
Dependency Analyzer:
A Knowledge-Based Approach to Structural Disambiguation

Katash i Nagao
IBM Research, Tokyo Research L a b o r a t o r y

5--19 Sanbancho, C h i y o d a - k u , Tokyo 102, J a p a n
E-mail : nagao@jpn t scvm.b i tne t

Abstract

To resolve structural ambiguities in syntactic analysis of
natural language, which are caused by prepositional phrase
attachment, relative clause attachment, and so on, we de-
veloped an experimental system called tile Dependency An-
al!lzcr. The system uses instances of dependency structures
extracted froth a terminology dictionary as a knowledge
ba.~e. Structural (attachment) ambiguity is represented
by showing that a word has several words as c;tndidate
modiliees. Tim system resolves such ambiguity as follows.
First, it searches the knowledge base for modification re-
lationships (dependencies) between the word and each of
its possible modifiees, then assigns an order of preference
to these relationships, and finally seieets the most prefer-
able deper.dency. The knowledge base can be constructed
semi-automatically, since the source of knowledge exists in
the form of texts, and these sentences can be analyzed by
the parser and transformed into dependency structures by
t h e system. We are realizing knowledge bootstrapping by
adding the outputs of the system to its knowledge base.

1 Introduct ion

The bottleneck of sentence analysis, structural ambi-
guity, occurs when a sentence has several alternatives
for modifier-modifiee relationships (dependencies) between
words or phrases. This kind of ambiguity cannot be re-
solved merely by applying grammatical knowledge: there
is a need for semantic processing. Resolution of struc-
tural ambiguities seems to be a problem of selecting the
most preferable dependency from several candidates by us-
ing large-scale knowledge on dependencies among words.
There are two problems in realizing practical semantic pro-
cessing: one is that knowledge must be large-scale, and
must be constructed automatically or semi-automatically;
the other is that the mechanism for utilizing knowledge,
inference, must be efficient or tractable. We developed a
system called the Dependency Analyzer that resolves these
problems.

The Dependency Analyzer is a systenl fl)r structural dis-
ambignation. One of its characteristics is that it selects
the most preferabledependency by using a knowledge base
containing terminological knowledge in the form of depen-
dency trees. The knowledge base can be constructed semi-
automatically, as described in Section 2. The inputs of
this system are parse trees, which are outputs of the PEG
parser, a broad coverage English parser [5]. The system
translates the phrase structures into dependency strut-

282

tures that explicitly represent modifier-modifiee relation-
ships between words. The main processes of the system
are executed if attachment ambiguities are included in the
phrase structures. In the dependency structures, attach-
ment ambiguities are represented by showing that some
words have several candidate modiliees. From these de-
pe.ndency structures, several candidate dependencies are
extracted. The system decides which of these should be
adopted by using background knowledge an,l context. The
decision is made via tim mechanisms of path search and
distance calculation. A precise description of path search is
given in Section 3. An explanation of distance calculation
is given in Section 4. Another problem for disambigua-
tion, namely interaction (or constraints) between attach-
ment ambiguities, is discussed in Section 5.

2 K n o w l e d g e Base

The knowledge must be large=scale, since natural language
semantics should have a broad coverage of lexical items.
Since dependency structures are built by analyzing sen-
tences and by tra:nsforming phr~e structures in a straight-
forward way, if knowledge is assumed to consist of depen-
dency structures, a knowledge base is easily constructed
by using already-existing on-line dictionaries. This idea
of using on-line dictionary definitions as a knowledge base
was originally proposed by Karen Jensen and Jean-Louis
Binot [6]. Jun-ichi Nakamura and Makoto Nagao [101 eval-
uated tile automatic extraction of semantic relationships
between words from the on-line dictionary. We emphasize
that a data structure for representing knowledge should be
as simple as possible, because it must be easy to construct
and efficient.

We selected the tree structure as a means of representing
knowledge, because it is a very simple and manageable
data structure, and because tree structures are suitable
for describing dependency structures.

Tile tree structure is defined as follows. A Tree consists
of a Node and reeursions (or null) of Tree, and a Node con-
sists of repetitions of a paired attribute name and u.ttribute
value.

For example, Figure 1 shows a tree (dependency) strnc-
ture for the clause "the operating system stores the files in
the disk." In this tree, "WORD," "POS (part of speech),"
and "CASE" are att,qbute names, and "store," "VERB,"
and "AGENT" are attribute values.

In our system, the knowledge can be extracted fi:om dic-
tionaries of terminology, and is of two types: (1) depen-
dency structures and (2) synonym and taxonym relation-

(((WORD . "store") (POS . VERB))

(((WORD . "operating system")

(CASE . AGENT) (POS . NOUN)))

(((WORD . "file") (CASE , PATIENT)

(P O S . NOUN)))

(((WORD . "disk") (CASE . LOCATION)

(P O S . NOUN))))

Table h Tree Index Table

d synonym and taxonyra trees
to(O)-qo(o) t~2(0)
tsO) t~(o) tea(o)
t~(0) t ~(0) t n (1)
t s 0) t25(1) t82(o)

dependency trees

tlol(O 1) tlso(1 O)
t u (1) t r io (t)
tlOl(1 1) t350(0 2 3)
tas(1 O) tllo(1 1 O)

lqgure h Tree s tructure for the clause "the operat ing sys-
tem stores the files in the disk"

ships.

The process of knowledge extraction is as follows. First,
dictionary s tatements are rewritten manually as simple
:~entences. Next, sentences are parsed into phrase strue-
tm'es by tile PEG parser. Then. phrase structures are
transformed into dependency structm'es by the Depen-
de'nc:q Str~zctu're Builder, which is a component of tile De-
pendency Analyzer. Finally, sernantie case markers are
manually added to the modification links in dependency
.structures. Synonym and taxollym relationships are ex-
tracted from sentences of the form "X is a synonynt for
Y" and "X is a Y" respectively. These sentences are au-
tomatically transformed into tree structures each of which
has two nodes R)r tile words "X" and "Y" and a link from
"X" to "Y" with the label "isa." In the case of "X is a
synonym for Y," since "Y" is also a synonym for "X," "Y'"
is connected with "X" at the same time by a link with the
label "isa.'" \Ve developed an interactive tree management
tool, the Tree Editor. which makes it easy for users to deal
with trees.

Another problem of natural language processiug is the
knowledge acquisition bottleneck. Some ideas on how to
a.cquire knowledge fi'om a!ready-existing dictionaries auto-
matically or semi-automatically haw~ be.en proposed [10,41.
But it is still difficult to develop a knowledge base hilly au-
tomatically because of ambiguities in the natural language
analysis of dictionary definitions. A more practical way, to
overcome the t)otthmeck is so-called kno'wledge bootstrap-
tn'a~.]. By knowledge bootstrapping, the Dependency Ana-
lyzer extends its knowledge automatically by using a eor'e
knowledge base that includes mammllv edited dependency
.~;truetures. Since the De.pendency Analyzer uses depen-
dency structures as knowledge and outputs a dependency
structure with no ambiguity (case ambiguity is also re-
solved by the system), tile output can be added to the
knowledge base. Of course we still need to evaluate the
automatical ly constructed knowledge base. But the relia-
bility (performance) of the knowledge base is rising grad-
ua[ly, so it is expected that human interw,ntion wilI be
greatly reduced in the near future.

"t P a t h S e a r c h A n E t I i c i e n t A l g o -
r i t h m

Path search is a process for finding relationships between
the words in a candidate dependency by using a knowledge
base. Since relationships between words in these candi-
dates do not always exist in the knowledge base, relation-

/ \
(3 (o) (? O (2)

t . 5 (2 1 0)

Figm'e 2: Tree and Node Location

ships between synonyms and taxouyms of these words eau
also /)e targets. Path search is done ill the following steps:

1. Synonyms and t~u,:onyms of words in the candidate
dependencies are found by using the knowledge base.
In the knowledge base, synonym and taxonym rela-
tionships are also defined in the form of trees. All the
synonyms and taxonyms can be collected by transiting
relationships.

2. Dependencies between elements of each synonym and
taxonym set (including the original words) are also
found by using the knowledge base.

We developed an efficient algorithm for path search, us-
ing the table of indices shown in Table 1. In this table, t~,
represents the pointer of the tree in which the word on the
same line appears, and the numbers in parentheses repre-
sent the node location of the word in the tree. Relation-
ships between the numbers amt the node are shown in Fig-
ure 2. The left side of tile table shows trees in which a syn-
onym or a taxonym of the word on the same line appears as
its parent node. For example, in the tree to, the word a is
on the node of location (0), and by traversing to up by one
node fl'om location (0) we can find that the word b is on the
node of location (), so b is a synonym or a taxonym of a, as
shown in Figure 3. Thus, in order to find a synonym or a
taxonym of a word, we just traverse up tile tree on the left
side of the table by one node. We assume that synonym
and taxonym relationships are transitive, that is. that a
synonym/ taxonym of one of the synonyms/ taxonyms of a
word is also a synonym/ taxonym of the word itself. We can

to ~ b

l synonym/tmxonym (isa)
a

Figure 3: Synonym/Taxonym Tree

283

tl. tO 0 / 0 ~

/ b

d

"keep" .~,..

"VM/SP information" /

"virtual disk"

Figure 6: Ambiguous Dependency Structure

Figure 4: Dependency Tree

~110 ~ O~

to ~ b

q.,, - . d

A
C

Figure 5: Path

collect all its synonyms/ taxonyms by i teration of that pro-
cess. The next stage of path search is to find whether there
are dependencies between words within each set of syn-
onyms/ taxonyms. This process searches trees that involve
both words and checks whether there is a path from one
word to the other. In the dependency trees, the words' lo-
cations show whether there is a dependency between them.

For example, we can see that tile word b is a dominator
of the word d frmn the locations of these words in the
emnmou tree tH0 (shown in Figure 4), which is included in
both the set of dependency trees that include b. {ttl , ttl0},
and that of dependency trees that include d, {tas, t110}. In
the tree structures, if the node a is an ancestor of the node
b, then there is a unique path front b to a. Thus, finding
dependency between words is equivalent to checking their
node locations in the dependency trees. A path between
words wl and w2 is found by the following processes:

1. The synonym/ taxonym sets of these words, S~,~ and
S ~ , are collected.

"keep"

I on

"virtual disk"

Figure 7: Candidate Dependency

4 D i s t a n c e C a l c u l a t i o n - A H e u r i s t i c

P r o c e s s f o r S e l e c t i o n o f t h e M o s t

Preferable Dependency

Several conditions are added to path.s, and the ch)seness
of dependevcy in a path is computed according to these
conditions. The degree of closeness of dependenc.y is called
the dependency distance. This is calculated by using the
number of dependencies inclnded in a path and the values
of the conditions. Three conditions are used to calculate
the dependency distartce:

I. Case consistency

For example, in the sentence " V M / S P kceps the infor-
mation on the virtual disk," there is a prepositional
phrase a t tachment ambiguity, as shown in Figure 6. If
the path shown in Figure 8 is found together with the
candidate dependency shown in Figure 7, then tile se-
mantic case of the path's dependency between "store"
and "disk" must be consistent with the grammatical
case of the sentence's dependency between "keep" and
"vir tual disk." lIere, the case consistency between
the sentence and the path holds, since the grammat-
ical case "on" call have the role of the semantic case
"location." If this consistency holds, then the value of
case consistency is 1; otherwise, it is 0.

2. Co-occurrence consistency

This is the consistency between the other modifiers of
the modifiee of tile candidate dependency, called the
co-occurrent modifiers, and those of a path.

2. The common trees t z . . . that involve both elenmnts,
ei 6 Swl and ej ~ Sw2, of each set are found.

3. Tile node locations of ei and ej in t ~ . . . are checked.

For example, a path between the words a and c is shown
in Figure 5.

"store"

"keep disk"

l i s a
"virtual disk"

Figure 8: Path

284

3.

"keep"

"VM/SP" '~virtual disk"

Figure 9: Co-Occurrence

"operating system" "file disk"

Figure 10: Dependency Tree

In tile example sentence, for instance, there is a co-
occurrent modifier " V M / S P " of the candidate depen-
dency between "keep" and "virtual disk," as shown in
Figure 9. In this case, " V M / S P " has the grammatical
case subject. On the other hand, if the path is given by
the dependency tree shown in Figure 10, then there is
also a eo-oceurrent modilicr "operat ing systenf ' that
has the semantic ease of agent. In addition, there is a
tmxonym relationship between " V M / S P " and "oper-
ating system" in the knowledge base, as shown in Fig-
ure].I. In this case, the co-occurrence consistency be-
tween " V M / S P " and "operat ing systenf ' holds, since
there is a relationship between the words and both
case,; are consistent (the grammatical case subject call
have a semantic case agent), as shown in Figure 12.
The vahm of co-occurrence consistency is tile num-
ber of co-oceurrent modifiers that are consistent be-
tween the path and the sentence. Here, the value is
1, since only one co-oecurrent modifier " V M / S P " is
consistent.

Context consistency

Context consistency holds if dependencies in a path
already exist in previous sentences. For example, if
the sentence "the da ta is stored in the storage device"
comes before tile above sentence, then the dependency
structure shown in Figure 13 is in the context base in
which the dependency structures of previous sentences
are stored. Then the other path (shown in Figure 14),
which corresponds to the dependency between "store"
and "disk" in the "path," is found by using the con-
text base. Thus the dependency between "store" and
"disk" is defined by the context. The vahn', of context
consistmmy is the number of dependencies in the path
that are. defined by tile context. In this case, the wflue

"operating system"

l isa

"VM/SP"

Figure l h Taxonym Relationship

agent location
"operating system" ~ "store" .i "disk"

subject on
"VM/SP" " * "keep" ~ "virtual disk"

Figure 12: Diagram of Co-Occurrence Consistency

"store"

St-->
"data storage device"

Figure 13: Dependency Tree in tile Context Base

is 1, since there is one dependency in the pa& and it
is de.fined in the context.

The dependency distance is computed from the following
formula:

Distance = [Depl + ~c'o,,, x (n - 1)
(t~, + 1) x (l@oo~ + 1) '

where]Dep] represents the number of dependencies in-
cluded in the palh, i"c is the value of case consistency,
1 ~'oo~. is that of co-occurrence cm~sistency, and l'C,o,,t is that
of context consistency.
This formula assumes that case and co-occurrence consis-
tency affect the distance of the whole path, but that context
consistency affects the distance of each dependency in the
path.
n is a real number in tile range 0 < n < 1; it is a heuristic
parameter that represents the degree of unimportance of
context consistency.

The dependency distance between "keep" and "virtual
disk" that is calculated by using the path in the example is
0.125, because the number of depenttencies is 1, the value
of case consistency is 1, that of co-occurrence consistency
is 1, and that of context consistency is 1 (n is defined
0.5).

The ambiguity of an at tachment is resolved by selecting
the candidate dependency that is separated by the shortest
distance.

"store" -..<
storage device

"disk"

Figure 14: Path of Context

285

Table 2: Constraint Tables

Constraint Table T5.6 Constraint Table 7~5,7 Cons~r~dnt Table T6.r

tl'~ 0 I l I 0 1 ~
6/7 3 6
1 0 1

3k~__~l_L2 o V3 f l i 212o0 [5 ~ 1

0 Ic~0 I m I1 2 ~ m

,o):% _'7_'7
,0 / ,Q /~ "-- , / 7

~\0~,~) I
~O/{3,s}

Figure 15: Ambigu,ms Dependency Slructure

5 P l a n n i n g , C o n s t r a i n t P r o p a g a t i o n ,

a n d P r o c e s s o f D i s a m b i g u a t i o n

When there are several attachment ambiguities in one
sentence, the relationships of each pair of ambiguities are
represented by a constraint network [91. The idea that am-
Mguous syntactic structures can be represented by a data
structure of constraint network was originally developed
by Hiroshi Maruyama [7 t. A constraint network consists
of constraint tables.

For example, the constraint tables shown in Table 2
are constructed from tile ambiguous dependency structure
shown in Figure 15. In this dependency structure, words
5, 6, and 7 have attachment ambiguities, so their possi-
ble modifiees are {1,3}, {1,5}, and {3,6} respectively. The
constraint table is a two-dimensional matrix that repre-
sents the. possibility of simultaneous modification of two
ambiguous attachments. The rows and columns of the ma-
trix show the candidate modifiees of each modifier, and an
element in the matrix means the possibility (1 or 0) that
both dependencies can exist simultaneously. For example,
constraint table T5.7 indicates that if word 5 modifies word
1, then word 7 cannot modify word 3 because of the rule
of no-crossing.

By using the constraint tables, the system decides which
ambiguity should be resolved first. This process is called
planning. In the above example, words 5, 6, and 7 have two
candidate modifiees each. But from the constraint tables,
we can see that if word 7 modifies word 3, then words 5 and
6 cannot modify word 1. Thus, in this case, the ambiguity
concerning the modification of word 7 should be resolved
first. The algorithm for plauning consists of the following
steps:

1. On each row of the constraint table Ti.j, sum up the
element values (Ai in Table 2), and subtract the sum
from the size of the row (Bi). Then sum up the results
on all rows (Ci). The result is the value of merit of

2 8 6

the ambiguity of word i.

2. Do the same in each cohmm. The result is the value
of merit of the ambiguity of word j.

3. In all the constraint tables, sum up all the values of
merit of each ambiguity, and divide each of these val-
ues by the number of their candidate modifiees.

4. The expected values of meTit of all ambiguities are
given by the above process. Select the ambiguity that
has the highest expected value.

When an ambiguity is resolved, the system updates the
constraint tables by tile filtering algorithm called con-
straint propagation. We apply Mohr and Henderson's AC-
4 algorithm [8] for constraint propagation. We reduce the
computational cost of disambiguation by using planning
and constraint propagation.

Structural disambiguation of a sentence is done as fol-
lows. The PEG parser tmrses a sentence and constructs its
phrase structure. The Dependency Stracturc Builder trans-
httes the phrase structure int.o the dependency strm:ture,
and constructs the constraint tables when the phrase struc-
ture contains sew~ral structural ambiguities. The Plan-
ner, which is the component for planning, gives the Dis-
ambiguator the information on an ambiguous dependency
and its candidate modifiees. The Disambiguator decides
which modifiee is the most preferable by doing path search
and distance calculation. After resolving one ambiguous
attachment, it calls the constraint propagation routine to
filter the other ambiguities' candidates. After filtering, the
Transformer transforms the dependency structure into one
that has correc t dependencies for all resolved attachments.
These processes are iterated until no ambiguity remains.

6 R e l a t e d W o r k

There are several approaches to structural disambigua-
tion, including resolution of prepositional phrase attach-
ment. Wilks et al. [12] discussed some strategies for dis-
ambiguation based on preference semantics. Our frame-
work is closely related to their ideas. While their strate-
gies need hand-coded semantic formulas called preplates
to decide preferences, our system can construct depen-
dency knowledge semi-automatically. Dahlgren and Mc-
Dowell [2] proposed another preference strategy for prepo-
sitional phrase disambiguation. It is based on ontological
knowledge, which is manually constructed. Whereas this
framework (and also that of Wilks et al.) was aimed at dis-
ambiguating single prepositional phrases in sentences, our
approach can handle the attachments of multiple preposi-
tional phrases in sentences, ttirst [3] developed a mech-
anism for structural disambiguation, called the Semantic
Enquiry Desk, which is based on Chraniak's marker pass-
ing paradigm [1]. Our path Search is partially equivalent
to marker passing. While marker passing involves a high
computational cost and finds ninny meaningless relations,
our path search is restricted and finds only paths that in-
elude synonym/taxonym relationships and dependencies.
Our system can reduce the computational cost by using a
limited knowledge search. Jensen and Binot [6] developed
a heuristic method of prepositional phrase disambiguation

usinp, on-line dictionary definitions. Our approach is sire--
liar t,o theirs in the sense that both use dictiouaries as
knowledge sources. The differences are in tile ways in
which dictionary definitions are used. While their method
sear{:hes for knowledge by phrasal pattern matching and
calculates certainty factors by complex procedures, ours
uses knowledge it: a simt)le and efficient way, searching
tree:: and traversing nodes, and calculates t)referenees by
afe, w simplified processes. Wernlter [11] t)rop{}sed a e:}n-
neeliol:ist approach to 8lrllctllra.[disan:biguation of noun
phrases. He integrated syntaclic and semantic conslraints
on lhe relaxation network. ~el:laI: t ic {2OllS'{l'ailltS ol: p r e p o -

s i t i ona l reh:tionshil)s betweetl words are learned by a back-
l}ro]}agation algorithm. Learned semantics is often very
t:seful for natural language processing, when sexnantic re-
htti,mshit)s cannot be represented explicitly. \\2: represm:t
semantic relationships between words by explicit relation-
ship chains, al:d therefore do not need learning by back-
propagation. We integrate sem.mti{: preferences and syn-
tactic eonstrailllS t}y using e(mstraint t}ropagathm. }n:t it
is a sequential {:o::ue{'tion and does not allow their iilterac-.
ti{m. \\k! are thii:king of desigIfinp a frau:ework that deals
wilh both syntactic and semanli{: constraints simultam'-
ousty.

7 Concluding Remarks

We deveh)ped the DepeT~dcrtcy Anal:/zer to re:olve struc-
tural ambiguity by sen:antic processing. It aims t<~ over-
come two serious problems in realizing pr:'a'tical semantic
pr,~,cessing: : :en::@u': :nm:ie conslru{tion of knowledge
and efficient use nf that knowledge. The key ideas, path.
.sea~'ch and distance calcuiatiora, ~~e.re shown to be feasible.

\Ve now have a knowledge base constructed by using
defi:,.itions giver~ in the "IBM Dictionary of Computing/ '
which inch:des about 20.009 instance.s of dependency :true-
turc'.s, h: addilion, we evaluated the system by disan:-
biguat.ing the prepositional phrase attachment of about
2,0()0 sentence.':. The results were as follows: (1) :he num-
ber of arzflJiguou:-; prepositio::al phrases wa> 4.290, (2) the
numbe, of correctly (lisanfi}iguat.ed a'~ta{:hm{'n:s was 3,569,
and (3) the success ratio of disambiguatio:: was 83.2%.

Further enhancement plans arc listed be.low:

,, ~,¥~'. are exploring the formalization of dependency dis-
tar, ce with reference to graph theory. I)epe.ndeney dis-
tMlee is aSs l ln led to be a sco re lbr the (:OIlSistel~cy of a

dependency with tim background knowledge and con-
text. The background knowledge and context are rep-
resented as trees (special ca.~es of graphs), and c(msis-
tency might be defined by a degree of matching be-
tween trees.

,L. We are planning to enhance tile system for other prob-
lems such as adverb attachment and scope of eonj'unc-
tion.s. To resolve general struetmal ambiguity prob-
lems, we must design a general ambiguity-packed syn-
tactic strncture, since the system can deal wilh locally
packed ambiguities.

Acknowledgements

i would like to thank members of the IBM Tokyo Re-
search Laboratory, Karen Jensen of the IBM Thomas J.
Watson Research Ceqter, and tile reviewers for their vain-
able comments on a draft of this paper, Hiroshi Nomiyama
for his help in implementing tile system, Mizuho Tanaka,
~%hko Kobayashi, Mitsuyo Sadohara, and Xbmoko Uehida
for their kind support it: constructing the knowledge base
and evaluating the system, and Michael McDonakl for his
helpful adviee on the wordi[:g of this paper.

R e f e r e n c e s

[1] Charniak, E., "A Neat Theory of Marker Pressing,"
Procec.dirzgs of AAAI-86, 584-588, 1986.

[2] Dahlgren. K. and McDowe!l, J., "Using Commonsense
Km~wledge to Disambiguate Prepositional Phr~u~e Xiod-
ifiers," Proceedin.q.s of A.4A[-a< 589-593, !986.

[3] tlirst, G., Scmanlic hlterpre.t,Ltion and Zhe Rc.s,)hLtio.n
of A'mbiguity, Cambridge University Press, 1!357.

[.1] Jacob:, P. and Zernik. U., "Acquiring Lexical K'aowl-
edge from Text: A Case Study," Proceedings (;f A A A L
88, 739-7-1.1, 1988.

[5] Jensen, K., HeMorn, G.E., Richardson, S.D., and Haas,
N., "PLNLP, PEG, and CRYI'IQUE: Th,'ee Contribn-
tions to Computing in the Humanities." IBM Research
Report, EC 11841. 1986.

[6] Jensen, K. and Binot J-L., "Disambiguating Prep(>
sitional Phrase Attachments by Using On-Line Dictio-
nary Definitions," Coraputational Ling'u£stics~ 13:251-
260, 1987.

[7] Maruyama, H., "Structural Disambiguation with Con-
strain~, Propagation," Proceedings o/ ~l~e 28th Annual
Meeting of the A CL, 1990.

[8] Mohr, E. and Henderson, T.. "Are and Path Con-
siste.ney IIevisited." Artificial Intelligence, 28:225-233.
1986.

[9] Montanari, U., "Networks of Constraints: Fundamen-
tal Properties and Applications to Picture Processing,"
Inf~imation Sciences, 7:95-132, 1974.

[10] Nakamura, J. and Nagao, M., "Extraction of Seman-
tic information from an Ordinary English Dictionary
and its Evaluation." Proceedings of COLING-88. 459-
46,1, 1!)88.

[ll] Wermter, S., "Integration of Semantic and Syntac-
tic Constraints for Structural Noun Phrase t)isambigua-
tion," P'roceedirLgs of IJCA[-89, 1-186-1491, 1989.

[i[2] Wilks, Y., Huang, X., and Fass, D., "Syntax, Preflu-
ence and Right Attachment," Proceedings of I.ICAL85,
779 78.1,]!)85.

287

