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Abstract: 

Feature graphs appearing in unification--based grammar formalisms and 
algebraic specifications of abstract data types (ADTs) are both used 
for defining a collection of objects together with functions between 
these object sets. Starting from this observation we define an 
algebraic semantics for feature graphs by assigning an algebraic 
specification to each feature graph. This opens the rich world of 
semantical foundations for abstract data types to the area of 
feature graphs and thus to unification grammar formalisms. Using 
results from ADT theory we define a sim~le and fast syntactic 
decision procedure testing the usual consistency conditions on 
feature graphs like constant consistency, constant/complex 
consistency and acyclicity on the algebraic specification assigned 
to a feature graph. With this machinery at hand feature graph 
unification becomes union of feature graph specifications followed 
by the consistency test. 

1. Introduction 

Unification-based grammar formalisms have 
become a popular field o'f research. The 
subject has attracted the interest not only 
of (computer) linguists but also of computer 
scientists, especially in the area of logic 
programming, see e.g. [Pe 87]. Due to the 
formality of grammars we also observe 
activities developing foundations for the 
formal semantics of various approaches on 
unification grammars, e.g. [PS 84], [KR 86], 
[RK 86], [Pe 87], [Jo 87]. 

In this paper we investigate the relationship 
between feature graphs on the one hand and 
algebraic specifications of abstract data 
types (ADTs) on the other hand. There is a 
natural correlation between both these areas 
since a feature graph as well as an abstract 
data type defines a collection of objects 
together with functions relating the objects. 
We present a formal semantics for feature 
graphs by assigning to each feature graph G 
an equational ADT specification ~(G), called 
fg--specification. This opens the rich world 
of ma'thematical foundations of ADT 
specifications (e.g [GTW 78], [EM 85]) in 
order to obtain a better - not only - formal 
understanding of the nature of feature 
graphs. 

In particular, we provide a model-theoretic 
characterization of various consistency 
conditions for feature graph specifications 
reflecting the consistency concepts usually 
imposed on feature graphs such as 
clash-freeness and acyclicity. These 
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model-theoretic characterizations have 
proof-theoretic counterparts in terms of 
syntactic conditions on the deductive closure 
of the set of equations of r(G)o 

Although the proof-theoretic consistency 
characterizations are of syntactic nature, a 
test of their validity requires to examine 
the deductive closure of the set of equations 
of a fg-specification. Our objective is to 
restrict consistency checks to equations 
explicitly mentioned in a fg-specificationo 
In the ADT-world there is a well-known tool 
for such tasks: the Knuth-Bendix algorithm 
([KB 70]). We present a Knuth-Bendix like 
completion procedure transforming any 
fg-specification into a reduced normal form. 
We show that the model-theoretic consistency 
characterizations for G are equivalent to the 
presence resp. absence of certain types of 
equations in this reduced normal form. 

These results are used for defining the 
semantics of the unification of two feature 
graphs GI and G2 as the (set-theoretic 
componentwise) union of ~(GI) and x(G2 ) 
followed by the normalization process using 
the completion algorithm and the consistency 
check on the resulting set of equations° 

2. Featuregraphs 

A feature graph is a directed graph with a 
distinguished root node. The edges of the 
graph are called features. An atomic graph is 
just a symbol; it contains no features. A 
complex graph is a set of feature-value pairs 



where each value is either an atomic graph or 
again a complex one. Two paths starting at 
the root and ending at the same node are said 
to co-.refer. Feature graph unification is a 
binary eperation taking two graphs and 
returning[ a graph containing exactly the 
informat J.on of both graphs if they are 
unifiabl~. ~, and fails otherwise. An atomic 
graph is unifiable only with itself and the 
empty graph. A complex graph G~ is unifiable 
with the, empty graph, and G~ is unifiable 
with a complex graph G2 if for all features 
in both G: and G2 the respective vahles are 
unifiab](~° 

Several notations for feature graphs have 
been suggested° The graphical representation 
of 

NP 
c o u l d  a l ~ o  b e  r e p r e s e n t e d  i n  m a t r i x  f o r m :  

~Cat I 
: VP 

A g r  

I A g r  < 1 > 

in the matrix notation coreference is 
indicated by numbers enclosed i n  brackets. 
Another notation, which for instance is 
employed in PATR, uses special equations 
indicati[Lg coreference of paths and atomic 
values aL the end of of paths, respectively: 

< Cat > == VP 
< Subj Cat > == NP 

Subj Agr > : < Agr > 

In the following we will discuss an 
equatJon~l representation of feature graphs 
in greater detail. This representation will 
be oriented towards the equational 
specification of abstract data types, thus 
making ~.vai lable the powerful machinery 
developed for such specifications° 

Above we did not make a clear distinction 
between the syntax for describing feature 

graphs and feature graphs as semantical 
objects. In fact, such a distinction has been 
omitted to a large extent in the literature. 
The situation changed with approaches that 
formalize the concepts of feature graphs 
since such a distinction is essential for a 
formal treatment (see e.g. [KR 86], [Jo 87]). 
In the area of ADT specifications the strict 
separation of the syntactic and the semantic 
level has ulways beet* a central aspect. Our 
ADT-.based approach to feature graphs adopts 
this two-level view in a natural way: Feature 
graph specifications are the syntactical 
means to describe feature graphs which are 
the models (or structures) of such 
specifications. 

3._Equational Specifications 

3oi ADT Specifications: Syntax and Semantics 

We introduce the basic notions of abstract 
data type specifications. More detailed 
information can be gathered in [GTW 78] or 
[EM 85]. 

A s.~gt_ure is a pair Z = <S, O> where S is a 
set of sorts and O = <O > 
a family of sets of ~erators w.r.t. S. We 
write op: s~ ...s~ -> s for an operator whose 
i-th argument is of sort s~ and which 
delivers a result of sort s. The well-fermed 
terms w.r.t. Z and S-sorted variables V form 
an S-indexed family Tz (V), and an equation 
over ~ and V is of the form i = r where 1 and 
r are terms of the same sort. An al~@hraic 
~gcifiqation is a pair SP = <Z, E> where Z 
is a signature and E is a set of equations 
over Z and some family of variables V. 

Besides these syntactical concepts of ADT 
specifications we provide the basic 
semantical concepts of heterogenous algebras: 

Given a signature ~ = <S, O>, a ~-algebra A 
consists of a family of sets A = < A, > .... 
and for each operator op e O .... there is a 
function opA : A, ---> A~ . A satisfies an 
equation 1 = r if for each assignment of 
values from A to the variables of 1 and r the 
evaluation of 1 and r in A yields the same 
element of A. A is a <Z,E>-algebra if A 
satisfies every e ~ E. 

We say that E semantically implies an 
equation e if every <~,E>-algebra satisfies 
e. It is well-known that this model-theoretic 
notion of satisfaction coincides with the 
proof-theoretic notion of deduction (Birkhoff 
theorem) where e can be proved from E iff e 
can be deduced from E using the rules of the 
equational calculus (e.g. [EM 85]). We let E e 
denote the deductive closure of E. 

The following theorem is one of the central 
results of ADT theory and forms the basis fo]:" 
defining the semantics of a specification. 

Theorem: 

For each algebraic specification 
SP = <~, E> there is an initial algebra 
Tsp satisfying the equations in E. 

T~, is the so-called ~uotient term alqebr ~ 
consisting of congruence classes - obtained 
by factorization according to the equations 
in E - of constant terms over Z. The initial 
algebra Tsp is 'the ADT specified by SP. It 
can be characterized informally by two 
conditions: all its elements are denoted by 
some ground term ("no junk"), and it 
satisfies a ground equation e iff every other 
<Z,E>-algebra also satisfies e ("no 
confusion"). 

3,2 Feature Graph Specifications 

Feature graphs can be seen as particular 
algebraic specifications (see also [Pe 87]): 
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There are only constants (representing atomic 
values) and unary functions (representing the 
features) in the signature. We assume that 
ATOMS is the set of all atomic values and 
FEATURES is set of all features occuring in 
the feature graphs; both sets may be infinite 
in general. An equation s = t is given for 
paths having the same final node, or for 
paths ending at an atomic value. 

For instance, consider the feature graph 

% /  
Following e.g. Pereira and Shieber ([PS 84}) 
this feature graph can be described by the 
equations 

< f g > = < h > 
< g > = a 

leaving the root symbol of the feature graph 
implicit and using the order for the 
attributes as in the examples of Section 2. 
However, in equational ADT specifications it 
is essential to state explicitly to which 
objects an equation can be applied. 

For simplicitly, we first assume that we have 
only one sort which we call "universe", and 
that we have a variable x of sort "universe'. 
By using a functional notation for the 
attributes and thus the reverse order of the 
attributes as compared to e.g. [PS 84], we 
would arrive at the specification 

sorts universe 
functions a: -> universe 

f,g,h: universe -> universe 
equations g(f(x)) = h(x) 

g(x) = a 

However, by simply introducing a universally 
quantified variable x of sort "universe" we 
run into problems: From 

I, g(f(x)) = h(x) 
2. g(x) = a 

we can deduce 
h(x) = a 

by using the usual rules of the equational 
calculus and substituting f(x) for x in 
equation (2). The problem is that x should be 
quantified only over all objects described by 
the original feature graph. But f(x) is not 
neccessarily in this set, so we must find a 
way of avoiding such a substitution. A simple 
way of achieving this is to switch to another 
signature with an additional sort, say "soi', 
denoting the "sort of interest" and 
comprising all objects described by a feature 
graph. 

The sort "sol" is then a subsort of sort 
"universe'. This could be expressed by 
extending the algebraic specifications to 
include also subsort relationships, thus 
moving from many-sorted specifications (as 
described in Section 3.1) to so-called 
order-sorted specifications (e.g. [GM 87]). 
Here, we want to stick to the simpler case of 
many-sorted specifications. 

A subsort relationship in a many-sorted 
setting is expressed by an inclusion function 

42 

which we will. denote by 
i: soi -> universe 

in our case. In order to avoid problems with 
empty sorts ([GM 87], [EM 85]) we assume that 
there is a constant "const" of sort "sol'. 
For the rest of this paper we also assume 
that x is a variable of sort "seA'. Thus~ the 
feature graph above gi~es rise to the feature 
graph specification 

sorts sol, universe 
functions a: -> universe 

f,g,h: universe ~> uz~iverse 
const: .-> soi 
i: soi ~> universe 

equations g(f(i(x))) = h(i(x)) 
g(k(x)) = a 

motivating the following definition: 

A feature graph signature (fg-signature) 
Z = <S,OP> is a signature with 

S : {sol, ~lniverse} 
OP : Atoms(Z) u Features(X) 

u {const: -.> soi} 
U {i: SOJ -> universe} 

where : 
Atoms(E) c {a: -> universe I 

a s ATOMS] 
Features(Z) c {f: universe -> universe [ 

f s FEATURES} 

A feature graph specification 
(fg-.specification) SP ~ <Z,E> has a 
fg-signature Z and a set of equations over 
Z and {x}. 

With the definitions above it shoud be 
obvious how to transform any feature graph G 
into a fg-specification ~(G): The signature 
of ~(G) contains all atoms and features 
occuring in G as constants resp. unary 
functions, and for any co-referring paths or 
any path ending with an atomic value there is 
an equation in ~(G). Thus, we have a 
well-defined function 

~: Feature graphs -> fg-specifications 

making available the machinery that has been 
developed for algebraic specifications. 

4.  Cons i s tency_  

In [PS 84] the only inconsistency considered 
is an equation of the form a ~ b where a and 
b are distinct constants. Such a situation Js 
called constant clash in [Pe 87] where 
additionally a constant L_cpmP!exf~lash is 
considered. Such a clash is "any set of two 
equations e~ and e2 in which e~ equates some 
path p to some other path or atomic value and 
e2 equates a strict prefix of p to a 
constant" [Pe 87]. 

Whereas [PS 84] also consider cyclic feature 
graphs, Kasper and Rounds ([KR 86]), ~ome 
PATR-II implementations, and also the STUF 
formalism described in [Us 86], only allow 
for 99~fclic feature graphs. We will show that 
the absence of cycles in a feature graph car~ 
also be expressed as a consistency condition 
on the corresponding fg-specification. 

Below we use the machinery of abstract data 
types in order to define several notions of 
semantical, consistency for a feature grap[b. 



Finest W(-: i n t r o d u c e  a r i o _ t a t : i o r %  
A t e x f a  

: ; , , ( . . . ( f ~ ( t ) ) ~  . )  ~ 'r~([x]) 
w i t h  
t ~ T, ([X]),,,i ..... . .... fl ~ Features(Y,), 
and n k 0 will be writ'ten as 

p ( t )  
w h e r e  p := : , ! .o~o f~  e F e a t u r e s ( } : ) * o  

N o t e  t h a t  t h e  n o t a t i o n  f .  ( . . . ( f ~  ( t ) )  . . .  ) 
r e f l e c t s  -the u s u a l  mathematical notation for 
function composition, whei'eas the ~)ath 
notation amp Loyed for feature graphs as 
sketched : i ( l  Section 2 u s e s  the reverse order 

Let S~' == -<}:~ ]!',> be cl .fg-;~pe<:ificatien. 
A <}]~ E>-al.gebra A is 

~ c p n [ ~ t t ~ . g ' h  ~ g0nsiste~c J f f  
for all a ,  b ~. Atoms(Z) w i t h  a ~: b we 
have : 

u cons tagt/<'.omp.].ex cons.isten tiff 
for all a~ b ~ Atoms(Z) and a]] pl, p2, 
q ~ Feature~;(Z): tlhere exists ral element 
o ~ A, , ,~  ,,¢:iti~: 

7p]~ (i~ ( o ) )  : :  a,, 
:: > 

p2,,(p]., (i, (o))) + q^(i~(o)) 
& 

) / , 2 a ( p l ~  ( i . ( o ) ) )  ~- b^ 

ac yc l'i,/ iff 
for all p~ q ~ Features(Z) ÷ there exists 
an element o ~ A,o± with: 

p~(q~(i^(o))) + q^(i^(o)) 

SP is . g _ g r n } i t a l r t  c o n s : L s t e . l - t t  , cor~staL~t/gpmplgx - 
c o l l s i s t e _ l J t  or" .gcycliq iff there is at least 
one mode], of SP having the respective 
propert? . 

The a b o v e  d e f i n i t i o n  of [  censJstency of a 
fg-specifi~ation SP suggests that one has to 
search through the entire (:lass of models of 
SP in or, let to determJ ne whether SP :i s 
consistent or net. T h e  fol ).owing theorem 
shows the power ef initial models in the 
sense of shrinking the search space: only the 
initial model has to be considered. 

Theorem : 
The fg- speei ficaT-ion S P  is constant 
consistent, constant/complex consistent, 
or acyclic iff the initial algebra Ts~, has 
the respective property. 

The above pz:opert:ies can be proven for the 

initial model by using the deductive closure 
E* of a set of equations E. 

Theoz'em : 
The i n i t i a l  a l g e b l T a  [I,',3 ~ of the 
fg-spec[fication SP is 

u constant consistent iff 
for all a, b ~ Atoms(Z) with a + b 
We h a v e :  a :: 'b ~/ E* 

~i coiL.~tar~t/complex consistent iff 
f o r  a l l  a~  b ¢ A t o m : 3 ( } ; )  a n d  a l l  
t ) [ ~  t :)2 , q ~ Features(Z)" 
%'¥,~ h a v e  : 

pl('i(const)) = ;~. ~ E';," 
i t ~ p ] . i e s  
p2(pl(i(const))) ::: q(i(const)) / E* 

a n d  
p2(pl(i(const))) = b / E* 

I 

acyclic iff 
for all p, q e Features(Z) ~ 
we have : 

p(q(i(const))) --: q(i(const)) / E* 

The equivalences established by these two 
theorems show us that the consistency of a 
fg-specification <Z, E> can be tested by 
inspecting tile deductive closure E* for the 
absence of certain equations, depending on 
which consistency aspects one is interested 
ill. Since E* may be too large for performing 
these tests efficiently it would be desirable 
to be able to perform the consistency tests 
on E only. ill the next section we develop a 
completion procedure for the set of equations 
E which transforms E into a normalized set E" 
such that it Js sufficient to check E'. The 
complet.io~), procedure thus provides a simple 
a n d  fast decision procedure for our 
consistency constraints. 

5o _Ti)9 completion pr~cedure 

Our completion procedure is a variant of the 
Knuth-Bendix algorithm ([KB 70]) which J.s a 
well-known method for testing properties of 
rewrite rule systems and for transforming 
equations into a set of rewrite rules, which 
then constitute a decision procedure for the 
equality, in general, there are some 
problems with the Knuth-Bendix algorithm: ]it 
may not terminate, or it may terminate with 
failure. However, we csn show that due to 
the restricted form of equations these 
problems do not occur when dealing with 
fg-specifications. 

We first define an order relation ~ on the 
set T~ ({x}) of terms over an fg-signature Z. 
We assume that ATOMS (resp. FEATURES) is 
linearly ordered by ~^To~ (resp. ~ .... u~:~). 
Then we order T~ ({x}) using the lexicographic 
ordering induced by NA~oMs and N~^TunE~ : 

Let a, b ~ ATOMS, f~, g~ e FEATURES, and t 
T~ ({x}). 

a <,r b if a <^'roM~ b 
" a <T f, (t) 

t <~ f~ (t) 
f~,(...(f~ (t))...) <.r g, (...(g~ (t))...) 

-<-T is the reflexive and transitive closure 
of <.~. 

Let SP : <Z,E> be a fg-specification. We 
assume that E does not contain any trivia] 
equations of the form t :: t (otherwise we can 
just eliminate such equations from E). 

Le~na: 
For all 1 = r ~ E we have either 1 <~ r or 
r <.~ ].. 

Thus, without loss of generality, we assume 
that r <T 1 for all 1. = r s E (otherwise we 
can just exchange the lefthand and the 
righthand side of the equation). We call E a 
directed set of equations and we may write 
1-> r instead of 1 = r. 
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C~letion algorithm CP 

Transform E into a directed set of 
equations and apply successively any of 
the two following rules until none is 
applicable any more: 

[] LHS reduction: 

If there are two different equations 
(I) p(1) -> r 
(2) 1 -> r' 

in E then: 
Delete equation (I) from E 
If r <T p(r') 

then add p(r') -> r to E 
- If p(r') <~ r 

then add r -> p(r') to E 
[Note: Nothing is added if p(r') and r 

are identical!] 

• RHS__!'9_d" u c t ion !_ 

If there are two different equations 
(I) 1 -> p(l') 
(2) 1" -> r 

in E then: 
- Delete equation (I) from E 

If 1 <~ p(r) 
then add p(r) -> 1 to E 

If p(r) <T 1 
then add 1 -> p(r) to E 

[Note: Nothing is added if p(r) and 1 
are identical!] 

where: r, r', i, i" ~ T~ ({x}), and 
p ~ Features(Z)* 

Theorem : 
For every fg-specification 
completion procedure CP 

SP the 

• terminates on input SP = <Z, E> 

delivers as output a fg-specification 
SP" = <Z, E'> 

and SP and SP'are equivalent in the 
sense of 

E* = (E')*, 
i. e. E and E" have the same deductive 
closure. 

This theorem assures that the completion 
procedure performs only syntactical 
modifications on the fg-specifications, but 
does not change their meaning. So we can use 
SP" in order to test the consistency 
constraints of SP. The next theorem shows 
that stepping from SP to SP" simplifies this 
task: instead of inspecting the deductive 
closure E* it suffices to inspect the set of 
equations E'. 

Theorem: 

Let SP = <Z, E> be a fg-specification and 
SP" = <Z, E'> be the result of running the 
completion procedure CP on SP. SP is 

Constant consistent iff 
E" does not contain an equation whose 
lefthand side is an atom a ~ Atoms(Z) 

constant/complex consistent iff 
E" does not contain an equation in 
which a term f(a) occurs where 
f ~ Features(Z) and a ~ Atoms(Z) 

acyclic iff 
E" does not contain an equation 
p(t) -> t where p ~ Features(Z)* 
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The proof of this theorem is based on the 
fact that E" is a confluent and terminating 
set of rewrite rules. Since the atoms are 
smaller than any non-atomic term with respect 
to the term order <~, for any equation a --> t 
in E" with an atom a, t must also be an atom~ 
Therefore, any equation holding between atoms 
must be contained directly in E', implying 
the constant consistency property of the 
theorem. The other parts of 'the theorem 
follow from similar observations. 

6. Unification 

In Section 2 we presented three different 
notations for feature graphs, and in 3.2~ we 
introduced a translation ~ from feature 
graphs to fg-specifications. On the other 
hand, it is straightforward to transform a 
fg-specification SP into a feature graph C: 
The atoms and features of G are those 
occuring in the signature of SP and £he 
equations of E reflect the coreferring paths 
resp. paths ending with an atomic value in G° 
We denote this transformation by 

~-~ : fg-specifications -> feature graphs 

Although ~-I (SP) and ~-i (CP(SP)) may be 
syntactically different since CP(SP)) 
contains equations in a reduced normal form, 
the two graphs are equivalent in the sense of 
feature graph unification: they are unifiab].e 
with exactly the same feature graphs. 
Besides giving a basis for a simple 
consistency test and providing a normal form 
presentation for fg-specifications the 
completion procedure CP also provides the 
basis for a precise mathematical definition 
of feature graph unification. This is true 
regardless which consistency concept for 
feature graphs one wants to apply, e.g. J.f 
one wants to allow cyclic graphs or only 
acyclic ones. Thus, let X-consistent be 
either "constant consistent", 
"constant/complex consistent", "acyclic", or 
any combination thereof. Let GI and G2 be 
feature graphs. 

graph-unify(G~,G~) = 
let (Zi,Ei) = ~(Gt) in 
let (Z,E) = CP(Z~ u Z,, El u E2) in 

~-I (Z,E) if (Z,E) is X-consistent 
fail if (Z,E) is not X-consistent 

7. Conclusions 

We have presented a mathematical semantics of 
feature graphs and feature graph unification 
in terms of ADT specifications. It supports 
various consistency concepts used for feature 
graphs. The important notion of partiality 
([Pe 87]) in the sense that arbitrary new 
features may be unified into a feature graph 
is supported since any feature graph 
specification can be extended by arbitrary 
features, atoms, and equations; there exists 
no "largest" feature graph specification 
(unless of course, one adds an artificial 
"largest" element, e.g. as the 
$F$-specification in the STUF formalism as 
described in [BPU 88]). 



Another approach bringing together initial 
ADT spec, i fications and feature graphs is 
given ill [SA 87]. ~t uses an order-sorted 
approach:, where the set of atoms and features 
must be fixed in advance, and where every 
element of a supersort must be in one of its 
subsorts Compared to the order- sorte%l 
approach of [SA 87] a drawback of the work 
presented here is the asymetric treatment of 
the tool; of a feature graph (giving rise to 
the "se,i" sort) and the other nodes (being 
mapped t ; o  thE; " u n i v e r s e "  sort ) . We are 
currently extending out work in order to 
overcome this disadvantage ([BP 88]). Other 
a:¢eas of future work are the treatment of 
disjunctJ ons and of functional uncertainty 
([KR 86], [Jo 86] ) .  
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