
COLING 82, J. Horeck2) {ed.) 
North-Holland Publishir~ Company 
© Aeodemia. 1982 

ARBUS, A TOOL FOR DEVELOPING APPLICATION GRAMMARS 

D. MEMMI J. MARIANI 

LIMSI (CNRS) B.P.30 
9|406 ORSAY FRANCE 

The development of a natural language system usually requires 
frequent changes to the grammar used. It is then ~ery useful to 
be able to define and modify the gra~ar rules easily, without 
having to tamper with the parsing program. The ARBUS system was 
designed to help develop grammars for natural language proces- 
sing. With this system one can build, display, test, modify and 
file a grammar interactively in a very convenient way. This was 
achieved by packaging a parser and a graummr editor with an 
elaborate interface which isolates the user from implementation 
details and guides him as much as possible. 

INTRODUCTION 

Parsing is one of the main problems in natural language processing. It is 
generally recognized that understanding written text requires some kind of struc- 
tural analysis, even if semantic comprehension would also be needed. In speech 
recognition research, syntactic constraints are frequently used to help acoustic 
recognition by reducing the number of possibilities to be dealt with. 

Grammatical analysis becomes even more important when one considers it to 
i ~lude not only syntax itself, but also any formal constraint. One can therefore 
d :ne semantic or pragmatic grammars, dialog grammars as well as phonetic or 
phonological rules. The formalism of syntactic rules is powerful enough to des- 
cribe many areas of natural language be~ide syntax itself, and the use of gran~mar 
has been extended accordingly in many systems. 

But parsing is a difficult problem. The design of a parser involves fairly 
sophisticated programming techniques. And grammar rules are usually numerous, and 
their interaction may prove quite complex, so that it is not easy to define a gram- 
mar. Rules often have to be modified repeatedly for the development of the grammar, 
and will have to be modified again if'one wants to change the application domain. 

To avoid tinkering constantly with the program, rules should be kept separate 
from the control mechanism of the parser. The grammar is then considered as data 
for the parsing program, and the rules can be given in a clear declarative for- 
mulation. If this basic precaution is not observed, modifying the rules will 
require repeated and tiresome reprogramming, and at some point the program may 
become too complicated for any further extension of the grammar. 

It is also very interesting to help the user to develop his own grammar, by 
allowing him to define, test and modify the rules easily thanks to a specialized 
interactive interface. For example the LIFER system (Hendrix, ]977) was specially 
designed to help build application grammars without extensive prograrmning. It has 
been successfully used to build complex natural language front-ends such as the 

221 



222 D. MEMMI and J, MARIANI 

LADDER system (Sacerdoti, 1977; Hendrix and al., 1978) in order to access and 
query databases in natural English. 

Similarly we have designed the ARBUS system as an aid to the development of 
grammars. With ARBUS one can build, display, test and modify a grammar inter- 
actively in a very convenient way. The user never has to deal directly with the 
underlying programs and no programming is necessary. This was achieved by pack- 
aging a parser and a granmmr editor with an elaborate interface, which shields 
the user from implementation details and guides him as much as possible. 

GRAMMAR AND PARSER 

A grammar is implemented in ARBUS as a set of trees, with a tree for each syn- 
tactic category. Each node of a tree (except the root) represents either a ter- 
minal word of the language defined, or a category referring then to another tree 
(£ig. I). This is also the way the user must describe a granmmr to the system. 
'l"nis representation is a simplified form of transition networks, where each sub- 
network corresponds to a different syntactic category° 

S NP 

NP 
I 

I 
V 

NP him 

the 

big N 

I 
N 

N V 

boy dog obeys follows 

S --> NP V NP NP --> the big N 

S --> NP V him NP --> the N 

N --> boy V --> obeys 

N --> dog V --> follows 

Fig. 4. Transition trees and corresponding rules 



ARBUS 223 

A tree structure is generally less compact~ but absolutely equivalent to a 
network (by duplicating nodes with multiple parents in the related network). We 
chose this representation because trees are easier to describe and to visualize 
interact~vely. They are also easier to process and to display than unrestricted 
graphs. And every distinct path in a syntactic tree corresponds to a rewrite rule 
of the grammar, which is not true in general for transition networks. 

Any node can be augmented with tests and actions to be performed when coming 
across the node. These tests and actions are predefined in a library at the dis- 
posal of the user, and each one is known under a reference name so that they can 
be used without having to deal with their actual implementation. For instance, 
there is an action available to note that a noun phrase is singular, and a test 
to check later on that the subject of a verb was indeed singular. Another action 
translates a sequence of digits into the corresponding number, etc... 

These augmentations make it possible to define context-sensitive languages, as 
one can take the context into account with actions and ~ests, in order to handle 
conveniently features such as number agreement between subject and verb. This 
representation of grammars is then quite similar to Augmented Transition Networks 
(Woods, 1970), in which tests and actions can be associated with the transitions. 
The main difference is the use of trees instead of networks to implement a gram- 
mar in our system. 

The parser which will test a gra~nar by interpreting its representation is also 
comparable to an ATN parser. It is designed as a top-down, left-to-rlght parser: 
when moving through a tree, control is transferred to another tree every time a 
syntactic category is encountered at a node. This process can be reeurslve thanks 
to a pushdown stack. If at a given point there are several possible paths, the 
parser follows only one, but saves the current state on the stack and will back- 
track in case of failure to try the alternatives. 

If a node is augmented with a test, the transition can be followed only if the 
test is verified; if there is an action at the node, the action is performed (but 
will be undone in case of backtracking). The actions could be used to build the 
p~-se of a sentenee~ but in fact the parse-tree produced is simply a trace of the 

essful transitions through the grammar if the sentence is accepted. This is 
a Rlly closer to the way a context-free parser operates. If a sentence is am- 
biu ,us, one version of the parser returns only one analysis; another slower ver- 
sion produces all the possible parses. 

If the input sentence is not acce~ted, the parser tries to give a simple and 
clear diagnosis of the failure and specifies the place in the sentence where it 
had to give up. But systematic backtracking sometimes makes it difficult to tell 
exactly what happened ; it might be useful to save the whole parse history. Lastly 
the parser can also run in predictive mode for speech recognition: the grammar is 
user to constrain possibilities at every step to help lexical recognition. 

The grau~nar can also be employed to generate sentences. A special generator 
using a random function produces s6ntences according to the current grammar. This 
quickly gives a broad view of the type of language defined, without using the 
parser and without having to think up successive sentences to test. The random 
generator offers then one more facility to examine a gren~nar and sometimes reveals 
unforeseen errors in the syntactic rules. 

So by and large, parsing is done in ARBUS with fairly standard tools which are 
comparable to other well-known parsers. But the emphasis was put mainly on prac- 
tical interactive use £o develop an application grammar, and most design decisions 
were taken with this primary goal in mind. 



224 D. MEMMI and J. MARIANI 

GRAMMAR EDITOR 

To define a grammar , the user describes it to ARBUS in the form of transition 
trees as seen above. Each tree is to be described by moving through the tree in 
depth-first fashion from left to right, with the help of a prompting program. The 
system then builds the corresponding internal representation. Actions and tests 
can also be added on the nodes. But after testing the grarmnar with the parser, it 
will often appear necessary to modify the syntax. One must therefore be able to 
edit the grammar. 

We designed a specialized grarm~ar editor containing a complete set of diplay 
and modification functions. Because of the way the grammar is represented within 
the system, this editor deals mainly with tree structures. We tried to select a 
minimal set of primitives that would allow all the necessary modifications while 
being simple to learn. More complex editing operations may then have to be exe- 
cuted in several steps. 

The grammar can first be displayed, as a whole or tree by tree, with actions 
and tests if needed. One can either display the trees themselves, or list all the 
distinct paths of a tree, which correspond to rewrite rules. The lexicon may also 
be examined, as well as the list of syntactic categories of the grammar. The lexi- 
con is automatically updated after any modification and thus always shows the cur- 
rent state. One can also look up the catalogue of actions and tests available to 
the user for augmentations. 

With the editor one can replace one word by another, whether at a given node, 
in a whole tree or everywhere in the grammar. To modify the structure of a tran- 
sition tree, one can delete, insert or replace a node by itself without its off- 
spring, or a node with its offspring (i.e., a sub-tree). It is also possible to 
save part of a tree to insert it elsewhere. If a new syntactic category is intro- 
duced during a modification, the system will detect it and ask for the description 
of a new transition tree. 

Augmentations can of course be also modified by adding, deleting or replacing 
tests and actions at any node. In short everything in the grammar may be examined 
and modified. When the result seems satisfactory, the grammar can then be saved 
on file. It may be recalled later for another session of testing and modifications, 
used for an application, or even be sent to another parsing system. 

This editor is fairly simple, and more complex functions could be added. But it 
allows any possible modification of tree structures and already includes a certain 
number of functions. How to use the editor is then not irrmediately obvious, and to 
help the user all editing functions are in fact packaged within a special interac- 
tive interface. Modifications will be performed through this interface, which will 
be responsible for all interactions with the user. 

USER INTERFACE 

Because ARBUS is intended primarily to be a development aid, the user interface 
was designed with particular care and constitutes a sizable part of the whole sys- 
tem. Without this interface, the large number of construction, parsing and editing 
functions available would have required a detailed instruction manual and a long 
training period to use the system fully. 

The basic principle followed in the design of the interface is then to guide 
the user as much as possible through an interactive dialog at the terminal. The 
interface totally isolates the user from underlying programs and redefines its own 
environment regardless of the implementation language. Allsystem functions will 
be called only by typing commands to the interface, which acts as a command inter- 
preter and executes the corresponding programs. 



ARBUS 225 

The interface is patterned as a tree, in which one can move at will (fig. 2). 
This structure makes it possible to limit the number of co,ands available at each 
node of the tree, and these commands are displayed as menus on the screen. The 
menus vary at each step in the dialogue, but the conmmnds are always very simple. 
If necessary the system will prompt the user and ask precisely for any complemen- 
tary information required to execute a command. Incorrect input is diagnosed and 
will cause no error in the program, which simply goes back to the previous step. 

TOP LEVEL 

CONSTRUCTION DISPLAY MODIFICATIONS PARSING FILES 

AUGMENTATIONS WORD STRUCTURE 
MODIFICATIONS MODIFICATIONS 

Fig. 2. Structure of the interface 

We tried to classify functions in a clear way, and to split them~p in short 
operations to avoid burdening the user's memory. Any result is displayed at once. 
There are never more than five or six items to consider at any moment, whether one 
takes into account the number of commands in a menu or the number of levels in the 
structure of the interface. The current situation being always indicated on the 
screen, there is no need to keep track of events and the system requires almost 
no training before use. 

For example during the construction of the grammar, the branches of syntactic 
trees are displayed node by nede while being built, so as to prompt the user and 
show him the current position, For each new syntactic category, ARBUS will ask for 
the description of one more tree until the grammar is completed. The system itself 
takes care of the scheduling ef operations, prompts the user accordingly, and 
automatically builds the lexicon corgesponding to the grammar defined. The user 
is thus guided at every step. 

Automatic grapheme-to-phoneme translation of the vocabulary is also provided 
for speech recognition grammars. The user can input words in ordinary spelling, 
and they will be converted internally to phonetic form for phonemic speech recog- 
nition. Moreover pronunciation variants and linking forms are computed (work in 
progress by F. N~el, M. Esk~nazi and J. Mariani). One may therefore define a gram- 
mar in phonetic form without any prior phonetic training and without having to 
do the transcription oneself. 

CONCLUSION 

Th e ARBUS system is thus a useful, pleasant and practical tool for the develop- 
ment of grarmnars. A first version was implemented in PL/I on IBM 370/168; ARBUS 
was then completely rewritten in INTERLISP/370, a language better suited to the 
manipulation of symbolic structures. Both versions are operational, but the PL/I 
version is directly compatible with speech processing programs written in the same 
language, while grarmmars built in INTERLISP are available through files. 



226 D. MEMMI and J. MARIANI 

We have used ARBUS to develop application grammars for speech recognition and 
to experiment with dialog grammars in man-machine communication. For instance it 
took less than half an hour ~o define the syntax of a spoken command language for 
piloting planes by voice, with about I00 words and 250 different states. This gram- 
mar was then successfully used in speech recognition. In other similar experiments 
we have found ARBUS pleasant to use and quite helpful as a development aid. 

But it should be mentioned that this system is more appropriate for application 
grammars of a limited size. The deliberate choice of a tree representation for syn- 
tax and of interactive construction would make it tedious to define very big gram- 
mars in this way. For a huge syntax it would be quicker to enter it directly as a 
file of rules to be compiled, though the development of such a grammar would prove 
difficult anyway. 

ARBUS might indeed be modified so as to accept rewrite rules directly. Also one 
could describe grammars as transition networks rather than trees. But the system 
would become less interactive and more cumbersome to use, while ARBUS was designed 
to be as interactive and as easy to use as possible. Such changes would then go 
against the basic purpose of the system. 

Other extensions are more interesting to contemplate. When building the grammar 
the system could evaluate automatically the complexity of the language, according 
to some combination of criteria (size of the vocabulary, number of rules, branching 
factor, etc...). It would thus be possible to obtain meaningful comparisons between 
grammars to evaluate speech recognition or parsing systems. One might also better 
adapt ARBUS to tile description of man-machine dialogs by spucifying the respective 
roles of the user and the system in these dialogs. 

In short, ARBUS is a good example of an interactive development tool, specially 
designed from the start to ease the user's task. Such a system is thus part of the 
evolution towards human engineering and graceful interaction which is becoming more 
and more apparent in many areas of man-machine communication. 

REFERENCES 

I- A. BONNET, Les grammaires s~mantiques, outil puissant pour interroger les bases 
de donn~es en langage naturel, RAIRO, 14(2), 1980. 

2- P. HAYES & R. REDDY, An anatomy of graceful interaction in spoken and written 
man-machine communication, Computer Science Dept., Carnegie Mellon Univ., 1979. 

3- G.G. HENDRIX, LIFER: a natural language interface facility, SIGART Newsletter, 
61, 1977. 

4- G.G. HENDRIX, E.D. SACERDOTI, D. SAGALOWICZ & J. SLOCUM, Developing a natural 
language interface to complex data, ACM Transact. on Database Systems, 1978, 3. 

5- J.J. MARIANI & J.S. LIENARD, Elements linguistiques et cognitifs dans un syst~me 
de communication vocale ho~e-machine, Syntaxe et S~mantique en Comprehension 
de la Parole, AFCET-GALF, 1980. 

6- F.C. PEREIRA & D.H.D. WARREN, Definite clause grammars for language analysis - 
a survey of the formalism and comparison with augmented transition networks, 
Artificial Intelligence, 13(3), 1980. 

7- E.D. SACERDOTI, Language access to distributed data with error recovery~ IJCAI, 
5, 1977. 

8- W.A. WOODS, Transition network grammars for language analysis, CACM, 13(10), 
1970. 


