
Parsing Strategies wi th 'Lexicalized' Grammars:

Appl icat ion to Tree Adjo in ing Grammars *

Yves S C H A B E S , A n n e A B E I L L E * * a n d A r a v i n d K. J O S H I

Department of Computer and Information Science

University of Pennsylvania
Philadelphia PA 19104-6389 USA

schabes~linc.cis.upenn.edu abeille~cis.upenn.edu joshi~eis.upenn.edu

ABSTRACT

In this paper we present a general parsing strategy that
arose from the development of an Earley-type parsing al-
gorithm for TAGs (Schabes and Joshi 1988) and from re-
cent linguistic work in TAGs (Abeille 1988).

In our approach elementary structures are associated
with their lexical heads. These structures specify extended
domains of locality (as compared to a context-free gram-
mar) over which constraints can be stated. These con-
straints either hold within the elementary structure itself
or specify what other structures can be composed with a
given elementary structure.

We state the conditions under which context-free based
grammars can be 'lexicalized' without changing the lin-
guistic structures originally produced. We argue that even
if one extends the domain of locality of CFGs to trees, us-
ing only substitution does not givo the freedom to choose
the head of each structure. We show how adjunction al-
lows us to 'lexicalize' a CFG freely.

We then show how a 'lexicalized' grammar naturally
follows from the extended domain of locality of TAGs and
present some of the linguistic advantages of our approach.

A novel general parsing strategy for 'lexicalized' gram-
mars is discussed. In a first stage, the parser builds a set
structures corresponding to the input sentence and in a
second stage, the sentence is parsed with respect to this
set. The strategy is independent of the linguistic theory
adopted and of the underlying grammar formalism. How-
ever, we focus our attention on TAGs. Since the set of
trees needed to parse an input sentence is supposed to be
finite, the parser can use in principle any search strategy.
Thus, in particular, a top-down strategy can be used since
problems due to recursive structures are eliminated. The
parser is also able to use non-local information to guide
the search.

We then explain how the Earley-type parser for TAGs
can be modified to take advantage of this approach.

*This work is partially supported by ARO grant DAA29-84-9-
007, DARPA grant N0014-85-K0018, NSF grants MCS-82-191169
and DGR-84-10413. The second author is also partially supported by
J.W. Zellldja grant. The authors would llke to thank Mitch Marcus
for his helpful conunents about this work. Thanks are also due to
Ellen Hays.

**Visiting from University of Paris VII.

1 'Lexicalization' of grammar for-
mal isms

Most of the current linguistics theories tend to give lexical
accounts of several phenomena that used to be consid-
ered purely syntactic. The information put in the lexi-
con is therefore increased and complexified (e.g. lexical
rules in LFG, used also by HPSG, or Gross 1984's lexicon-
grammar). But the question of what it means to 'lexical-
ize' a grammar is seldom addressed. The possible conse-
quences of this question for parsing are not fully investi-
gated. We present how to 'lexicalize' grammars such as
CFGs in a radical way, while possibly keeping the rules in
their full generality. If one assumes that the input sentence
is finite and that it cannot be syntactically infinitely am-
biguous, the 'lexicalization' simplifies the task of a parser.

We say that a grammar formalism is 'lexicalized' if it
consists of:

• a finite set of structures to be associated with lexical
items, which usually will be heads of these structures,

• an operation or operations for composing the
structures. 1 The finite set of structures define the
domain of locality over which constraints are speci-
fied and these are local with respect to their lexical
heads.

Not every grammar formalism in a given form is in a
'lexicalized' form. For example, a CFG, in general, will
not be in a 'lexicalized' form. However, by extending its
domain of locality, it can be 'lexicalized'. We require that
the 'lexicalized' grammar produces not only the same lan-
guage as the original grammar, but also the same struc-
tures (or tree set)?

We propose to study the conditions under which such
a 'lexicalization' is possible for CFGs and TAGs. The
domain of locality of a CFG can be extended by using
a tree rewriting system that only uses substitution. We
state the conditions under which CFGs can be 'lexlcalized'
without changing the structures originally produced. We
argue that even if one extends the domain of locality of
CFGs to trees, using only substitution does not give the
freedom t o choose the head of each structure. We then

1 By 'lexicalization' we mean tlmt in each structure there is a lex-
ical item that is realized. We do not mean just adding features (such
as head) and unification equations to the rules of the formalism.

Categorlal grammars are 'lexicaUzed' according to our definition,
However, they do not correspond in a simple way to a rtde-based
system that could be used for top-down recognition.

57,~

show how adjunction enables one to freely 'lexicalize' a
CFG.

2 'Lex ica l i za t ion ' o f C F G s

The domain of locality of CFGs can be easily extended
by using a tree rewriting grammar. This tree rewriting
grammar consists of a set of trees that are not restricted to
be of depth one (as in CFGs). It uses only substitution as
a combining operation. Substitution can take place only
on non-terminal nodes of the frontier of each tree. The
language is defined to be the set of strings on the frontiers
of trees whose roots are labeled by a distinguished symbol
S. It is easy to see that the set of languages generated
by this tree rewriting grammar is exactly the same set as
context-free languages.

If no recarsive chain rules exist, it is formally possible
to 'lexicalize' a CFG with this tree rewriting grammar, a
Recursive chain rules are disallowed since they introduce
unbounded structures with no lexical items attached to
them.

Although a CFG can be 'lexicalized' by using trees, it is
not possible to choose freely the lexical item that plays the
role of the head for each structure. Consider the following
example:

S ~ N P V P

V P "-~ adv V P

V P --+ v

N P --+ n

The grammar can be qexicalized' as follows:

S

NP VP

/ \
adv VP

VP VP NP

A I I
adv VP v n

However, in this 'lexiealization' one is forced to choose
adv as the head of the structure given in the first tree. It is
not possible to choose the verb v as the head of this struc-
ture. If one tried to do so, recursion on the substitution
of the VP node would be inhibited.

2"his example shows that although it is possible to 'lexi-
calize' CFGs, substitution alone does not allow us to freely
choose the lexical heads. Substitution alone forces us to
make choices that might not be syntactically and seman-
tically justified.

Tree adjoining grammars (TAGs) are also a tree-based
system, ltowever, the major composition operation in
TAGs is ad jo in ing or ad junc t ion . I t builds a new tree
from an auxiliary tree # and a tree c~ (a is any tree, initial,
auxiliary or derived by adjunction). The resulting tree is
called a de r ived tree. Let t~ be a t ree containing a node
n labeled by X and let # be an auxiliary tree whose root
node is also labeled by X. Then the adjunction of fl to a
at node n results a tree 7 as shown in Figure 1. Adjunetion
enables to factor recursion from local dependencies.

aNote t h a t a CFG in Greibach no rma l form can be ' lexicallzed'
trivially. Bu t since G~eihach no rma l form of a given CFG might no t
generate the same tree se t a s t h e original g r ammar , i t cannot be
used as a 8.eneral m e t h o d for ' lexicaUzation' .

(a) (g)

A

Figure 1: The mechanism of adjunction

The previous CFG can be 'lexicalized' by using adjunc-
tion as follows: 4

s

NP VP NP VP

I I A
v n adv VP

The auxiliary tree rooted by V P can be inserted in the
S tree on tile V P node by adjunction. Using adjunction
one is thus able to choose the appropriate lexical item as
head. This example illustrates the fact that a CFG with
no recursive chain rules can be 'lexicalized' in TAGs, and
that if that is done the head can be freely chosen.

3 T A G s and ' l ex ica l i za t ion '

TAGs are 'naturally' lexicalized because they used an ex-
tended domain of locality. TAGs were first introduced
by Joshi, Levy and Takabashi (1975) and Joshi (1985).
For more details on the original definition of TAGs, we
refer the reader to Joshi (1985), Kroch and Joshi (1985)
or Vijay-Shanker (1987). It is known that Tree Adjoin-
ing Languages (TALs) are mildly context-sensitive. TALs
properly contain context-free languages. It is also possi-
ble to encode a context-free grammar with auxiliary trees
using adjunction only. However, although the languages
correspond, the possible encoding does not directly reflect
the original context-free grammar since this encoding uses
adjunction.

Although adjunction is more powerful than substitution
and could be used to simulate it, in recent linguistic work
in TAG (Abeill~ 1988) substitution has been used in ad-
dition to adjunction in order to obtain appropriate struc-
tural descriptions in certain cases, such as verbs taking
two sentential arguments (e.g. "John equates solving this
problem with doing the impossible"). Adding substitution
does not change the mathematical properties of TAGs.

We describe very briefly the Tree Adjoining Grammar
formalism with adjunction and substitution.

A Tree Adjo in ing G r a m m a r is a tree-based system
that consists of.three finite sets of trees: I, A and L. The
trees in I O A tJ L are called e l emen ta ry trees.

The trees in I are called init ial trees. Initial trees rep-
resent basic sententiai structures. They are usually con-
sidered as projections of the verb and they take nominal

4We chose v as lexical head of the S tree bu t we could have chosen
n ins tead (a l though it is not mot ivated) .

579

complements. Initial trees (see the left tree in Figure 2)
are rooted in S and their frontier consists of terminal sym-
bols (including the empty string) and non-terminal nodes
to be substituted for.

The trees in A are called auxi l ia ry t rees. They can
represent constituents which ar e adjuncts to basic struc-
tures (adverbial). They can also represent basic senten-
tial structures corresponding to verbs or predicates taking
sentential complements. Auxiliary trees (see right tree in
Figure 2) are characterized as follows:

• internal nodes are labeled by non-terminals;

• leaf nodes are labeled by terminals or by non-terminal
nodes to be substituted except for exactly one node
(called the foo t node) labeled by a non-terminal on
which only adjunction can apply; furthermore the la-
bel of the foot node is the same as the label of the
root node.

Initial ~ : Auxiliary ~c~:

$

; ;
substitution nodes

Figure 2: Schematic initial and auxiliaxy trees

The trees in L are called lexical t rees. They repre-
sent basic categories or constituents which serve as argu-
ments, to initial or auxiliary trees. They are reduced to a
pre-terminal node in the case of simple categories or are
expanded into tree structures in the case 0f compounds.
Structurally they are characterized the same way as initial
trees except that they are not necessary rooted by S.

As noted in Section 2, the major composition operation
in TAGs is ad junc t ion .

We define subs t i t u t i on in TAGs to take place on spec-
ified nodes on the frontiers of elementary trees. When a
node is marked to be substituted, no adjunction can take
place on that node. Furthermore , substitution is always
mandatory. In case of substitution on a node labeled by
S (sentential complement), only trees derived from initial
trees (therefore rooted by S) can be substituted. In all
other cases, any tree derived from a lexlcal tree rooted
by the same label as the given node can be substituted.
The resulting tree is obtained by replacing the node by
the derived tree. Substitution is illustrated in Figure 3.

We conventionally mark substitution nodes by a down
a r r o w (~).

We define the t r ee se t of a TAG G, T(G) to be the set
of all derived trees starting from initial trees in I . Further-
more, the s t r ing l anguage generated by a TAG, £:(G),
is defined to be the set of all terminal strings of the trees
in T(G).

Grammar rules defined by the linguistic theory are not
the same as the rules used by the parser--let us refer to
them as p a r s e r rules. A parser rule is defined to be
a structure encoding a rule of the grammar (or a set of
rules) instantiated b y t h e parser when it comes to alex-

580

/\
Figure 3: Mechanism of substitution

ical item (considered to 'yield' the rule(s)). It is thus a
unique object. It is individualized by the lexical item,
which is itself individualized by its position in the input
string. The lexical item is directly inserted into the struc-
ture corresponding to the parser rule, and such a rule can
only occur once. Lexleal i t ems are differentiated by their
realization in the input sentence and also their position in
the sentence. Therefore a given rule corresponds to ex-
actly one lexical item in the input sentence.

The structures are produced by lexical items which serve
as heads. If a structure has only one terminal, the terminal
is the head of the structure; if there are several terminals,
the choice of the head is linguistically motivated, e.g. b y
the principles of X theory. S also has to be considered as
the projection of a lexical head, usually V. Each lexical
item corresponds to as many entries as there are possible
category or argument structures.

The c a t e g o r y s t r u c t u r e is a lexical tree that is not
necessarily reduced to a single category. It corresponds to
the maximal projection of a category in the case of simple
phrases, to the entire compound, in the case of compound
categories.

Category structures can be of two different kinds:

• lexical trees reduced to a single category: ~

DET

NP PP

DET N of N$
DET

, I I
t hell) JR bunch(i)

• lexical trees that consist of a phrase:

NP NP

A I
D~ N N

I I
boy (I) Ma r y (I)

The a r g u m e n t s t r u c t u r e is not reduced to a list of
arguments as the usual subcategorization frames. It is the
syntactic structure constructed with the lexlcal value of
the predicate and with all the nodes for its arguments. The
argument structure for a predicate is its maximal struc-
ture. An argument is present in the argumefit structure
even if it is optional and its optionality is stated in the
structure.

SThe index in "parentheses on a lexical item that produces the
structure encodes the position of the lexical item in the string.

A simple case of a argument structure is a verb with
its subcategorized arguments. For example, the verb saw
(at position i) generates the following structures (among
others): 6

S 8

NPo$ VP

V NPI$ V $

I I
saw(l) eaw(i)

The left structure corresponds to:
0 Jol t . 1 aaw 2 l lary a (i = 2)

and the other to:
0 J o h n 1 s a w 2 t h a t 3 M a r y 4 l e f t 5 . (i - - - - 2)

An argument structure can correspond to either one or
a set of syntactic surface structures. The lexical head
will then produce a set of possible trees, one for NP0 s a w

NP1 and another for whol d i d NP 0 see e i ?, for exam-
ple. If one defines principles for building such sets of
trees, these principles will correspond to syntactic rules
in a derivation-based theory of grammar.

Category and argument structures thus instantiated as
the parser scans the input string are combined together in
a sentence t~tructure by adjoining or substituting.

As Gross (1984), we consider verbs, nouns, and adjec-
tives as predicates yielding sentences. They can take nomi-
nal or sentential arguments. If the predicate takes nominal
arguments it produces an initial tree. If it takes a senten-
tial argument then it produces an auxiliary tree. Putting
arguments into predicates is done by substituting nomi-
nal arguments or by adjoining a predicate structure to its
sentential argument.

Adjuncts are represented as auxiliary trees rooted by
the category of the node they are adjoined to. They are
also produced by a head. They can be reduced to a basic
category or take nominal or sentential arguments intro-
duced by substitution.

Example,~ of Adjuncts:

S vp

A A
S VP PP S S

A A A
S ADV P NP$ SC S~

l I I
probablYll) during(i) while(i)

4 Parsing 'lexicalized' grammars

If we have a 'lexicalized' grammar, the grammar of the
parser can be reduced to a set of structures whose nature
depends on the input string and whose size is proportional
to the length of the sentence (if we suppose that the num-
ber of structures associated with a lexical item is finite).
Since each structure' ('rule') corresponds to a token in the

°We put indices on categories to express syntactic roles (0 for
subject, 1 for object).

sentence, it can be used only once. Rules are now differen-
tiated by their realization in the sentence. The number of
rules that can be used for a given sentence is bounded and
is proportional to the length of the sentence. Since each
rule can be used once, recursion does not lead to the usual
non-termination problem. Once a structure has been cho~
sen for a given token, the other possible structures for the
same token do not participate in the parse. Of course, if
the sentence is ambiguous, there may be more than one
choice.

If one adopts an off-line parsing algorithm, the parsing
problem is reduced to the following two steps:

t First produce the set of structures corresponding to
each word in the sentence. This step performs the role
of an expanded morphological analysis (or tagging).

® Then put the argument structures into the predicate
structures. This step performs a modified syntactic
analysis.

In principle any parsing strategy can be applied to execute
the second step, since the number of structures produced
js finite and since each of them corresponds to a token in
the input string, the search space is finite and termination
is guaranteed. In principle, one can proceed inside out, left
to right or in any other way. Of course, standard parsing
algorithm can be used too. In particular, we can use the
top-down parsing strategy without encountering the usual
problems due to recursion. Problems in the prediction step
of the Earley parser used for unification-based formalisms
no longer exist. The use of restrictors as proposed by
Shieber (1985) is no longer necessary and the difficulties
caused by treating subcategorization as a feature is no
longer a problem.

By assuming that the number of structures associated
with a lexical item is finite, since each structure has a lexi-
cal item attached to it, we implicitly make the assumption
that an input string of finite length cannot be syntactically
infinitely ambiguous.

Since the trees are produced by the input string, the
parser can use information that might be non-local to
guide the search. For example, consider the language gen-
erated by the following CFG (example due to Mitch Mar-
cus):

S ~ A I B
A ~ aAlax
B -* aB lay

This grammar generates the language:{a*x} U {a'y}.
In a standard CFG parsing algorithm, A's and B's will be
built until the last token in the input (x or y) is recog-
nized. It would require unbounded look-ahead to decide
which rule (3 -+ A or S ~ B) to choose. One can encode
the grammar in TAG as follows:

S S A B

A A

A A
a x a y

Suppose that the heads of the initial trees are respec-
tively x and y and that a is the head of both auxiliary

581

trees. Then, if the elementary trees are built according to
the input string, and if a top-down strategy is used, only
A or B trees will be built.

An application concerns the parsing of discontinuous
constituents. They are recognized even if there are un-
bounded insertions between their components and even if
their 'head ' is the last element of the string.

In t he two-step strategy described here, before the first
step is taken, there is no grammar. After the first step, we
have a grammar whose size is proportional to the length
of the input string. The size of the grammar to be taken
into consideration in the analysis of the parsing complexity
of grammar formalisms has been reduced to an amount
proportional to the length of the input. Although we have
not yet investigated the implication of this approach on
some complexity results, we feel that some of them might
be improved.

It is possible to express the parsing problem in a de-
cidable deduction system on trees (similar to Lambek's
deduction system on categories (1958 and 1961)). The
grammar can be thought as a five-tuple (VN, ~, O, S, Lex)
where:

• VN is a finite set of non-terminal symbols,

• ~ is a finite set of alphabet symbols,

• O is the set of trees constructed with P,* and VN (the
elements of Z* having ranked 0).

• Lex is the lexicon , i.e. a function from lexical items
to finite subsets of O: P?' --+ 2®(finite).

A sequent is defined to be of the form:
Vl,. . -, rn ~ A, where ri E O and A E VN

Two inference rules combine two trees of the left hand
side to form a new one. One inference rule corresponds
to adjunction of two trees, and the other to substitution of
a node in one tree by the other tree. Once two trees are
combined, they are replaced by the resulting tree in the
left hand side of the seouent. This facts takes into account
that each tree corresponds to a single lexical item in the
input string. Therefore each tree can be used only once.
Axioms of the system are of the form:

v ---+ A
where r is a completed tree rooted by A.

The sequent
T1," • " ,Tn "----+ A

is said to be provable if the sequent can be reduced (by
the inference rules) to an axiom; we write:

~- r l , . . . , r , --+ A.
Since there are finitely many ways to combine a finite num-
ber of trees with each other, the system is decidable.

The language generated by such system is defined to be:
= { a i , ' . . ,anl3rl e Lex(al) s. t. ~- r l , ' " , r n ----+ S}

Also, one can state a necessary condition on the correct-
ness of a sentence similar to the category count theorem
of van Benthem (1985 and 1986).

5 Extending the Earley-type
parser for TAGs

An Earley-type parser for TAGs has been proposed by
Schabes and Joshi (1988a). It takes as input a TAG and

a sentence to be parsed. It places no restrictions on the
grammar. The algorithm is a bottom-up parser that uses
top-down filtering. I t is able to parse constraints on ad-
junction, substitution and feature structures for TAGs as
defined by Vijay-Shanker (1987) and Vijay-Shanker and
Joshi (1988). It is able to parse directly CFGs and TAGs.
Thus it embeds the essential aspects of PATR-II as defined
by Shieber (1984 and 1986). Its correctness was proven in
Sehabes and Joshi (1988b). The concepts of dotted rule
and states have been extended to TAG trees. The algo-
ri thm as described by Schabes and Joshi (1988a) manip-
ulates states of the form:

s = [a, dot, side, pos, l, fl, f i , star, t[, b[, snbst?]
where a is a tree, dot is the address of the dot in the tree,
side is the side of the symbol the dot is on (left or right),
pos is the position of the dot (above or below), star is an
address in a and l, f~, fr, star, t~, b~ are indices of positions
in the input string. The variable subst? is a boolean that
indicates whether the tree has been predicted for substi-
tution.

The algorithm uses nine processes:
• The S c a n n e r allows lexical items to be recognized.

• M o v e d o t down and Move do t up perform a tree
traversal that allow the parser to scan the input from
left to right.

• The Lef t P r e d i c t o r predicts an adjunetion if it is
possible.

• Suppose that the auxiliary tree that we left-predicted
has been recognized as far as its foot, then the Left
C o m p l e t o r tries to recognize what was pushed under
the foot.

• Once the subtree pushed under the foot has been rec-
ognized, the R i g h t P r e d i c t o r tries to recognize the
other half of the auxiliary tree.

• If the auxiliary tree has been totally recognized, the
R i g h t C o m p l e t o r tries to recognize the rest of the
tree in which the auxiliary tree has been adjoined.

• The S u b s t i t u t i o n P r e d i c t o r performs the same op-
erations as Earley's original predictor. It predicts for
substitution (when appropriate) all lexical trees or ini-
tial trees that could be substituted.

• If the tree that we predicted for substitution has
been totally recognized, the S u b s t i t u t i o n Comple -
t o r tries to recognize the rest of the tree in which we
predicted a substitution.

The Earley-type parser can be extended to take advan-
tage o f the lexicon-based strategy proposed earlier. Once
the input string has been scanned and the corresponding
elementary trees have been built, the parser will proceed
bottom-up using the top-down filtering from the initial
trees that have been built. In order to take into account
that each tree is unique and therefore can be used only
once, a new component r is added to the states. A state
is now defined to be:

s = [a, dot, side, pos, l, fl, fr, star, t~, b~, subst?, r]
r encodes the trees corresponding to the input string that
have not yet been used:

r ~--- {{"/11, """ , '~ ' lk} ,"" : , { ' ~ m l , " " " , ' ~mk}}
where { 7 i l , ' " , 7 ~ j } is the set of trees generated by the
lexical item a~.

582

The left predictor must be modified so that it predicts
only trees that are in the set F of the given state. As soon
as one tree (say 7in) is used, the entire set of trees cor-
responding to the same token ({711 ," ' ,7 i j}) cannot be
used later on. Of course, all competitive paths are taken
in parallel as in the usual Earley parser. The way that
F is modified by the Left Predictor is illustrated in the

following figure:

A addedtoSi

r=((~ ,...a } {~ ~), ..., (v v 1} r=({~ ,...,~ } (~ r }1
n lr il is ml mt 11 lr ml rat

Figure 4: Update of F in the Left Predictor

The tree 71u is predicted and therefore the trees corre-
sponding to the token ai ({ ' Y / l , - ' " , "/is}) are removed from

1 a"
The scanner must also be slightly modified since the

head of the structure is differentiated not only by its lexical
value but al,'~o by its position in the string.

6 Conc lus ion

In this paper we presented a general parsing s t rategy based
on 'lexicalized' grammar. We defined the notion of lexi-
calization of a grammar. We showed how a CFG can be
'lexicalized' by using only substitution. But the use of
adjunction permits 'lexicalization' with linguistically mo-
tivated structures. TAGs have been shown to be naturally
'lexicalized'. Then we gave an overview of the specific lex-
icon of TAGs. The %xicalization ~ of grammar lead us to
introduce a two step parsing strategy. The first step picks
up the set of structures corresponding to each word in the
sentence. The second step puts the argument structures
into predicate structures. Therefore, the relationship be-
tween the morphological and syntactic analyses has been
modified. In the first step, structures instead of categories
are associated with lexical items. The strategy has been
shown to be able to use non-local information in the in-
put string. Also problems due to recursion are eliminated.
The grammar of the parser has been reduced to a set of
structures whose size is proportional to the length Of the
input sentence. Furthermore, the parsing strategy applies
to any parsing algorithm; in particular top-down. It can
be formalized into a decidable deduction system that has
finite search space for a sentence of finite length. The
Earley-type parser for TAGs has been easily extended to
take advantage of this strategy.

R e f e r e n c e s

Abeilld, Anne, 1988. Parsing French with Tree Adjoining
Grammar: some Linguistic Accounts. In Proceeding of the 12 °'
International Conference on Computational Linguistics.

van Benthem, Johns, 1985. Lambek Calculus. Manuscript,
Filosofisch Instituut, Rijks Universiteit, Groningen.

van Benthem, Johan, 1986. Essays on Logical Semantics,
Chapter 7, pages 123-150. D. Reidel Publishing Company.

Gross, Manriee, 1984. Lexicon-Grammar and the Syntactic
Analysis of French. In Proceeding of the 10 th International
Conference on Computational Linguistics.

Joshi, Aravind K., 1985. How Much Context-Sensitivlty is Nec-
essary for Characterizing Structural Descriptions--Tree Ad-
joining Grammars. In Dowry, D.; Karttunen, L.; and Zwicky,
A. (editors), Natural Language Processing--Theoretical, Com-
putational and Psychological Perspectives. Cambridge Univer-
sity Press, New York. Originally presented in 1983.

Joshi, A. K.; Levy, L. S.; and Ta~ahashi, M, 1975. Tree Ad-
junct Grammars. J. Comput. Syst. Sci. 10(1).

Kroch, A. and Joshi, A. K., 1985. Linguistic Relevance of
Tree Adjoining Grammars. Technical Report MS-CIS-85-18,
Department of Computer and Information Science, University
of Pennsylvania.

Lambek, Joachim, 1958. The Mathematics of Sentence Struc-
ture. American Mathematical Monthly 65:154-170.

Lambek, Joachim, 1961. On the Calculus of Syntactic Types.
In Proceedings of the Symposium on Applied Mathematics,
pages 166-178.

Schabes, Yves and Joshi, Aravind K., 1988 (a). An Earley-
Type Parsing Algorithm for Tree Adjoining Grammars. In 26 th
Meeting of the Association for Computational Linguistics.

Schabes, Yves and Joshi, Aravind K.,]988 (b). An Earley-
type Parser for Tree Adjoining Grammars. Technical Report ,
Department of Computer and Information Science, University
of Pennsylvania.

Shieber, Stuart M., 1984. The Design of a Computer Language
for Linguistic Information. In 22 ~d Meeting of the Association
for Computational Linguistics, pages 362-366.

Shieber, Stuart M., 1985. Using Restriction to Extend Pars-
ing Algorithms for Complex-feature-based Formalisms. In
23 rd Meeting of the Association for Computational Linguistics,
pages 82-93.
Shieber, Stuart M., 1986. An Introduction to Unification-Based
Approaches to Grammar. Center for the Study of Language
and Information, Stanford, CA.

Vijay-Shanker, K., 1987. A Study of Tree Adjoining Gram-
mars. PhD thesis, Department of Computer and Information
Science, University of Pennsylvania.

Vijay-Shanker, K. and Joshi, A.K., 1988. Feature Structure
Baaed Tree Adjoining Grammars. In Proceedings of the 12 th

International Conference on Computational Linguistics.

583

