
1.0 INTRODUCTION

Automatic text generation is the generation of natural language texts

by computer. It has applications in automatic documentation

systems, automatic letter writing, automatic report generation and

HELP subsystems for tlme-sharlng systems. This section introduces

the subject and describes the contents of this paper.

The second section describes a basic approach to automatic text

generation which makes it possible to generate a relevant text in

response to a compact text specification. The structure of the data

base (over-lapping tree structures, roughly) from which the text is

constructed makes it possible to do this in a non-ad-hoc way because

the relationships between the elements of the data base imply sentences

and relationships between sentences and groups of sentences.

In the third section, a number of extensions to the basic approach are

discussed. These include among others: (a) paragraphing, (b) natural

language queries, (c) "flattening" of structures, and (d) elimination

of redundancy.

The fourth section of this paper discusses the application of this

approach to HELP subsystems for tlme-sharing systems and on-llne

documentation systems.

2.0

2.1

A BASIC APPROACH

This section describes a basic approach to the generation of natural

language texts. Three subjects are discussed:

text specifications, i .e. , a means for specifying

the structure of a text that is to be generated,

- the structure of the data base, i .e . , the way in

which the data base is organized to facilitate

the generation of natural language texts, and

the text generation algorithm which generates

a text given a text specification and a data base.

This approach represents the basic insight presented in this paper. It is

simple and generatively very powerful, but a number of improvements

are possible. Some of these possible improvements are discussed in

Section 3.

Text Specification

A text specification is a compact description of the outline of a text.

The form of a text specification is as follows:

. O0

~te×t specl flcatlon~::=~subspeclflcatlon~t;~su bspecl flcah or~} o

~ubspecificatior~.-:=~object name~(~R~ t, < R ~ ~)
I

<:object name~::=one or more contiguous characters

~relation name~:-=one to three contiguous alphabetic

characters.

-2-

The metalinguistlc symbols have the fol lowing significance:

'may be rewritten as I

encloses a class name

• . . occurs between a & b times

Object names are key words or phrases. They represent objects of

interest within a data base, for example, names of commands in a

programming language, people on a project or pieces of equipment

in a system configuration.

A relation is a connection or association between one object and a

fragment of text (i .e . , a part of a sentence or one or more closely

related sentences) and zero or more other objects. The fol lowing are

typlcal relation names: NT (narrower term); PT (part); FUN (function);

SYN (syntax); EG (example).

The significance of text specifications and of object names and relation

names in text specifications is develope d further in the examples that

fo l low. The significance of objects and relations in the data base is

described in section 2.2 . The algorithm for generating a text~ given a

data base and a text specification, is described in section 2 .3 .

First Example

Consider th e fol lowing request:

Please create a text that explains the function and the

syntax of the narrower terms of command. Examples of

each command should be included. Each command should

be discussed separately - - function, first, then syntax,

and last an example.
--3-

This request can be stated briefly by the following text specification:

COMMAND (NT(FUN, SYN, EG))

The corresponding text that would be generated would have an outline

in the following form:

First Command

Function of First Command

Syntax of First Command

Example of First Command

Second Cammand

Function of Second Command

Syntax of Second Command

Example of Second Command

etc.

The output for one command in the outline might be:

The function of the Set Command is to set a specified

control parameter to a specified integer value. The

format of the Set Command is:

<name > = <integer>

An example of the Set Command is:

SL:OU = 100

In the example, the maximum number of on-line

users (SL:OU) is set to 100.

-4-

2.2

2.2.1

Second Example

Suppose that in addition to the text of the first example, an intoduction

is desired in which a list of all the commands is given. The appropriate

text specification would be:

COMMAND (NT); COMMAND (NT(FUN, SYN, EG))

Third Example

Suppose that instead of grouping information by cammand, it is desired

that al l the functions should be grouped together, etc. Then, the

appropriate text specification would be:

COMMAND (NT(FUN), NT(SYN), NT(EG))

Data Base

A data base for a particular subject consists of two parts:

(a) a thesaurus that relates objects to each other and

to frac~nents of text, and

(b) fragments of text.

Thesaurus

A thesaurus contains an entry for each object.

An entry for a single object consists of any number of relationships. Each

relationship relates the object to a fragment of text and, in same cases,

to one or more other objects in addition.

-5-

2.2.2

An object that is being focused on (i .e . , as the object in a text

specification or as the obiect that an entry is for) is referred to

as a ~ .

An object should be included under a relation in a particular entry

i f i t occurs in the fragment for that relation and its meaning is not

self-evident in that context.

The fol lowing is an example of an entry in a thesaurus for SET

COMMAND :

SET COMMAND

FUN: 10

CONTROL PARAMETER

SYN: 11

NAME
I : I

INTEGER

EG: 12

FUN, SYN and EG are relations. The function of the SET COMMAND

is stated in fragment]0, the syntax in fragment 11 and an example of

the SET COMMAND is given in fragment 12. The object CONTROL

PARAMETER occurs in fragment 10 and its significance is not self-evident

in that context.

Text Fragments
I

The data base includes a text fragment for each relationship in each

entry. These fragments can be arranged (in the data base) into one or

more unif ied texts, perhaps with some fragments left over.

- 6 -

2.3

3.0

Fragments 10, 11 and 12 referred to above might read as follows:

10: The function of the Set Command is to set o

specified control parameter to a specified

integer value.

11: The format of the Set Command is:

<name> : <integer>

12: An example of the Set Command is:

SL:OU = 100

In the example, the maximum number of

on-line users (SL:OU) is set to 100.

Text Generation Algorithm

A flow chart of the text generation algorithm for handling subspeci-

fications is given in Figure 2.3a. The algorithm as described does not

include any error checking.

EXTENSIONS

This section suggests sc~ne of the ways that the basic approach could be

modified to advantage. Like the previous section, i t is divided into

three subsections which discuss text specifications, the structure of the

data base and the text generation algorithm. But instead of discussing

one basic approach, i t discusses many possible extensions of that basic

approach. The extensions discussed often effect more than one of these

three areas. They wi l l be discussed wherever they can be presented in

the most illuminating way.

-7-

l Put Symbols into SYMBOL

J Push (SYMBOL (1),3) into SUBLIST

J Pull (CSUBJECT, IS) from SUBLIST

Figure 2.3a

I
I

Pull all of TEMPLIST j~
and push into SUBLIST J-

No More / f - ~'~

I
Print fragment
pointed to
by CSUB.IECT

PAREN = 0 j

= PAREN- 1 ~ ~ ~_ ~ ~ ,, PAREN

- V - ~

r-"L. _ ~ i ~ under this re-
l / SYMBOL I ~ ~ - ~ _ vy !lation for
L a relation name] ~ - a p p e n d - ~ /

N ~ (OBJECT, is+2)

i P'e "a' ntno 0> I e for this relation
name for CSUBJECT
to TEMPLIST

- 8 -

FIGURE 2.3b

Notes for Flow Chart

SYMBOL

SUBLIST

CSUBJECT

IS

PAREN

TEMPLIST

a list containing the symbols of the text specification

in the order of their occurrence.

a list of items each of which is either (a) a fragment

number or (b) a pair that consists of a subject and

an index to the first symbol in SYMBOL to be

processed for that subject.

the current subject being processed.

an index to the symbol in SYMBOL that is being

processed.

a counter for keeping track of parentheses.

temporary list for collecting items to be pushed

into SUBLIST for one CSUBJECT.

-9 -

3.1

3.1.1

Text Specification

~odD wol ~ ~oI ~etokl
Paragraph Boundaries

With texts of any size paragraphing is desirable. A new symbol (PARG)

sider the followlr~oe~msl:d~Qfi~lwtdhgtighbi~er,~sed:

3.1.2

bnr~ tog}due o to etei~noo to:it ~ioq o (d) to ~edm,~n

Paroglra~lf~gJ~c~i~ I~e~i~rel~ef~re,.~b~ic~cussion of each of the

narrower terms of COMMAi~..toH~ ~,o/bg,~.eg3olc~

Section numb?b~ anodoheadi.nas co~l~ be handled in a similar manner.
. ez q ~/"11:5"~ {og icU~. " lng l lb~o 9 r j t] ' .~.. f l l .SU~.;)

~b,qr , b~;~R ! F~l:qg~eEts Ln,the Outp.vt
. ~." : ~ ' ~ n ~ ~ , : . _ t x ~ b n ~ n o

Consider the text speciflcatlon: ,bee~goo~q

81

T~UgcCl~ l t to l~ lda~b l~e~ ta~z61 ~mec~t/moture: TSIJClM]T

. T33LSU~D ~no ~o~ TSIJSU? otni

COMMAND

NT

FUN SYN EG
i

In the basic approach only the fragments of the lowest level relations are

printed. The fragment that lists the NTs of COMMAND is not printed.

It would probably be more reasonable to interpret text specifications

~ Xrbl~eir~ e~l 4. to rhqeb erh szoqqu~ tud ,btuow (((TVI)Tkt)T/,4)A

If i t was desired that fragments at a level be suppress . e ~ e r X ~ l d

be marked by a special symbol, say a minus sign•
ioi~)~le o e~u oi ed bluow meldolq ai(tt slbnad at Xow tnelnsvnoo A

, ~et~,~i~bni ? ~ e ~ i ~ n i o~ ~mon noitolo~ D ~eflo (' l ' aqod~q) Iodn~ • z .,~ n0erorcmes o t a ~emnon
.belia~b ei no~tolel 9~tt to gn i t~n

There are many relations that naturally form hierorchies~ e .g . ,

narrower term of, part of, works for and subroutine of. Consider
z~i~nebn. 9qeCI. gn~:hito8

a data base with a hierarchy of NTs. The un er ,ne e ~ "
~oiuoif~,.~a ~.~o~ (~oI~ ~, -~ lu~ i t~q o rit~,, b~loi~o~o tnemgmt A represent SUDlects or enrr~es. "

.~oHois~ i.~r{'~ ~,c aloe[do grit to ~,noHonolqx~ no tnebneqg ba i toejdua

~oitn~.~c, ,~ri! ~o~. air~emgo~'~,riT ~,o at~,~anoa ~:,~ido }o noitono~qx~ nA

? Ioi'~ns~.e ~i t.~)rkv ~ui~ . '~ejdo .ed~ :~o ~noitoie~

NT:I

bi~ow ~i.~i~o ~ ('PlU~) ~e, oiionu~BiOrit ~idr~n:~r~e~ zm.~s.~ ~i ;~ohq ,~

~.msea i~ i~nea~"on bno Jni-~nee~e ~ ~ o t ~ 10 r:oil0o~}i~zoto

io tgg tluoi~5 ~ evori ~t ~e'Hgd ed ~H~n~ ~l .bi~i~ xti~o~eaen~b
NT:2 NT~.-3

ebivo~q o~!o bno i'1,U ~} (at b~im~i ~o) ~ibu~oni anoltole~ Joilneaa.,~

:¢n ~ou~ tngmo?otz o X~le;- tiuo]eb cirJt ebhlevoFoj xt i l idoqoo o

o ~o1]eilneeae be~ebiznoo el~l~Odl anoitole~ ~boeteni ~o nolt ibbo n|

.ezod otob ~flt nl rlou~ ~o bs~hom ed bluoo toejdu~ ~oJuoit~c~q

NT:4

e~t ~i I.tU:I to~ ~bebutoni e~o ~ne~gml level ~erlgifl torlt gnlmu~.~,,

zeione~bnecleb refit etooibq; zte~lomd todt bno noitolm Ioitnez~e XI~O

:noitooilio~q~ txet B~iwolJo~le~li ~eblznoo ~bei1~ito~ e~l oi e~o

{~(~JY~)TIt) aHAMM03]
- £ [-

3.1.4

What text specification would cause all four fragments to be printed?

A(NT(NT(NT))) would, but suppose the depth of the hierarchy is

not known.

A convenient way to handle this problem would be to use a special

symbol (pethaps ' !') after a relation name to indicate that indefinite

nesting of the relation is desired.

! L ~

Satisfying Dependencies

A fragment as~,ociated with a particular relation for a particular

subject is dependent on explanations of the objects of that relation.

An explanation of objects consists of the fragments for the essential

relatiom of the object. But what is essential?

A_Apriori i t seams reasonable that functions (FUN) of objects would

be essential and examples (EG) not. But to insist on a particular

classification of relations as essential and non-essential seems

unnecessarily rigid. It might be better to hove a defauit set of

essential mlotlons including (or limited to) FUN and also provide

a capability to override this default set by a statament such as:

ESSENTIAL = FUN, NT

1~ addition or instead, relations that are considered essential for a

I~rt iculm subject could be marked as such in the data base.

Assuming that higher level fmgmnnts are included, that FUN is the

only essential relation and that brackets i/ldicote that dependencies

~omto be satisfied, consider the following text specification:

-12-

3.1.5

The fragments giving the narroweL" terms of COMMAND and those

giving the syntax of all the narrower terms of COMMAND would be

included in the resulting text. In additlon~ the functions of COMMAND~

of the narrower terms of COMMAND, and of any objects of the SYN

relations would be included. Further~ the functions of any objects of

these FUN relations would be included~ etc.

Natural Language Queries

The approach in dealing with natural language queries is to convert

them into text specifications. In order to make the conversion, the

following types of words would have to be isolated in the query:

relations (e.g., function, syntax, example)~

objects (e.g., ADD COMMAND)and

connectors of objects with relations or relations

with relations (e.g., of).

In the following example, the words that would need to be isolated

are underlined:

Please create a text that explains the function

and the syntax of all of the commands in the

data base.

Next i t would have to be determined which objects and relations were

connected in the query and how. What we have is FUN and SYN of

NT of COMMAND.

This must f inally be translated into:

COMMAND (NT(FUN, SYN))

-13-

3.2

3.2.1

Data Base

References across Subject Areas

The approach described here depends on a text specification being

processed for a particular data base. The data base should be highly

controlled and relatively free from ambiguities.

Although each specification must be directed at a particular data base,

not all (or even any) of the fragments in the resuJtlng text would

necessarily be from that data base.

Consider the following data bases:

A slash indicates that the name of the data base for that object follows:

OVERVIEW DATA BASE

ASSEMBLER
- NT:IO

META SYMBOL/METASYMBOL

MATHEMATICAL COMPILERS
NT:20

/BASIC/BASIC

FORTrAN/FORTRAN ~ x % ~ . FORTRAN DATA BASE

__~ BASIC DATA BASE
I :

BAsic FORTRAN
FUN: 17 j j FUN: 30

' 1 1

- 1 4 -

3.2.2

The text specification MATHEMATICAL COMPILERS (NT(FUN))

would result in a text consisting of fragfi~ent 10 from the BASIC

data base and fragment 30 of the FORTRAN data base.

Higher-Level Connectives

A higher-level connective is a connective that connects a sentence

or a group of sentences with a sentence or a group of sentences.

This is in contrast to the relations discussed so far which relate a

subject to an object or to s~nething else.

The following are examples of such connectives:

similarly (SIM),

in contrast,

thus,

otherwise and

for example (EG).

These connectives can be incorporated into the data base by expanding

the reference to fragments. Consider the following reference to a

fragment:

FUN: I0, EG:20, SIM: X(FUN)

This reference says that the function of the subject of the entry in

which i t occurs is stated in fragment 10. It says further that an

example of the function is given in fragment 20 and that the subject X

has a similar function.

-15-

3.3

3.3.1

3.3.2

Text Generation Algorithm

Generation of Fragments

The implementation of the text generation algorithm is simpler i f

fragment numbers and corresponding fragments are included in the

data bases for all relationships; but for some relations (e.g., PT

and NT) the fragment can be generated from the thesaurus entry

itself. In other cases (e.g., FUN) part of the fragment can

be generated.

For example, a relationship with the following format:

<su bj ect

PT:

<Obj ect

<Object~

implies a fragment of the form:

<subject> has the following parts: <object>, <object>...

Lexical information for the subjects and objects would be necessary

to include the correct articles and endings.

Eliminating Redundancies

In the context of a reference manual for a programming language,

syntax would probably be considered an essential relation. The

relations between syntactic objects is (roughly) hierarchical, but

the overall structure of syntactic objects is generally not quite a

-16-

tree structure because of the fact that more than one object is

often dependent on a single object.

Consider a data base that contains the following objects and relations:

ASSIGNMENT STATEMENT

SYN: 1

s
VARIABLE

ARITHMETIC EXPRESSION

VARIABLE

SYN: 2

SUBSCRIPTED VARIABLE

S SIMPLE VARIABLE

SUBSCRIPTED VARIABLE

SYN: 3

ARRAY IDENTIFIER

SUBSCRIPTED LIST /
SUBSCRIPTED LIST

SYN: 4

ARITHMETIC EXPRESSION

\
ARITHMETIC EXPRESSION

SYN: 5

TERM

. e e . . o

-17-

3.3.3

The text specif ication:

ASSIGNMENT STATEMENT(SYN !)

would result in the syntax of ARITHMETIC EXPRESSION being described

twice in exact ly the same words. Probably this is not desirable, and it

would be even less desirable i f TERM and/or OPERATOR required further

objects to explain them.

How can such redundancy be identi f ied and how is i t to be handled?

One way would be to construct a graph for the relationships to be

included in a text plus references to al l the occurrences of each object

in the graph. For any object that occurred more than once a check

would be made to determine if the subgraph going down from it in one

occurrence was the same as in some other occurrence. Al l but one

such subgraph would be deleted. The one that was to generate text

earliest would be retained.

Flattening of Structures

Structures that go beyond a certain depth are often confusing i f they are

not broken up or f lattened. Thus, in describing a programming language

the basic symbols (such as arithmetic expressions) are often discussed be-

fore the discussion of individual commands. This means that in dis-

cussing an individual command (such as an assignment statement), i t is

not necessary to explain arithmetic expressions (or variables) in al l

their complexi ty.

Given the capacity for el iminat ing redundancies, i t is possible to f latten

structures. As an example, consider the f?l lowing text specif icat ion.

ARITHMETIC EXPRESSION(SYN I); ASSIGNMENT STATEMENT(SYN I)

-18-

4.0

4.1

First, the fragment for the syntax of arithmetic expressions would be

printed along with the fragments for the objects it depends on, etc.

Second, the fragment for the syntax of the assignment statement would

be printed along with the fragments for the objects it depends on0 etc.,

except that the fragments for arithmetic expressions and the fragments

for objects it depends on, etc. would not be printed because they

are redundant.

APPLICATIONS

The approaches to text generation described in the previous two

sections have applications in many areas including the following:

HELP subsystems for time-sharing systems,

Automatic Documentation Systems,

Vocabulary Control,

Automatic Letter Writing and

Automatic Report Generation.

The first two of these applications are discussed below.

HELP

A HELP subsystem is a part of a time-sharing system that helps the user

to understand the system and the various parts of the system. Two main

types of help may be provided:

- -abi l i ty to answer questions about the system

(without reference to the current state of

the system) and

--abi l l ty to answer questions about the current

-19-

state of the user's job.

The techniques described in this paper are oriented more towards

the former capabi l i ty .

The user of a HELP subsystem is typical ly in the middle of a task when

he needs help. He wants what he has done so far to be intact when

he returns to his original task. Moreover, he does not want to have to

make a special effort to achieve this because (a) he might forget and

(b) i t takes time and he is in a hurry. Often these goals can be achieved

by incorporating the HELP capab!l i ty into the terminal executive

of the system.

I t is especially important that a HELP subsystem help the user to

understand how i t should be used. For example, i f the user types

in an i l legal text specification, the HELP subsystem might offer to

display some material concerning the proper format of a textspeci f lcat ion.

Ab i l i t y to handle simple natural language queries is very desirable,

at least the first time a user uses a HELP capabi l i ty . I t means that

he can use it without having already learned to use text specifications.

Exampl

A user of a time-sharing system is entering the statements of a BASIC

program on- l ine when a syntax error occurs on an assignment statement.

But the error message does not make clear to him how he can correct

the error. So, he exits to the terminal executive. Then he asks a
i

series of questions about the syntax of an assignment statement in BASIC,

finds the information that makes clear how to correct the error, and

returns control t o t he on- l ine BASIC compiler with the same environment

-20-

t~

4.2

(including the partly entered program) as when he left. Then, he

can reenter the statement that was in error and continue as i f

nothing had happened.

On-Line Documentation Systems

An automated documentation system consists of capabilities for

maintaining a data base and for producing formal documents such as

reports or documents for individual use. The approach discussed in

this paper has primarily to do with the generative capabilities. The

documents generated would be natural language texts.

Some of the advantages of an on-llne system are: (a) the system can

be accessed when the information is needed; (b) the information that

is received may suggest further queries and (c) syntactic or semantic

errors in the text specification can be corrected at once.

A system using the approach described has the advantage of suggesting

gaps in the documentation. For example, one might discover that

a particular object never occurs as a subject or that a relevant relation

is missing from an entry.

As a fal l-out of the approach, one has a thesaurus (or glossary)

for vocabulary control.

A couple of examples of the use of such a system may be helpful in

communicating its significance.

First Example

A new person has been assigned to an implementation project. He

Would like up-to-date documentation of parts of the system relevant to

-21-

the work he wi l l be doing. In dif ferent areas he wants dif ferent

types of information. The structure of the texts generated for him

can be ta i lored to his needs by use of appropriate text specif ications.

I f he needs more information in some areas, he can use the system

in teract ive ly .

Second Example

The information in a part icular area changes frequent ly and a number

of people need to receive up to date information per iod ica l ly . A text

specif icat ion can be created to generate the appropriate information, and

(assuming the structure of the data base doesn't change signif icant ly)

the same speci f icat ion can be used to generate a text with the same

structure (10ut di f ferent information) as after1 as is desired.

- 22 -

BIBLIOGRAPHY

1.

2.

3.

Lauriault (Loriot), James

Shipibo Paragraph Structure

unpublished paper, Summer Institute of Linguistics, August, 1957.

Jacobson, S.N.

"A Modifiable Routine for Connecting Related Sentences of

English Text."

in Computation in Linguistics (edited by Paul L. Garvin and

Bernard Spolsky), Indiana University Press, Bloomlngton~

indiana, 1966.

Woolley, George H.

Syntax Analysis beyond the Sentence

(presented at the Fourth Annual Meeting of the Association for

Machine Translation and Computational Linguistics), Computer

Associates Inc. document no. CA-6607-2121, July~ 1966.

-23-

