
P A N E L

P~Lrallel P~ocessing in Computational Linguis tics

Helmut Schnelle
Ruhr-Universit~t Bochum

Sprachwissenschaftliches Institut
Postfach 102148, D-4630 Bochum 1

Panelists:

Garry COTTRELL
University of California, Dept. of

Computer Science, San Diego,
Mail Code C-O14, La Jolla, CA 92093

U.S.A.

Paradip DEY
The University of Alabama at Birmingham
Dept. of Computer & Information Science

Birmingham, AL 35294
U.S.A.

Peter A. REICH
Dept. of Linguistics, University of
Toronto, Toronto, Ontario MBS IAI

CANADA

Lokendra SHASTRI
University of Pennsylvania

School of Engineering and Applied
Science, 200 South 33rd Street
Philadelphia, PA 19104-6389

U.S.A.

Joachim DIEDERICH
International Computer Science Institute
1947 Center Street, Berkeley, CA 94704

U.S.A.

Akinori YONEZAWA
Tokyo Institute of Technology
Dept. of Information Science

Ookayama, Meguru-ku, Tokyo 152
JAPAN

Introduction

The topic to be discussed by the panel
is new and at present very much under debate.
Paralleli~im is developed in a large variety
of approaches. The panel will make an attempt
to clarify the underlying concepts, the dif-
ferences <~f approach, the perspectives and
general tt!ndencies, and the difficulties to
be expected. Some differences of approach
will be iAlustrated with examples from the
work of the panelists.

The ~ommon context of our approaches is
the following:Standard computational
linguistics tries to solve its problems by
programmiltg a yon Neumann computer. The
execution of the programs is inherently
sequenti~l. This is implied by the fact that
there is only one central processing unit
(CPU) executing the program. In contrast to
this, pal~allel processing defines the solu-
tion of p~oblems in terms of sets of computa-
tional units which operate concurrently and
interactively, unless sequentialized for si-
mulation ~urposes.

Various approaches to parallelism differ
in the computational power they assume for
the concurrently active units. The differen-
ces may be outlined as follows:

Massively parallel systems are usually
systems whose units are, intuitively
speaking, purely reactive units, i.e. mathe-
matically defined by a specific function re-
lating the state and output of a unit to its
inputs. They could also be called connectio-
nist systems in the wide sense; connectionist
systems in the narrow sense are those whose
function~ are based on weighted sums of input
activities.
In contrast to these systems, the units may
be themselves complicated systems which com-
pute their states and outputs depending on

the messages and control signals which they
receive. The units cooperate in solving the
problem. In typical cases, each unit may be a
central processor unit or even a complete
computer. Systems with cooperative processors
(computing "agents") are usually considered
to be non-massively parallel.
These distinctions suggest different meta-
phors used in informal talk about the sy-
stems: the neural net metaphor on the one
hand and the society of minds (demons) meta~
phor on the other.

Given this context the panelists have
answered the following questions:
I. How is the dynamics of your system

defined?
- I.(A) I. What is the computational power

of a single unit in your approach
- I.(A) 2. How is the interaction or the

interdependency between concurrent
units defined?

- I.(B} How do you implement your system?
- I (C) Which methods are used for ~o-

uramminu?
II. What is the representational status of

your system?
- II.(A) Which parts of grammar or dictionary

do you model with your system?
- II.(B) Which parts of grammar or dictionary

do you model by a concurrent unit of
your system?

- II.(C} Is there a general method such that
a grammar determines uniquely a
parallel implementation or is this
imp3ementation an art?

The answers given seem to be particularly
appropriate as an introduction to the topic
and will thus be presented in the subsequent
passages.{The answers of the different
panelists and the organizer are prefixed by
their initials)

595

I. How is the dynamics of your system
defined?

I.{A) i. What is the computational power
of a single unit in your approach (a Boolean
function, a specific numerical function, a
mapping of vectors, a mapping of strings or
files, a mapping of trees or configurations
of other types, or the power of a CPU or a
complete computer)?
G.C.:There are no formal limitations on the
power of a unit in my system; the power is a
matter of taste, and is expected to be re-
stricted to simple functions. For example a
numerical approximation to Boolean functions
of the inputs, where the inputs are further
broken down into functions of input sites. My
implemented system has several hundred units.
P.D.:Each unit has the power of a VAX-
11/750.The units share their memories. I'm
thus currently working in a shared memory
multiprocessing environment. Specifically, my
algorithms run on a 30 processor {=unit} Se-
quent Balance 21000 machine. This is large
grain parallelism. I prefer the environment
of large grained shared memory multiproces-
sots, because they are the most popular gene-
ral purpose parallel computers available
today. Earlier, I developed some algorithms
for a medium grained tree machine, namely the
DADO parallel machine.
J.D.: Each unit implements a simple numerical
function, sometimes a simple combination of
several functions computing input from seve-
ral sites of incoming activation.
P.A.R.: Each unit has the power of a finite
state device {under 32 different sta-
tes).There are 16 different types of units
which differ in their finite state defini-
tion. They implement (sometimes only
slightly} different logical functions over
their input activations. The more important
ones are: concatenation (logical followed
by), conjunction (logical and), disjunction
(exclusive or}, precedence disjunction {if
both possibilities are realizable, one takes
precedence over the other), random disjunc-
tion (pick a choice at random},interjunction
{inclusive or}, intercatenation {inclusive
or; if both: concatenation), zero (network
dead ends producing nothing), bottom edge
(network outputs something), top edge, feed-
back barrier. Units operate independently of
one another and asynchronously.
H.S.: There are two descriptive levels: large
grained and small grained. On the former each
unit is a {special purpose) Turing machine
(not a universal one}. On the small grained
level, each unit implements either a simple
Boolean function or a simple numerical {addi-
tive, fixed length} function. The large grai-
ned net is a partitioning of the small grai-
ned net; its Turing machines are similar to
von Neumann's growing cellular automata.
L.S.: Each unit implements a numerical func-

tion -the most complicated ones have the
form: If input aa > 0, then take the product
of inputs bt,bs b~, else take the product
of inputs cl;cz,...cm.
A.Y.: Each unit is a single CPU with memory.
My approach involves thousands of units.

I.(A} 2. How is the interaction or the
interdependency between concurrent units de-
fined? Is it strictly connectionist and thus

also defined by a function? Or is it coopera-
tive and thus defined by the messages sent,
encoded and decoded by the units? Is there a
distinction between data messages and con-
trol-signal messages or is it a data-fiow sy-
stem?
G.C.: Units pass values in a strictly connec-
tionist way.
P.D.:The system is a shared memory system.
All units have in principle access to the
same information. Actual interaction is defi-
ned by shared variables. That is, processes
communicate with each other through shared
variables.
J.D.: The system is strictly connectionist,
i.e. there are no symbolic messages. Each
unit computes the weighted sum of inputs.
P.A.R.:Each unit is connected to at most
three other units in the network. The connec-
tions are active or not. According to their
function, three different signals may be di-
stinguished: production signal and positive
feedback, negative feedback, and anticipa-
tory.
H.S.: On the small grained level the system
is connectionlst, but not strictly, since not
only weighted sums of inputs are allowed but
also other simple functions.
L.S.: The system is strictly connectionist.
A.Y.: The interaction between units involves
message passing. Messages carry either con-
trol information or data or both.

I.{B} How do you implement your system?
By simulation on a yon Neumann computer or by
programming on a universal parallel machine
(like the connection machine} or by designing
hardware (e.g. a special-purpose information
processing network}? If the first, do you
plan to implement it eventually by a parallel
system?
G.C.: The system is simulated on a VAX.
P.D.:The system is being implemented on a 30-
processor Sequent Balance 21000 machine. It
is currently being implemented in parallel-C
running under Unix. When a parallel LISP be-
comes available, it will be implemented in
parallel LISP.
J.D.: We use the Rochester Connsctionist Si-
mulator on a SUN-3 with Graphics Interface.
Implementations on a Sequent (Parallel Unix
Machine} are planned.
P.A,R.:Simulation on a personal computer
using standard programming language.
H.S.: The connectionist net is defined on a
spread-sheet such as LOTUS 1-2-3. Some cells
of the spread-sheet are identified with the
units of the net to be programmed. In each of
these cells a formula for a function is ente-
red; it determines the reactivity of this
cell to the states of those neighbouring
cells whose addresses are arguments of the
function. Thus, the addresses of the formulas
on the spread-sheet implement the connectivi-
ties between the formulas. We run the
spreadsheet in the computation-mode: itera-
tive,columnwise, which defines the sequential
simulation. By definition the different cells
of the spread-sheet could operate concur-
rently in each iterative step; their opera-
tion is sequentialized (and thus adapted to
the simulation on PC} only through columnwise
computation.
L.S.:By simulation on a yon Neumann computer.
A.Y.:By simulation of a yon Neumann computer,
and also parallel computers

596

I (C) Which methods are used for pro-
~ ? Parallelizing of existing non-par-
allel programs or independent programming?
Methods of hardware design?
GoC.: A network is constructed from a high-
level specification such as a grammar. This
is given to a network construction routine
that specifies the model based on the gram-
mar.
P.D.:The computational model is MIMD (multi-
ple inst,'uction multiple data stream). Paral-
lel programs are developed primarily by data
partitio,~ing, although function partitioning
is also itsed.
J.D.: Independent programu~ing. Networks are
constructed by writing a C program and use of
library function of the simulator.
P.A.R.: The system is programmed by construc-
ting the gra~maar in network form. There is an
algorithl4 for representing the network in
terms of algebraic formulas. Nodes are defi-
ned by a series of state transition rules.
The gran~aar is tested by inserting initial
input sionals and running the simulation.
H.So: There is a compiler which produces au-
tomatically for any given CF-grammar a corre-
sponding network. The processes on the net-
work cor~:espond to the processes defined by
an Earley chart parser but, in contrast to
the latter, all processes are executed con-
currently whenever this is possible. In par-
ticular, all parsing paths are followed up in
parallel. Hardware design of networks is
planned~
L.S.: A "compiler" is provided that transla-
tes a high level specification of a concep-
tual structure (semantic network} into a
connectionist network. It is proved, that the
network ~enerated by the compiler solves an
interseting lass of inheritance and reco ngn!~
tiol, problems extremely fast - in time pro-
portional to the depth of the conceptual
hierarchy.
A.Y.:We designed an object-oriented concur-
rent language called ABCL/I and program par-
sers in this language.

I.(D} Is your system fixed or does it
learn ? If the latter, which learning functi-
ons or learning algorithms are used?
J.D.:Lea:cning is the most important topic.
Natural language descriptions of structured
objects are learned. These objects are also
present in a restricted visual environment.
The interaction between language and vision
in learning is investigated. Various forms of
weight changes are used: Hebbian learning
with slow weight change, fast weight change
for temporary binding, modified Hebbian lear-
ning with restriction on the increase of
weights.
P.A.E.: A substantial number of learning ru-
les have been developed but not yet implemen-
ted on computer. Learning involves "inge-
stion" and "digestion". Ingestion consists of
co-occurrence rules. If two signals pre-
viously unconnected co-occur, they are
connected together. Digestion makes use of
equivalence relationships to simplify the
network. Equivalence relationships include:
associativity, commutativity, distributivity,
and a number of other relationships which
have no name in standard algebra. Ingestion
and digestion operate more or less alterna-

rely. First a piece of new information is
connected to the network, then equivalence
relations are tried in a search for simplifi-
cation.
L.S.: Structure is fixed but weights on links
can be learned using a Hebbian weight change
rule.
G.C.,P.D.,H.S.,A.Y.: Our systems do not le-
arn.

If. What is the representational status of
your system?
II. (A) Which parts of grammar or dic-

tionary do you model with your system?
G.C.:I have separate systems designed to work
together to handle lexical access, case-gram-
mar semantics, and fixed-length context free
g r a m m a r .
P . D . : L e x i c o n , g r a m m a r a n d s e m a n t i c s . T h e l e -
x i c o n has words with their categories, subca-
tegories, and lexical meaning.
J.D.:Fixed-length context-free grammar.
P.A.R.:IR theory the entire system from a re--
presentation of general cognitive information
through language specific "deep" or "functio-
nal" structure, through a syntax-morphology
structure, and then through a phonological
structure. In actuality, the syntax-morpho-
logy and phonology sections have been worked
out in greatest detail, and the functional
structure in bits and pieces.
H.S.:Syntax and phonology as a part of a le-
xical access system.
L.S.: Domain knowledge in terms of a hierar-
chy of concepts/frames - where each concept
is a collection of attribute-value (or
slot/filler) pairs. Such information structu-
res are variably referred to as frame-based
languages, semantic networks, inheritance
hierarchies, etc.
A.Y.:Syntax and some semantics.

II.(B) Which parts of grammar or dic-
tionary do you model by a concurrent unit of
your system?
G.C.: I use a localist approach: One unit
stands for a word, a meaning, a syntactic
class, a n d a binding between meanings and ro-
les, syntactic and semantic.
P.D.: Parts of syntax; lexical search is also
parallel
J.D.: Localist representation, i.e. one syn-
tactic category - one unit
P.A.R.:Each category (such as noun phrase) is
distributively represented by many units.
H.S.:(Localist; on small grained level:) Each
occurrence of a category-in-rule-context (a
dotted rule in Earley's parser definition) is
represented by a unit. (On the large grain le-
vel:) The set of possible small grain units
of each category corresponds to a Turing ma-
chine, such that one of its units represents
the current state of the "head" of the TM and
the others its "tape".
L.S.:(Localist:) A unit may "represent" a
concept, an attribute, a value, a binder bet-
ween (concept,attribute,value) triples, or
control nodes that mediate and control the
spreading of activation among these units.
A.Y.:(Localist:} Each grammatical category is
represented as a unit, actually each occur-
fence of each category in a grammar descrip-
tion is a unit.

597

'%i:.(C) Is there a general method such
that a ~ra~,~ar determines uniquely a parallel
implementation or is this implementation an
art?
G~.Co~Given a ~rammar, X have an algortihm to
generate the network for that grammar.
P,,D.:Parsing algorithms are developed for
Tree Adjoinino Grammars°
J o D o : Implementation is still an art.
PoA,~Ro~ N?o a certain extent it is an art, at
this point, but the comprehension-acquisition
r~les~ if ~ccessfully implemented, should
p~ovide the ~eneral method~
H~So~ ~riting grammars as high-level specifi --~
catio~s is au art. From there on there is a
general method (same answer as L.S.)
l, oZo:The networks are constructed from a
high=level specification of the conceptual
k~o~ledoe to be encoded. The mapping between
the knowledge level and the network level is
precisely specified. This mapping is perfor-
med automatically by a network compiler.
AoYo: Given a gra~muar, we have an algorithm
to make a network of units.

IIIoA short list of papers related to
your research?

GoCo:-Cottrell, Go, Small, S.: Viewing
Parsing as a Word Sense Discrimination:
A Connectionist Approach° In B.Bara,
G,Gnida (eds.), Computational Models of
Natural Language Processing, Amsterdam~
North Holland 1984

--Cottrell, Go : A Connectionist Approach
to Nord Sense Disambiguation. (Techn.
Repo 154) Rochester: The University of
Rochester, Dept of Computer Science~
Revised version to be p~blished by
Pitman in the Research Notes in
Artificial ~ntelliuence Series

PoDo~-Dey, P°, Iyengar, S.S., Byoun,J.S. :
Parallel processing of Tree Adjoining
Grammars. Dept. of Computer Science,
University of Alabama at Birmingham~
Report 1987

-Joshi~ A.K., Levy~ L.S., Takahashi, M.:
Tree Adjoining ~rammars. Journal of the
Computer and System Sciences, Vol. i0~
pp. 136 - 163, March 1975
Vijay-Shankar, K~, Joshi, A°K. : Some
Computational Properties of Tree
Adjoining Grammars.Proc.23rd Ann.
Meeting Ass°CompiLing., pp. 82-93, 1985

,}oDo:~Cottrell, G . W ° Parallelism in
Inheritance Hierachies with Exceptions°
XJCAI-85, 194-202, Los Angeles, 1985o

-Fanty, M. Context-Free Parsing in
Connectionist Networks. T R 174,
University of Rochester, Department of
Computer Science, November 1985.

-Fanty, M~ Learning in Structured
Connectionist Networks° Ph.D. Thesis~
CS Department, Univ~ of Rochester,1988.

~Feldman, J.A., Fanty, M.A., & Goddard,
No Computing with Structured Neural
Networks~ IEEE Computer 1988; in press°

-Shastri, Lo & Feldman, JoA. Semantic
Networks and Neural Nets. TR 131,
University of Rochester, Department of
Computer Science~ June 1984.

-Shastri~ L,, Evidential reasoning in
semantic networks: a formal theory and

its p a r a l l e l . i m p l e m e n t a t i o n , , P:::~]:~,,
Thesis and TR 166~ ComD~ ScJi , DG:pL, ~
Univ. of Rochester~ Se~temb~}: ~ 1985o

P oAoR.:Literature from systemic li~E~uistJ.c:~
and parallel dist~ib~ted D:~oce~tsin~,

HoS. : - S c h n e i l e ~ H~ ~ Element~; Of theo~'eticai!.
net-linguistics t Pax't 1 : Syntactica~.
and morphological nets -- ~euro-
linguistic interpretations o 'J~heox'etic.~.
Linguistic..so Berlin: D ' a l t e r ~[e Gz~u~te:~:
& Coo, 8, 1981~ ppo &7-100.

.... Schnelle, I~., Job, D~MoZ)9~].em<~nt~ u l
theoretical net-lin~l~istics ~. ~?a~'t ~

Phonological nets° ~:~h~o~:~tical
!,inuuistic~ I0,. ~.9S3~ }?pc 3~79-203o

.... Schnelle, }~o : Array ~_o~ic for ~l~ntact:{.<
production processors ~ Xn Mey~ J~ (r:-~,d~) ~.
~,an~uaue and Discourse : Test
and }~rotest (Sgall--Festseh~ift}
Amsterdam. ~ John Benjamins D~,V...
198~, ppo 477-511o

-McClelland, JoLo~ ~Iman~ JoL.~
Interactive p~'ocessien speech pe~
ce~)::io::~ The '~AC~ model, p~.. 5S--:~:~)
in: McClelland~ JoL., R~elhart, l . ~ o ~
and the PDP-oGroup~ Para.ilel D i ~ t ~ ' : ' i b ' t V t e d
Processin~ --- Exploratio~ in the l~iic~:'o-,-
structux;e of Cognition, VOlo 2~ 1986o
Aho, AoVo~ Ullman, J~noz ~z'inciples of
Compile: Design ~- Reading Mass°~ ~ d o2:4
'rile Parsing Method of Er:t@~'z A(]dison '~
Wesley, 1979o

L~S. z-Fahlman, S~. NETI,: A System foz °
Representing and Using Rea].-.~k~'Id
Knowledge, ' } :he MIT Press, Cm.~b~ide3~
MA, 1979.

-Hinton, G.Eo Implementing Sema~t~:
Networks in Parallel Hardware° In
Parallel Models of Associative Memo~yo
pp. 161- 187 in: G.~;oHinton and 3gAg
Anderson (EdSo)~o La~rence ~rlbau~,~
Associates, Hillsdale~ N~Jo~ 198~.o

~.Derthik, M~ A Conneetionist Archi ~
tecture for Representing and Reasoni~.~.i
about Structured Knowled~eo Pz-oceed ~o
ings of the ninth annual confe~'ence
of the Cognitive Science Society°
Seattle~ July, 1987o I, awre~ce
Erlbaum Associates, Hillsdale ~oJo

-Shastri,Lo: A Connectionist Ap~)roach t<~
Knowledge Representation and :l.im~ted
inference. To appeal" in Cognitive
Science: 12,3 (1988)

-Shastri, Lo: Se~antic Net~: An Ev.~.de:<~--
tial Formalization and its Connectgo
mist Realization. Los Altos~ ~o:£'~as
Kauffman~ London: Pitman P~bl.Compo

A . Y . :-Kaplan R . : A Multi-Processor Approach
to Natural Language, PrOCo National
Computer Conference, 1973, ppo 435-440.

,-Small S., Rieger C. : Parsing and Com-
prehending with Word Experts~ in Stra -~
tegies for Natural Language P~oces~in~
(~Ds. M.D. Ringle and Wo Lenher)
Lawrence Erlba~m Associates, 1988..

~Matsumoto Y. : A Parallel Parsin~ S~ste~
fo~ Natural Langua~e~ Sprin~er Lect~'~re
Notes in Computer Science, No~ 225~
1986, ppo 396-409.

-Yonezawa A, Ohsawa ~o : A New App~oach
to Par~llel Parsing for Context--Free
Grammars, Research Report o n Info:¢'~ o~

ation Sciences C-87, Dew, to of ~nf~ ScJo
Tokyo Instltnte of Technolo~y~ ~987.

