the
lexical items which belong to the lexical
category in question, and the second one has as
domain those items themselves regarded as
symbolic expressions.

- ii) relations that correspond to types of non°
lexical categories have one attribute whose
domain is the set consisting of all the
denotat ions of all these expressions.
Moreover, they have other attributes, one for
each of their constituents. These attributes
have as domain the extension of the relations
corresponding to the types of these
constituents.

These principles ensure that denotations
are submit ted to the pr inciple of
c o m p o s i t i o n a l i t y which states that the
denotation of a complex expression is a
compound of the denotat ions of' its
constituents. (It is important to understand that
we want to be able to check that denotations are
submitted to composit ionali ty.) How
compositionality constrains the definitions of
the relations will now be illustrated on Tn and
Tnp.

In the extension of a relation like Tn, all
the pairs of values have the property that the
first value is the denotation of the second one.
We augment the schema of the database with
the constraint on Tn that: [["n"]] = [n]. In the
extension of relations like Tnp, all the n-tuples
are required to satisfy the constraint that the
value of the first attribute, i.e. the np
denotation, is the denotation of an np whose
constituents, i.e. the determiner and the noun,
have as respective denotations the ones
connected to by the remaining attributes of the
n-tuple. For Tnp, we augment the schema of
the database with the constraint that:
C(Tn,Tdet) = [rip], where C operates the
composition of its arguments.

3. THEORETICAL PRINCIPLES MET BY
THE DATABASE.

Let us summarize how principles of
formal semantics are taken into account in
designing the database:
i) we restrict ourselves to extensional
semantics. Therefore, every denotation must
be represented and must correspond to one
object of the (unique) world.
ii) the word is the smallest unit that receives a
denotation, the sentence is the biggest one.
iii) all the expressions that are well-formed
syntactic consUtuents have a denotation.
iv) all the denotations are encoded in the
extension of a specific relation, that is, all the
denotations have a type defined i1~ ~:i~e database.
v) denotations of complex expressions are
connected to the denotations of the constituents
that are contained in those expressions.

3 379

The theory of databases states that
relational databases are logically equivalent to a
first order language whose predicates are the
relations. In this first order language, the
extensions of the predicates are the sets of
tuples of argument values on which the
"relat ion-predicates" evaluate to true.
Therefore, the fact that the database is
interpreted as a first order language ensures that
all the denotations have a type and their type is
explicitly attached to them.

4. ENTAILMENT.

What kinds of things are the denotations
is indispensable to know in order to define
what it means for an expression to entail
another expression (of the same category).

Let us distinguish between attributes
that point to other relations, attributes that are
instantiated to symbolic expressions and
attributes that take as values the denotations of
the type represented by the relation they are
attributes of. Only the last kind of attributes are
concerned with entaihnenc

According to formal semantics, attribute
values that represent denotations are sets. (Do
not forget that they are atomic from the point of
view of the structure of the database.) Some
(primitive) entities are implicitly defined.
Then, all the denotations (except for the
denotations of sentences) are sets of entities, or
sets of sets of entities, or functions whose
domain and range are such kinds of sets. Let
me use the meta-variable X which ranges over
the sets of entities, while Y ranges over sets of
sets of entities. The set structure of the world
is the following:
Tn X
Trip (rip's in subject position) y
Tnpconnection(complement np's) X -> X
Tv X
Tvp X
Tdet X-> Y
Tprep Y -> (X -> X)
Tpp X -> X
Tadv X -> X

Wha t is en t a i lmen t , in the
implementation? First, for expressions which
denote functions, the fact that a certain
expression entails another one is given by the
fact that the respective expressions in which
each of them appears (with other constituents)
entail each other. For example, we will not say
that "most" entails "some", but rather that
"most Xs" entails "some Xs". This being so,
functions can be represented by symbols, either

names (the lexical items) or connections.
Now, representing functions by symbols rather
than by the sets of pairs argument-result
implies that entailment cannot be defined on
the relations representing functional types.

For relations not corresponding to
functional types, i.e. Tn, Tnp, Tv and Tvp,
entailment is defined by means of set inclusion.
Let tl and t2 be two tuples of Tnp, tl entails t2
if the attribute value which is the np denotation
in tl is a subset of the attribute value which is
the np denotation in t2. Take another example.
Assume that Tvp has four attributes: the first
one is the denotation of the vp, e.g. eat an
apple, the third one is the denotation of the verb
without the complement whose denotation is
the value of the fourth attribute, i.e. eat :

Tvp([eat an apple],W,[eat] , [an apple])
Now, anything that has necessarily the
property of eating an apple has the property of
eating. So, for Tvp=(y 1,W,y2,Z), we set the

general constraint that y2 ~ yl . We will say

that y2 D yl is an axiom that belongs to the
definition of the Tvp relation. Crucially,
objects that would not meet the axioms
characterizing the extension of the relation to
which they belong cannot correspond to objects
of the world. In the example, if eating an apple
does not entail eating, then the two expressions
fail to have acceptable denotations.

5. THE SKETCH OF A SEMANTIC
I N T E R P R E T O R AND S E N T E N C E
DENOTATIONS.

The denotations of sentences are truth
values. I have not insisted on the way sentence
denotations are encoded but one might expect
that there is a relation Ts = <[s],Tnp,Tvp>.
Although this agrees with the principles of the
database, it is not the solution that I have
adopted.

Assume that there is no Ts relation. We
must nevertheless ensure that the interpretor
will provide sentences with the truth values
they denote. Furthermore, we would like to
show how these truth values depend on the
denotations of the constituents of the sentence
because we want to represent how
compositionality is respected.

The basic operation for interpreting an
expression, that is for assigning it its
denotation, is the selection of values in the
database. How is the interpretor meant to
select denotations actually encoded in the
database?

38o 4

The interpretor proceeds in parallel with
a syntactic parser which yields (at least) the
constituent structure of the expressions.
Imagine that the information that the parser
sends Io the interpretor is the context-free rule
used by the parser in parsing such expression
to be interpreted. For example, suppose that
the rule:

np -> det, n
parses the given expression. And suppose that
the interpretor knows that the category np is the
category of an expression of the type of noun
phrases, hence of the relation Tnp. Likewise,
n corresponds to Tn and det to Tdet.

Knowing that the above context-free
rule applies, the interpretor can perform the
selection of a tuple in the Tnp relation. The
schema of the selection to perform will be

written: Z Tn,Tdet (Tnp). The specific selection
to perform in order to interpret a specific noun
phrase requires the interpretor to instantiate the
parameters of the selection, Tn and Tdet, to the
denotations of the noun and the determiner,
respectively. The output of the instantiated
selection:

Z [men],[mostl(Tnp)
is:

T n p ([m o s t m e n] , [m e n] , [m o s t]) ^
[most] ([men]) = [most men]

Notice that I use a logical notation to note the
output of the interpretor. This output is, itself,
a r e l a t i ona l d a t a b a s e containing one
relation, the extension of which is constituted
by one tuple which satisfies the second
conjunct of the formula. In the example, the
tuples consists of attribute values such that
[most]([men]) = [most men]
is true.

The way the interpretor selects the
denotation of a noun phrase can be easily
generalized to the other types of expressions. I
immediately turn to the case of sentences.

Let us assume that there is only one rule
to parse sentences, namely :

S -> np,vp
Since there is no Ts type, there is no selection.
Nevertheless, the pseudo-schema of selection
corresponding to this rule is defined by

I; Tvp.Vnp 0
(to use a notation coherent with the one used
for the: other selections). The denotation that
such a "selection" will yield is a formula
interpretable as the truth value denoted by the
sentence. I shall represent this formula by ~ .

The way in which (~ is assumed to
yield either truth value conforms to the account
of standard formal semantics: it consists in

checking whether the property, i.e. the set,
denoted by the verb phrase is a member of the
set of properties denoted by the noun phrase.

The outputs of Z Tvp,Tnp 0. are more
than just ~ . Indeed, in order to show that
compositionality is respected, we must show
explici t ly what are the denotations of
constituents which combine to yield the truth
value. The latter denotations involve
denotations of their own constituents.
Therefore, the denotation of a sentence will be
logically represented by an asser t ion. This
assertion is the logical conjunction of the
denotations of all the constituents of the
sentence. For example, the sentence: Most
men eat an apple denotes:

Tdet("most") A Tn(yl,"men") A

Tnp(y2,yl,"most") A [most](yl) = (y2) A

Tv(y3,"eat",l) ^

TdetCa") ^ Tn(y4,"apple") ^

Tnp(y5,y4,"a") A [a](y4) = (y5) a

Tvp(y6,"eat",y3,y5) A y3 _D y6 A

y6 ~; y2

where ~ = y6 e y2.

It is easy to predict that sentences
having the same constituent structure as Most
men eat an apple will each be interpreted by an
assertion of the same form as this one.

The computational counterpart of such
an assertion is a database contained in the
original database. (We call such a database a
view in the computational terminology.) In
summary, all the sentences that share the same
syntactic structure denote assertions equivalent
to databases having the same structure (but
different extensions, of course). Thus, the
denotation of a sentence has iconic properties
and its structure is of the same kind as that of
the representation of the world. We shall say
that it is a possible fact, where "fact" means
that the denotation of the sentence is a part of
the world, while "possible" means that its
structure conforms to that of the world.

Since ~ has been defined independently
from any relation of the database, false
sentences can have the same kind of denotation
as do true sentences° By this, I want to
emphasize the fact that, when ~ does not yield
the value true, it does not follow that the
assertion is ill-formed. On the contrary, the
fact that a false sentence fails to denote the

5 381

actual state of the world does not prevent it
from denoting a possible fact as long as its
denotation is a well-fomled assertion.

6. CONCLUSION.

I have presented the main principles of
my implementation of formal semantics. If I
had more space to do so, I could now develop
two crucial issues: I could show how the
process of interpreting an expression parallels
its syntactic parsing and prove that the structure
of the database allows to cover the same range
of phenomena as formal semantics does.

Other important issues that must be
dealed with include further phenomena related
to coordination, negation, passive and other
constructions in which quantifiers appear to
have a non trivial behavior. I am currently
pursuing these developments on the basis of
empirical linguistic data. My hypothesis is that
they can be accounted for without changing the
design of the system presented so far, and even
without augmenting it much.

Let me finally stress that it is useful to
-know that the database is logically equivalent to
a first-order language. Indeed, this fact gives a
synthetic view of the behavior of the system
and allows us to envisage further developments
in the direction of non-monotonic logic.

3- Jones, K.S. (1984). Natural Language and
Databases, Again. Proceedings of Coling84.
182-183.
4- Keenan, E. and Leonard M. Faltz. (1984).
Boolean Semantics for Natural Language. D.
Reidel Piblishing Company, Vol 23.
5- Montague, Richard. (1974b). Universal
Grammar. In R. Thomason (ed.) Formal
Philosophy. Selected Papers of Richard
Montague. Yale University Press. New Haven
and London. 222-246.
6- Moore, R.C. (1982). Natural-Language
Access to Databases-- Theoretical/Technical
Issues. Proceedings of the 20th Annual
Meeting of the Association for Computational
Linguistics. 44-45.
7- Rosenschein, S.J.and Schieber, S.M.
(1982). Translating English into Logical
Form. Proceedings of t he 20th Annual
Meeting of the Association for Computational
Linguistics. 1-8.
8- Templeton, M., & Burger, J. (1983)
Problems in Natural-Language Interface to
DBMS with examples from EUFID.
Proceedings of the Conference on Applied
Natural Language Processing. 3-16.
9- Woods, W.A. (1978). Semantics and
Quantification In Natural Language Question
Answering. In M Yovits (ed) Advances in
Computers. Vol. 17, New York. Academic
Press. 2-64.

ACKNOWLEDGMENTS.

The author is thankful to Prof. M.
Dominicy for providing the opportunity to
conduct this research. This text presents
research results which were supported by the
Belgian National incentive-program for
Fundamental research in artificial intelligence
initiated by the Belgian State, Prime Minister's
Office, Science Policy Programming The
scientific responsability is assumed by the
author.

REFERENCES.

1- Grosz, B.J., Appelt, D.E., Martin, P.A.
and Pereira, F.C.N. (1987). TEAM: An
experiment in the Design of Transportable
Natural-Language Interfaces. Artificial
Intelligence. Vol. 32, No2, May 1987. 173-
244.
2- Hobbs, J.R. (1984). Building a Large
Knowledge Base for a Natural Language
System. Proceedings of Coling84. 283-286.

382 6

