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Abstract

Technical support problems are very complex. In contrast to regular web queries (that contain
few keywords) or factoid questions (which are a few sentences), these problems usually include
attributes like a detailed description of what is failing (symptom), steps taken in an effort to reme-
diate the failure (activity), and sometimes a specific request or ask (intent). Automating support
is the task of automatically providing answers to these problems given a corpus of solution doc-
uments. Traditional approaches to this task rely on information retrieval and are keyword based;
looking for keyword overlap between the question and solution documents and ignoring these
attributes. We present an approach for semantic parsing of technical questions that uses gram-
matical structure to extract these attributes as a baseline, and a CRF based model that can improve
performance considerably in the presence of annotated data for training. We also demonstrate
that combined with reasoning, these attributes help outperform retrieval baselines.

1 Introduction

Technical support services involve enterprises providing after-sales support to users of technology prod-
ucts. Traditionally, this entails employing a large number of human agents to manually diagnose, trou-
bleshoot, and resolve customer problems. However, with ever increasing variety of products and the
exponential growth of users, this model doesn’t scale. Costs of hiring and training additional talent to
keep up with this growth is a huge overhead. There is a clear incentive to automate this process, reduc-
ing manual effort and resolution times. Automating technical support refers to the task of automatically
understanding user questions, performing diagnosis and troubleshooting, either remotely or in conversa-
tion with the user, and providing resolutions. Given the massive potential impact, it is no surprise that
the problem draws attention and investment from many large corporations as well as startups (Flinders,
2015), and (Dhoolia et al., 2017).

Automating technical support has a very broad goal, and involves solving various sub-problems like
document representation (Yang et al., 2017), identifying and extracting procedures, log analysis, and
goal based dialoging (Bordes and Weston, 2016). Each of these problems has a plethora of daunting
research challenges that remain largely unsolved. In this paper, we restrict our focus to the problem of
understanding questions in technical support and retrieving relevant resolution documents from a corpus
of support content. While a complete automation system would also tackle the challenging problem of
identifying the troubleshooting/diagnostic procedure from these documents, we assume that a returned
“relevant” document contains procedures required for resolving the problem.

As identified in (Gupta et al., 2017) technical support problems are complex, and involve various at-
tributes like failing entities, a detailed description of the problem (symptom), steps taken in an effort to
remediate the failure (activity), and sometimes a specific request or ask (intent). Consider two actual sup-
port problems in Figure 1 from the software and the hardware domains. The hardware query comprises
a problem description with the entity “tape drive”, mentioning the symptom “stuck” and an unsuccessful
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Table 1: Average length of questions (in words) from QA datasets.

Dataset Average length

Wiki QA 7.32
TREC 2007 QA 8.05
DB2 Prop 150.97
DB2 Open 105.87

Figure 1: Illustration of Annotation of attributes on a Support ticket

attempt to mitigate the problem by “cleaning”. The software question describes relevant details regard-
ing the “failing installation”. It also contains an explicit ask from the technician for “analysis of log
files”. State-of-the-art information retrieval based systems which depend on keywords do not perform
well on such queries. For example, without an understanding of the hardware problem description and
its attributes, the system might return pages which suggest cleaning the tape drive. For the software
query, understanding the explicit ask of log analysis is key to a relevant response. This inherent com-
plexity of questions in this domain differentiates it from traditional Question Answering or Information
Retrieval problems. Table 1 compares the average length of questions in popular open QA datasets -
WikiQA (Yang et al., 2015) and TREC 2007 QA (Dang et al., 2007), to two datasets in the domain of
technical support that we curated. For effective retrieval of documents, it is essential that we extract these
attributes (removing noise), and implement reasoning on top.

In this paper, we present a method for semantic parsing of support questions, to extract these attributes,
which uses rules based on the grammatical structure of sentences. To the best of our knowledge, we
are first to address the complexities of problems in technical support by identifying pertinent semantic
attributes, extracting them, and proving their usefulness in retrieving relevant results.

In section 2 we present existing related work. In section 3, we present the details of our model for
semantic parsing. The goal of extracting these attributes, however, is to improve quality of returned
documents. To emphasize the importance of extracting these attributes, we show marked improvements
in retrieval. The datasets used for experiments are discussed in 4 and evaluations are presented in
section 5. We conclude the paper with a discussion of the learnings from evaluation and analysis, and
directions for future research in section 6.

2 Related Work

The problem of answering natural language questions has received significant attention from the natural
language processing research community. Dependency and simple phrase structure grammar models
have been around for a while for understanding natural language text. The authors in (de Marneffe
and Manning, 2008) parse grammatical relations from text for automated understanding. In Watson
Jeopardy (McCord et al., 2012), authors use slot grammar parsing (McCord, 1990b) that decomposes the
natural language text to slots, which is widely used for applications like question analysis (McCord et
al., 2012), question decomposition, knowledge extraction for QA (Fan et al., 2012), relation extraction,
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(Wang et al., 2012), candidate generation (Lally et al., 2012), and analysis and gathering of textual
evidence (Murdock et al., 2012). Works focusing on understanding user intent use classifier models
or dependency parsing schemes (Li and Roth, 2006; Metzler and Croft, 2005). Other recent works
build neural models that represent a question as a continuous-valued vector (Chen et al., 2016). The key
difference in these approaches and our problem setting is that they usually work on simpler, entity seeking
questions. However questions in support are usually very complex, contain multiple attributes describing
the situation that leads to a failure, attempts made to resolve the problem, and explicit asks. The answers
to these questions are usually diagnostic or troubleshooting procedures contained in documents which
need to be searched based on an understanding of the problem.

(Vtyurina and Clarke, 2016) tackle open domain complex questions by learning keywords from a large
supervised dataset of questions and answers. Extraction of such keywords from questions certainly helps
retrieval by removing noise. However, in technical support, the multiple types of attributes necessitate
their separate extraction and reasoning. “Activity” words extracted from the question as keywords would
hurt retrieval unless they are correctly identified, and their matching score is reduced. But, the same
word if present as “Intent” would certainly help improve retrieval and their matching score would need
to be boosted. Finally, (Yang et al., 2017) presents a system which improves the state of the art for
technical support question answering. Their work is complementary to ours, as they address the problem
of knowledge representation by constructing a knowledge graph from content and do not delve into the
complexities of technical support problems.

To the best of our knowledge, ours is the first attempt that defines important finer attributes in technical
support questions, proposes a model to extract them, and performs reasoning to retrieve relevant results.

3 Semantic Parsing And Reasoning

As explained earlier, we identify the following three attributes for technical support questions:

1. Symptom - A description of what’s failing

2. Activity - Steps that have been tried to remediate the problem

3. Intent - A specific request or ask

Questions can contain multiple of each attributes. Because of this inherent complexity, it is imperative
to parse these attributes for retrieving relevant results. Table 2 shows the frequency distribution of the
different attributes in the training set.

Formally, the problem of semantic parsing is formulated as follows. Given a support question Q,
which is comprised of a sequence of tokens - Q = [q1, q2, .., qn], we want to extract three sequences S, A
and I which denote the symptoms, activities and intents (these sequences are not necessarily contiguous,
allowing for multiple symptoms, activities, and intents in the same question).

We present a Semantic Parser to extract these attributes from questions using rules built on the gram-
matical structure of sentences. We also present a Conditional Random Field model, which, in the pres-
ence of large amount of supervision, outperforms the rule based Semantic Parser. However, such anno-
tations are expensive to curate. Details of both the models are presented below.

3.1 Semantic Parser
There are several natural language parsers that allow tokenization and POS tagging. Some also provide
a simple description of the grammatical relations in a sentence, but this is not sufficient for several ap-
plications. Slot Grammar system has a lexicalist character and treats different grammatical structures in
a language independent manner through different rule types. IBM Watson uses two deep parsing com-
ponents: English Slot Grammar (ESG) followed by Predicate Argument Structure (PAS) for linguistic
analysis of text (McCord, 1990a).

ESG works on a sentence to produce a parse tree which has a deep structure (logical analysis) and a
surface structure (grammatical analysis). PAS simplifies the ESG parse tree structure to the core semantic
meaning. PAS forms a labeled directed graph which is more flexible and requires less knowledge than
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Figure 2: Sample PAS tree

Figure 3: Example of template that captures cases like “there is error”, “there was error”. “@1” would
be replaced by a dictionary word such as error message, symptom, blocker, expiration, or limitation

ESG. PAS combines the two dimensions of ESG by omitting nodes with auxiliary verbs, closed class
nodes introducing verb phrases, determiners (except for high semantic determiners), forms of be with no
predicate and with adjective predicate. The negation annotator modifies the standard PAS by retaining
some of these nodes, and we use the negation annotator to identify symptoms/problems like does not
work, cannot boot from a question. Figure 2 shows an PAS tree structure for a sample sentence. While
ESG retains syntactic information, PAS only represents semantics. Sentences with a similar meaning
but different structures (like the active and passive form of the same sentence), would have varying ESG
parses but the same PAS parse. Therefore, it is much more efficient to create patterns on the PAS tree
than the ESG tree.

To obtain the attributes from user utterances, we create patterns to be matched to the input query.
These patterns are essentially rules written on top of the slot grammar. Since manually specifying all
possible rules can get cumbersome, templates are used to represent these patterns. Figure 3 presents a
sample template for extracting symptoms like “there is/was an error”. These templates are combined
with the dictionary words identified for each attribute (symptom, activity and intent) to form rules that
are matched to the PAS tree for extraction. Text spanned by the ESG node, corresponding to the matched
PAS node, is extracted and marked as the annotation output for the corresponding attribute. The base
lexicon in ESG is augmented with support specific terminologies and Word-Net for wider coverage.
Additionally, multi-word entries were added into chunk lexicons to obtain multi-word phrases as a single
node in the PAS tree.

3.2 CRF based Parser
The task of extracting attributes from technical support problems can be formulated as a sequence la-
beling problem. This follows from the observation that these attributes manifest in a rough order -
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symptoms, followed by attempts to mitigate, and finally explicit requests. Context words are also im-
portant in identifying spans of text for these attributes. CRFs are graphical models that can capture such
dependencies among input observations (Lafferty et al., 2001). A CRF defines a conditional distribution
p(y|x) where y is the corresponding label sequence and x is the observed data sequence.The current label
at time step t, yt can be dependent on any of the previous n labels, and all the observations in an n-order
CRF. In our case, the input sequence x corresponds to a series of words, while the label sequence y corre-
sponds to the symptom, activity, intent or other assigned to the input sequence. The probabilistic model
of a label sequence given some sequence of words is mediated in this model through a set of weighted
functions fi:

p(y|x) = exp(
∑

i

∑
twifi(yt−1, yt, x, t))

Z(x)

where the wi are the weights assigned by the learning algorithm, and Z(x) is a normalization factor over
all label sequences.

For training, a manually annotated set of support questions is used. Spans are labeled with the B-I-
O encoding, where each word in the query is annotated with one of the following classes (labels): the
beginning of a symptom (B-S), inside of a symptom (I-S), the beginning of an activity (B-A), inside of
an activity (I-A), the beginning of an intent (B-I), inside of an intent (I-I) or other (O).

To conduct our experiments, we used the linear-chain Stanford CRF implementation (Finkel et al.,
2005) . We used current word, previous word, next word, current word character n-gram (n ≤ 6),
presence of word in left window (size = 4), presence of word in right window (size = 4), position of word
in the sentence, and current POS tag as features computed using the Stanford NER toolkit.

3.3 Reasoning

We need to use the extracted attributes to perform reasoning on the retrieved results. For example, for
the problem in Figure 1, we would not want to return back to the user, pages which detail a procedure
for cleaning the tape drive. Similarly, when a user specifies a particular intent, we would ideally like to
prioritize matches with this intent over matches with the symptom which might include other diagnostic
or resolution procedures. For specifying these priorities, we create a module that weighs query fields
in the retrieval engine based on the attribute type of the field. Query fields containing intents are given
the highest weights, symptom containing query fields are given slightly lower weight, and fields with
activity are given negative weights to suppress results matching this field. The actual values for weights
are determined empirically.

4 Dataset and Experimental Setup

Training and evaluation of our parser models is done on a proprietary dataset of 1972 actual customer
problems. These utterances have been manually annotated with the identified attributes by SMEs. 80%
of this data is set aside for training and validating the CRF model. The rest of the data is used for
evaluating both models.

Evaluation of retrieval results is done on two datasets which we call DB2 Prop, and DB2 Open, both of
which contain questions and relevant answer links for DB2. The DB2 Prop dataset consists of proprietary
user problems for which the correct answer url is provided by SMEs. The DB2 Open dataset is crawled
from the developer works website 1. It consists of user questions and urls extracted from “accepted”
answers for those questions. We get manual annotations of attributes on 96 questions from DB2 Prop,
and 48 questions from DB2 Open dataset from SMEs, and use these to evaluate retrieval performance.

For evaluation of retrieval results, we use elastic search as the retrieval index. The corpus is a crawl of
publicly available technote pages 2 for the DB2 product, which are majority of the answers for both the
DB2 Prop and DB2 Open datasets. From the downloaded pages, we extract and index the title and content
of the body as document fields. The whole text of the problem is sent to this index (on both document

1https://developer.ibm.com/answers/topics/db2/
2https://www.ibm.com/mysupport/s/topic/0TO500000001fUNGAY/db2-linux-unix-and-windows,

https://www.ibm.com/support/knowledgecenter/
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Table 2: Distribution of questions with S, I , and A

Label Count

Symptom 1773
Activity 121
Intent 510
Multiple Symptom 467
Multiple Activity 13
Multiple Intent 12

Table 3: Performance (%) Comparison for Symptoms: Strict Scoring

Method Precision Recall F1

Semantic Parser 52.33 42.42 46.46
CRF 78.3 71.20 74.33

fields) as a baseline. The query containing the Semantic Parser extractions are sent with weights on query
fields as described in section 3.3.

5 Evaluation

In this section we evaluate our system along two dimensions -

1. Precision, recall and F1 score for the extractions from the Semantic Parser and CRF

2. Relevance of the retrieved results between a whole query baseline and Semantic Parse based query

5.1 Evaluation of Attribute Extraction Models
Since annotations of these attributes were not readily available to us, we had Subject Matter Experts
(SMEs) manually annotate 1972 questions from a proprietary ticketing system. The SMEs were asked
to identify spans from questions which indicate the problem, efforts in resolving the problem, and ex-
plicit requests. 80% of these questions were used for training the CRF model, and the rest were used
for evaluating both models. The distribution of symptom, activity and intent in our training dataset is
shown in the Table 2. Longer more complex queries often had multiple symptoms, intent and activity
(distributions shown in table 2).

As we can see, a large number of support questions have multiple symptoms. We designed two scoring
schemes: strict scoring, where an extraction is marked correct only when all the values from ground truth
are identified; and partial scoring, where the extraction is marked correct if any one of the values from
ground truth is identified. The partial scoring scheme would not harshly evaluate models when most,
but not all values of an attribute are extracted. Tables 3 and 4 summarize the performance of all the
models. We present results on the strict scoring scheme only for symptoms, since there are very few
questions with multiple activities and intents. For an attribute which has just one value in the ground
truth, strict and partial scoring are the same. In Table 3, we note that CRF does the best in extracting
multiple symptoms. The main reason is that CRF uses feature as well as contextual modeling of the
words in the sentence. It inherently being a sequential labeling algorithm, accounts for its 78% precision
in identifying all symptoms.

Note that CRF is a supervised learning model and needs manually annotated training data. The rule
based Semantic Parser does not have this limitation and instead uses linguistic pattern matching on
dependency trees. This renders it more generic and can be applied to problems from other products with
minimal intervention. With a typical big service provider supporting close to 7-8k products, this is a
useful property. We observe that the CRF outperforms the rule based Semantic Parser on Symptoms for
which we have an abundance of training examples. For the other two attributes, the Semantic Parser is
slightly better than the CRF.
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Table 4: Performance (%) Comparison (Symptom, Activity and Intent): Partial Scoring

Model Symptom Activity Intent
Precision Recall F1 Precision Recall F1 Precision Recall F1

Semantic Parser 67.81 58.84 62.17 71.33 37.2 48.64 88.44 59.29 70.63
CRF 88.64 81.60 84.35 70.0 33.33 44.85 93.74 48.67 64.07

Figure 4: Question with extractions and retrieved results

5.2 Evaluation of retrieved results

As explained in the setup, evaluation of retrieved results is performed using elastic search. Figure 4 gives
an example of the top retrieved results using the original query and the Semantic Parse attributes. The
baseline query consists of the whole question, and extractions from the Semantic Parser are weighed
according to the attribute-type in the reasoner. The highest weight is given to intent extractions, and
a negative weight is assigned to attempt extractions. We see that because of repetitions of the token
“rollforward” in the original query, the top result returned is about the “ROLLFORWARD DATABASE
command”. When we give a negative weight to the attempt Semantic Parse extraction, and increase the
weight of the symptom extraction (although less than that of the intent extraction), the result about “Table
space states” bubbles to the top.

The retrieval results (Precision@k) on the two datasets are presented in Table 5. Precision@k measures
the fraction of questions with the correct answer in the top k results.

Precision@k =
nk ∗ 100

N
(1)

where nk is the number of questions with the correct answer in top k results, and N is the total number
of questions.

We see a slight improvement in P@1 on the DB2 Prop dataset, and a 42.9% improvement in P@5.
However, on the DB2 Open dataset, we see very slight improvement on the P@1 and no improvement
in P@5. On further analysis we find that there are two reasons for this. Firstly, we find that for a large
number of the queries, the answer marked as the ground truth is only partially related to the solution, and
sometimes it is completely different. Since the accepted answer was assumed to be correct and there is
no manual verification of the correctness in this dataset (unlike in DB2 Prop), we find that the confidence
on ground truth in DB2 Open is low. Another reason we find is that in DB2 Open, people often attach
code snippets and stack traces in the question, which can easily be understood by humans but are difficult
for the models to annotate. Identifying and extracting out (and in the future, understanding) these code
snippets and stack traces, would improve the accuracy on this dataset further.



3258

Table 5: Retrieval Performance (P@k)
Model DB2 Prop DB2 Open

P@1 P@3 P@5 P@1 P@3 P@5
Whole Query 7.29 14.58 28.13 25.0 33.33 37.5

Semantic Parse Query 9.38 19.79 40.63 27.08 31.25 37.5

6 Discussion and Future Work

Through our experiments, evaluation and error analysis, we stumble across a number of problems that can
be addressed to improve understanding of technical support questions, and increase retrieval accuracy.
Some of the interesting problems are detailed below -

• Sub-division of Activity Through careful analysis of activity extractions, we find that it can further
be split into two classes that help better understanding of the question. The first class are actions
or steps that were taken before the problem occurred. For example, in the snippet - We tried to
upgrade the DB2 AESE ON RHEL from 10.5.5 to 11.1 and in upgrade check got orphan rows,
“trying to upgrade DB2” is not a step taken to remediate the problem, but the action that resulted in
the error. The second class are actions that are taken to remediate the problem (the activity extraction
in figure 4). It is clear that we would not want to exclude documents/procedures containing tokens
from the first class from appearing in the results. The challenge with creating such a distinction, we
find, is that examples from both these classes manifest in very similar linguistic patterns. Correct
distinction between these two classes would probably require us to use position features from the
symptom extraction.

• Identify Stack Traces, Core Dumps, and Code Snippets As identified in section 5.2, stack traces,
core dumps, and code snippets, confuse the Semantic Parser. Returning these poor extractions hurts
retrieval performance. Further, if we could truly understand these sections in the way humans do, it
would certainly increase efficiency of retrieval.

• Noisy Intent Extractions Extraction of patterns like “please help” or “please suggest resolution”
as intent, creates noise for retrieval. Such extractions could be filtered if they do not contain entity
or action keywords from the domain.

• Semantic Parsing performance - We see that the CRF models outperforms the Semantic Parser in
the presence of large amounts of training data by leveraging contextual features. However, for cases
where training data is not available, it fails to reach comparable performance with the rule based
parser. The Semantic Parser also has the advantage of being easily generalizable across products as
it works with the semantic parse of sentences. An ideal model would be able to combine these two
strengths, being generalizable and being able to leverage contextual features.
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