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Abstract

Several metrics have been proposed for evaluating grammatical error correction (GEC) systems
based on grammaticality, fluency, and adequacy of the output sentences. Previous studies of the
correlation of these metrics with human quality judgments were inconclusive, due to the lack of
appropriate significance tests, discrepancies in the methods, and choice of datasets used. In this
paper, we re-evaluate reference-based GEC metrics by measuring the system-level correlations
with humans on a large dataset of human judgments of GEC outputs, and by properly conducting
statistical significance tests. Our results show no significant advantage of GLEU over MaxMatch
(M2), contradicting previous studies that claim GLEU to be superior. For a finer-grained analysis,
we additionally evaluate these metrics for their agreement with human judgments at the sentence
level. Our sentence-level analysis indicates that comparing GLEU and M2, one metric may be
more useful than the other depending on the scenario. We further qualitatively analyze these
metrics and our findings show that apart from being less interpretable and non-deterministic,
GLEU also produces counter-intuitive scores in commonly occurring test examples.

1 Introduction

Grammatical error correction (GEC) refers to the task of automatically detecting and correcting gram-
matical, spelling, and word choice errors in written text. As newer approaches are being developed for
this task, it becomes essential to have reliable means to compare them. In the related field of machine
translation (MT), human judgments are used as ground truth to rank systems in the evaluation campaigns
as part of the Workshop on Machine Translation (WMT) (Bojar et al., 2016a) held annually. In the
absence of annual evaluations and periodic human-judged shared tasks for GEC, robust automatic eval-
uation metrics are necessary to reliably assess improvements. Automatic evaluation methods can also
help in system development and validation.

Previous shared tasks on GEC relied on automatic evaluation metrics to evaluate the performance of
participating systems (Dale and Kilgarriff, 2011; Dale et al., 2012; Ng et al., 2013; Ng et al., 2014;
Rozovskaya et al., 2015). The CoNLL-2014 shared task test set and evaluation metric, M2 (Dahlmeier
and Ng, 2012), have been used as the primary benchmark for evaluating English GEC. After the CoNLL-
2014 shared task, two reference-based evaluation metrics, namely I-measure (Felice and Briscoe, 2015)
and GLEU (Napoles et al., 2015; Napoles et al., 2016a), were proposed for GEC. More recently, some
reference-less metrics were also proposed (Napoles et al., 2016b; Asano et al., 2017). A standard way
to identify the best metric among them is to compare their correlation to human judgments. In the case
of MT, WMT organizes a metrics shared task each year, where the correlation of system-level rankings
generated by metrics and humans is measured. There is also a segment-level evaluation subtask where
the agreement of metrics is measured at the sentence level. Prior work in GEC has followed the system-
level evaluation approach to compare metrics (Grundkiewicz et al., 2015; Napoles et al., 2015; Sakaguchi
et al., 2016). However, there has been no prior work on sentence-level evaluation. From prior studies,
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it may appear that GLEU performs better than the de-facto M2 metric. However, previous system-level
correlation studies turn out to be inadequate, primarily due to the absence of significance tests and the
choice of datasets and methods used. In this paper, we re-evaluate reference-based GEC metrics using
appropriate significance tests to measure if previous conclusions can be trusted. We find that there is
no evidence to suggest that GLEU is significantly better than M2. Contrary to system-level evaluation,
I-measure is found to be a reasonably useful metric at the sentence level and has a positive correlation
with human judgments at the sentence level. In our sentence-level evaluation, we find scenarios where
M2 outperforms GLEU and vice versa. Our qualitative assessment of these metrics on example sentences
reveals the shortcomings of GLEU in comparison to the other metrics.

2 Evaluation Metrics

We study three popular reference-based evaluation measures that have been proposed for GEC, namely,
MaxMatch (M2), I-measure, and GLEU.

2.1 MaxMatch (M2)

The M2 metric (Dahlmeier and Ng, 2012) computes precision, recall, and F-measure by maximally
matching phrase-level edits made by a system to gold-standard edits annotated by humans. A gold-
standard edit used by M2 includes the location of the error within the tokenized input sentence and the
proposed correction. Although annotations about the type of errors can be included in the gold standard,
they are not used while scoring. For computing scores for specific error types, a variant of M2 has been
proposed (Bryant et al., 2017).

The standard M2 computation is defined as follows. Consider a set of input sentences S = {s1, ..., sn}
and their corresponding system corrected hypotheses H = {h1, ..., hn}. The set of gold-standard edits
for each input sentence si is denoted by gi and the set of edits made by the system to transform si to hi
is denoted by ei. Precision, recall, and F-measure are given by:

precision =
No. of correct edits made by the system
Total no. of edits made by the system

=

∑n
i=1 |ei ∩ gi|∑n
i=1 |ei|

recall =
No. of correct edits made by the system

Total no. of gold-standard edits
=

∑n
i=1 |ei ∩ gi|∑n
i=1 |gi|

Fβ = (1 + β2) · precision · recall

(β2 · precision) + recall
.

A β value of 0.5 is used in standard M2 (since CoNLL-2014 shared task), in order to weight precision
twice as much as recall. This penalizes incorrect feedback more severely, which is especially important in
the context of language learning, where we would like to minimize giving incorrect feedback to language
learners. When several sets of annotations (by different annotators) are available for an input sentence
si, the set that maximizes the F-measure is chosen as gi.

The set of system edits ei for the ith sentence is obtained by first constructing a token-level edit lattice
from the Levenshtein distance matrix. Additional edges are added to the lattice to represent phrase-level
edits by combining adjacent edges, subject to a constraint on the maximum number of unchanged words
(set to 2 in standard M2). Edges of the lattice are appropriately weighted such that a minimum distance
path computation yields the set of edits ei that maximally overlaps with the gold-standard edits.

2.2 I-measure

I-measure (Felice and Briscoe, 2015) is a token-level accuracy-based metric proposed to address the
inability of M2 to distinguish between a system that does not correct any errors and a system that only
makes wrong changes. Annotations for I-measure can involve non-contiguous tokens as well. The
computation of I-measure begins by first aligning the input, hypothesis, and reference corrections in a
three-way token-level alignment. Gaps in the alignment can be assumed to be marked by NULL (ε)
tokens at appropriate positions (Table 1). Let the aligned input, hypothesis, and reference tokens at
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POSITIONS 1 2 3 4 5 6 7 8 9 10 11 12 13

INPUT: Thus , advice from ε hospital plays the important role for this .
HYPOTHESIS: Thus , advice from ε hospital plays an important role for this .
REFERENCE: Thus , advice from the hospital plays an important role in this .

Table 1: An example of three-way token-level alignments produced by I-measure.

position j be denoted by winp
j , whyp

j , and wref
j , respectively. True positives (TP), true negatives (TN),

false positives (FP), and false negatives (FN) are defined as follows:

TP : w
inp
j 6= wref

j and whyp
j = wref

j FP : w
inp
j 6= w

hyp
j and whyp

j 6= wref
j

TN : w
inp
j = wref

j = w
hyp
j FN : w

inp
j 6= wref

j and whyp
j 6= wref

j

An additional class FPN is defined to balance cases that can be classified as both FP and FN (FPN :
w

inp
j 6= wref

j 6= w
hyp
j ). A weighted accuracy is computed using TP, FP, TN, and FN counts:

WAcc =
λ · TP + TN

λ · TP + TN + λ ·
(
FP− FPN

2

)
+
(
FN− FPN

2

)
The weight λ, which is set to 2, rewards correct changes and penalizes incorrect changes more than
preserving erroneous input tokens. When multiple references are used, similar to M2, the gold-standard
reference that maximizes the WAcc is chosen. Then, the weighted accuracy of the input (WAccinp) is
computed by considering the input sentences as the hypothesis, with the same set of references chosen
to compute WAcc. I-measure is given by,

I =



bWAccc, if WAcc = WAccinp

WAcc−WAccinp
1−WAccinp

, if WAcc > WAccinp

WAcc

WAccinp
− 1, otherwise.

I-measure denotes the relative improvement or degradation with respect to the input text. I-measure
falls in the range1 [−1, 1], a negative value indicates degradation and a positive value indicates improve-
ment. Unlike M2, I measure can mix and match annotations from different annotators to produce more
alternative references2.

2.3 GLEU
Unlike M2 and I-measure, GLEU (Napoles et al., 2015; Napoles et al., 2016a) only requires human an-
notators to correct by re-writing the source sentence without requiring annotations for individual errors.
GLEU computes the precision of n-grams in the hypothesis that match part of the reference sentence,
similar to the MT metric BLEU (Papineni et al., 2002). Additionally, GLEU penalizes n-grams in the
hypotheses that match part of the input but not the reference. The original formulation (Napoles et al.,
2015) included a weight parameter that had to be re-tuned according to the number of reference cor-
rections used. Following the recommendation of Napoles et al. (2016a), we use the new formulation of
GLEU3 which does not include this weight parameter and can work for any number of references.

The computation of GLEU is done as follows. Consider a set of input sentences S = {s1, ..., sn},
their corresponding corrected hypotheses H = {h1, ..., hn}, and reference sentences, R = {r1, ..., rn}.

1I-measure may also be represented as a percentage (%) with a range [−100, 100] as used in the rest of the paper.
2To use this ability of mixing annotations, alternative corrections for the same underlying error must be grouped together

during annotation. However, since the data we use was not annotated in this manner, we disable the mixing ability of I-measure
by using -nomix to prevent generating invalid references.

3This is referred to as GLEU+ in (Napoles et al., 2016a).
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Here, we assume that there is a single reference sentence for each input sentence. First, a precision term
pk is computed for n-grams of size k (k = 1, 2, ..., N and N = 4 for standard GLEU):

pk =

∑
hi∈H

 ∑
k-gram in
hi and ri

counthi,ri(k-gram)−
∑

k-gram in
hi and si

max [0, counthi,si(k-gram)− counthi,ri(k-gram)]


∑
hi∈H

∑
k-gram
in hi

counthi(k-gram)

counta(n-gram) = # occurrences of n-gram in a

counta,b(n-gram) = min(#occurrences of n-gram in a,#occurrences of n-gram in b)

Similar to BLEU, a brevity penalty (BP) is computed to penalize short hypotheses:

BP =

{
1, if lh > lr

exp(1− lr/lh), if lh ≤ lr

where lr is the reference corpus length (sum of the number of tokens of the reference sentences) and lh
is the total hypothesis corpus length (sum of the number of tokens of all hypotheses). GLEU is given by:

GLEU(S,H,R) = BP · exp

(
1

N

N∑
k=1

log pk

)

When multiple references are available, GLEU does not include reference n-grams from all references to
compute n-gram precision like BLEU, nor picks the best like M2 and I-measure. Instead, for each input
sentence, a random reference correction is chosen from the set of reference corrections to compute the
GLEU score. This makes GLEU non-deterministic, unlike M2 and I-measure. The average GLEU score
over m GLEU score computations is reported as the final score (m = 500 in standard GLEU).

3 Quantitative Evaluation

The three GEC metrics are evaluated by measuring their correlation with human quality judgments
treated as the ground truth. Following the experimental methodology in WMT metrics shared tasks
(Macháček and Bojar, 2014; Stanojević et al., 2015; Bojar et al., 2016b; Bojar et al., 2017), we evaluate
system-level correlation as well as sentence-level agreement of metrics with human judgments.

We utilize the collection of human judgments of GEC outputs released in (Grundkiewicz et al., 2015).
The dataset is annotated similar to the relative-ranking method adopted in the WMT metrics shared tasks
in (Macháček and Bojar, 2014; Stanojević et al., 2015). Human judgments are obtained for the system
outputs of the 12 participating systems from the CoNLL-2014 shared task (Ng et al., 2014) and the input
text as the thirteenth system (referred to as INPUT). Each human judgment consists of a 5-way ranking
of hypotheses corrections from randomly chosen systems for an input sentence. Systems that produce
the same hypothesis for an input sentence are grouped together. The 5-way rankings are then converted
to pairwise rankings that include ties. A total of 109,098 pairwise rankings can be obtained if systems
with the same hypothesis that were grouped together in the 5-way rankings are included (henceforth,
referred to as expanded set). Grundkiewicz et al. (2015) observed that there were a large number of ties
due to the high overlap in system outputs. Trivial ties of systems that produce the same hypothesis can be
removed by including only one randomly chosen system among grouped systems. This results in 20,516
pairwise rankings (henceforth, referred to as unexpanded set).

3.1 Measuring System-Level Correlation
System-level correlation is computed by comparing the ranking of the participating systems by humans
and the ranking generated by the metric scores. Generating a ranking using metric scores is straightfor-
ward. However, human pairwise comparisons need to be converted into a ranking of systems. To do this,
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two methods are employed in (Grundkiewicz et al., 2015)4, namely Expected Wins (Bojar et al., 2013)
and Trueskill (Sakaguchi et al., 2014).

The Expected Wins model computes an intuitive score for a system based on the probability that a sys-
tem wins (ranks higher according to human judgments) over a randomly chosen system on a randomly
chosen input sentence. This model ignores ties. The Trueskill model computes a score representing
the average relative ability of the system compared to other systems, accounting for the uncertainty sur-
rounding the system’s ability as well. In the context of GEC, on this dataset, Grundkiewicz et al. (2015)
empirically found that Expected Wins performs better than Trueskill. However, almost all subsequent
work ignored this finding and used the Trueskill model instead. We compute correlations using both
methods in order to ensure comparability to prior work.

We measure both Pearson and Spearman correlation coefficients between metric rankings and human
rankings. Pearson correlation (r) compares the system-level scores produced by a metric against human,
under the assumption that the two measured variables have a linear relationship:

r =

q∑
i=1

(xi − x̄)(yi − ȳ)√∑q
i=1(xi − x̄)2

√∑q
i=1(yi − ȳ)2

where x1, ..., xq are metric scores for q systems for a particular metric with x̄ as the mean metric score,
and y1, ..., yq are human scores computed by Trueskill or Expected Wins with ȳ as the mean human
score. On the other hand, Spearman correlation (ρ) computes a correlation coefficient based on ranks
instead of scores:

ρ = 1−
6

q∑
i=1

(di)
2

q(q2 − 1)

where di represents the difference in the human rank and metric rank of the ith system. Spearman
correlation is more relaxed compared to Pearson correlation in terms of the assumptions made about
variables and also less sensitive to outliers in the sample.

In order to determine if a metric outperforms another, it is inadequate to measure differences in correla-
tion alone. Following the recommendations in (Graham and Baldwin, 2014), we evaluate for significance
of differences of correlation between metrics using William’s test (Williams, 1959). Note that prior work
in human evaluation of GEC systems has not reported significance tests that account for the dependence
between two metrics and hence the derived conclusions are not justified.

3.2 Measuring Sentence-Level Agreement
Since system-level evaluation is done on a few systems (13 in our case), we also compute a fine-grained
sentence-level agreement of metrics to human pairwise rankings. For this, sentence-level metric scores
are computed5. Agreement to humans is computed in a similar manner as segment-level evaluation in
the WMT metrics shared task and variants of the Kendall’s Tau (τ ) are used:

τ =
|Concordant| − |Discordant|

Total # Pairwise Comparisons
(1)

where |Concordant| refers to the number of times a metric agrees with the sentence-level human pairwise
comparisons, and |Discordant| refers to the number of times they disagree. The variants of τ are related
to the way in which human ties are handled. In the variant used in the WMT metrics shared task from
WMT14 (Macháček and Bojar, 2014) onwards (henceforth referred to as NoTies), human ties are ignored
completely and metric ties are added to the denominator alone, without contributing to Concordant or
Discordant sets. For GEC, since there is a large number of ties, particularly in the expanded set, we
include another variant that incorporates human ties as well (henceforth, referred to as HTies). In this

4We use the scripts released by Grundkiewicz et al. (2015) to compute human ranking of systems.
5Similar to BLEU, sentence-level GLEU needs smoothing to avoid zero n-gram counts. We use the sentence-level scores

produced by GLEU using the -d flag, where smoothing is performed by replacing a zero count with one.
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Metric
Expected Wins Trueskill

r ρ r ρ

GLEU 0.691 0.407 0.733 0.478
I-MEASURE –0.250 –0.385 –0.316 –0.423
M2 0.623 0.687 0.672 0.720

Table 2: Results of system-level Pearson (r) and Spearman (ρ) correlations of GEC metrics using the
Expected Wins model and Trueskill model of human rankings.
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Figure 1: Scatter plots showing the metric scores and human scores of CoNLL-2014 shared task systems.

variant, when a human judges a tie and metric predicts a tie as well for a given pair of hypotheses, it is
treated as a concordant pair. However, when a human predicts a tie and a metric does not, or vice versa,
it contributes only to the denominator and not to the Discordant set. We test for significance similar
to (Bojar et al., 2017), by employing bootstrap resampling over 1,000 samples and those metrics with
non-overlapping 95% confidence intervals are treated as having statistically significant improvements
compared to the lower performing metrics.

3.3 Results

3.3.1 System-Level Evaluation

The results of the system-level correlation tests are given in Table 2. In both Expected Wins and Trueskill
methods of human ranking, GLEU achieves a higher Pearson correlation compared to the rest. M2

achieves moderately high Pearson correlations and the highest Spearman correlations using both methods
of human ranking. As noted in prior studies (Grundkiewicz et al., 2015; Napoles et al., 2016a), I-
measure achieves a negative correlation. In order to decide which correlation measure is more suitable
and to understand the cause of disagreement in both correlation measures, it may be worth looking at
the bivariate scatter plot of metric and human scores (Figure 1). The presence of an outlier (the leftmost
point – IPN) indicates that Pearson correlation may not be the ideal choice as it is sensitive to outliers
in the data. To demonstrate this, we remove the system IPN from the ranking. Pearson correlation of
GLEU then becomes lower than that of M2 (0.500 for GLEU vs 0.593 for M2 using Expected Wins and
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(a) p-values for Pearson correlation. (b) p-values for Spearman correlation

Figure 2: Results of William’s significance tests for correlations between metrics. A green non-empty
cell denotes that the row metric has a higher correlation coefficient compared to the column metric with
the specified p-value. A gray empty cell indicates that the row metric has equal or lower correlation
coefficient compared to the column metric.

0.584 for GLEU vs 0.638 for M2 using Trueskill). The relative performance under Spearman correlation,
however, remains the same (0.245 for GLEU vs 0.643 for M2 using Expected Wins and 0.336 for GLEU
vs 0.692 for M2 using Trueskill). The high Spearman correlation for M2 indicates that it is a good metric
for ranking systems, which is the primary goal of automatic evaluation metrics.

To understand if one metric significantly outperforms another, we perform William’s significance tests
(Figure 2). As expected, we find that GLEU is not significantly better than M2 in terms of Pearson
correlation (p-value of 0.35 for both Expected Wins and Trueskill). In the case of Spearman correlation
for Expected Wins, M2 is significantly better than GLEU at the level of significance 0.10, but does not
significantly outperform GLEU for the Trueskill model. The significance test results show that neither
GLEU nor M2 can be conclusively shown to be better than the other.

3.3.2 Sentence-Level Evaluation
Table 3 shows the results of sentence-level agreement of metrics to human pairwise rankings when human
ties are considered (HTies) or ignored (NoTies). We also consider the unexpanded set where systems
that produce the same hypothesis for an input sentence are grouped together. This removes the trivial
ties (two identical hypotheses judged to be a tie) from the pairwise rankings. In the HTies variant, M2

achieves statistically significant improvements compared to the other two metrics in both expanded and
unexpanded sets. However, for NoTies variant, GLEU achieves the best result. The results show that M2

may be better at judging ties and performs well overall when complete pairwise rankings are considered.
On the other hand, GLEU does a better job at discriminating hypotheses, likely due to its ability to judge
fluency like humans do (Sakaguchi et al., 2016). This difference in behavior of GLEU and M2 between
the two variants, HTies and NoTies, is expected given a large number of ties for GEC (Grundkiewicz et
al., 2015) as indicated by the difference in the number of pairwise comparisons (Table 3) and that M2

generally assigns more ties compared to GLEU. Surprisingly, I-measure achieves a positive correlation
at the sentence level as opposed to a negative correlation at the system level, suggesting that it can be a
useful metric at the sentence level.

4 Qualitative Assessment

We illustrate the strengths and weaknesses of the three metrics with the help of two examples (Table 4).
We compare the metrics based on two criteria, interpretability and intuitiveness, which we believe are
necessary for good GEC metrics.

Interpretability: The scores produced by a good GEC metric should be interpretable as a measure
of a system’s ability to correct errors and improve the text. M2 and I-measure are based on minimal
annotations and their results are interpretable. For example, M2 measures the precision and recall of a
system, in terms of the number of phrase-level errors that it corrects in a given input text. Similarly,
I-measure is computed based on the relative weighted accuracy between a system and a do-nothing
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Metric
Expanded Unexpanded

HTies NoTies HTies NoTies
(109098) (49981) (20516) (14584)

GLEU 0.567 0.388∗ 0.237 0.321
I-MEASURE 0.564 0.368 0.242 0.293
M2 0.617∗ 0.300 0.348∗ 0.266

Table 3: Results of sentence-level agreement in terms of two variations of Kendall’s τ (HTies and
NoTies) on expanded and unexpanded sets. The number of human pairwise comparisons used is given
in parentheses. ∗ indicates that the 95% confidence interval of the metric does not overlap with those of
the other metrics.

(GLEU, I%, M2)

Example 1

INP: The weekly quizzes in this course makes it challenging and fun .
HYP1: The weekly quizzes in this course makes it challenging and fun . (0.392, 0.00, 0.000)
HYP2: The weekly quizzes in this course making it challenging and fun . (0.735, –4.00, 0.000)

REF: The weekly quizzes in this course make it challenging and fun .
Example 2

INP: The senior student who failed have to retake the course next year .
HYP1: The senior student who failed has to retake the course next year . (0.661, 100.00, 1.000)
HYP2: The senior students who failed have to retake the course next year . (0.656, 100.00, 1.000)
HYP3: The senior students who failed has to retake the course next year . (0.776, –6.11, 0.556)
REF1: The senior student who failed has to retake the course next year .
REF2: The senior students who failed have to retake the course next year .

Table 4: Illustrating examples and scores produced by the metrics.

baseline. In contrast, GLEU measures the precision of n-grams of the output text similar to BLEU. The
scores that it produces have no clear relation to the system’s ability to correct or improve a text. For
example, in Example 1, Hypothesis 1 (Table 4), when the system hypothesis is exactly the input sentence
itself, there is no evidence about the system’s ability to correct errors. While I and M2 give a zero score,
GLEU gives a non-zero score (GLEU = 0.392). In the case of its counterpart BLEU, if some n-grams of
the hypothesis and reference match, it rightly assigns a non-zero score as the system shows some ability
to perform translation. However, for GEC, simply copying the input can result in matching several
n-grams from the reference despite the system showing zero ability to perform correction. Moreover,
the GLEU score will vary with the length of the input sentence without the system having to fix any
error or even modify the input. Similarly, for Example 2, Hypothesis 1 and 2 (Table 4), despite being
grammatical and matching one of the reference corrections exactly, GLEU gives a non-perfect score for
both hypotheses, whereas I and M2 correctly gives perfect scores. This is an artefact of GLEU randomly
selecting one among the two references for scoring and averaging over multiple iterations. Also, due to
its non-deterministic behavior, the scores for Hypothesis 1 and 2 differ despite having the same n-gram
statistics compared to the references.

Intuitiveness: In Example 1, GLEU produces a non-zero score for a hypothesis that is exactly the same
as the input sentence (Hypothesis 1). When an incorrect change is introduced (Hypothesis 2), the score
becomes even higher (GLEU=0.735). This is counter-intuitive. If a change results in an ungrammatical
sentence, the score should remain the same or decrease as in the case of M2 and I. This unintuitive
behavior of GLEU is due to the additional term in GLEU that penalizes preservation of n-grams in the
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input sentence that were supposed to be changed according to the reference. It can be argued that GLEU
intends to reward GEC systems for detecting errors by assigning a partial credit to systems that make
spurious changes at locations where corrections are deemed necessary by human annotators. However,
this will encourage building GEC systems that provide inaccurate feedback and potentially mislead the
end users (primarily language learners). Hence, it is better to build and evaluate grammatical error
detection systems separately (Rei and Yannakoudakis, 2016). I-measure, on the other hand, assigns a
negative score for Hypothesis 2 as it is considered to ‘degrade’ the input, although it is arguable that
both hypotheses 1 and 2 are equally ungrammatical. In Example 2, when multiple references are used,
GLEU gives a higher score to Hypothesis 3 (ungrammatical) than Hypothesis 1 and 2, both of which
are grammatical and each matches one of the two references exactly. On the other hand, both M2 and
I-measure assign a lower score to Hypothesis 3 and conform to our intuition.

5 Related Work

5.1 GEC Evaluation

When GEC was restricted to specific error types, measures such as accuracy, precision, recall, and F-
score were employed (Chodorow et al., 2012) as done in the earlier shared tasks (Dale and Kilgarriff,
2011; Dale et al., 2012). Dahlmeier and Ng (2012) identified weaknesses in evaluation methods used
in these shared tasks in extracting phrase-level edits that correctly match the reference and proposed
MaxMatch scoring (Dahlmeier and Ng, 2012), which can also work for sentence correction over all error
types. M2 does not distinguish between a do-nothing baseline and a system that changes the input incor-
rectly, and hence I-measure (Felice and Briscoe, 2015) was proposed. Later, GLEU (Napoles et al., 2015)
was proposed. It relied on whole sentence rewrites instead of span-based error annotations. However, our
analysis shows that GLEU has several weaknesses in its formulation and has a non-deterministic behav-
ior that makes it an unreliable alternative to prior metrics. A few reference-less evaluation methods have
been proposed of which (Napoles et al., 2016b) considers the grammaticality of the output sentences
alone to evaluate GEC systems. Recently, Asano et al. (2017) proposed improvements to (Napoles et
al., 2016b) by additionally accounting for fluency and meaning preservation. Sakaguchi et al. (2017)
suggested future directions of improving GEC evaluation such as considering whole document rewrites.

5.2 Human Judgments and Metric Quality

Inspired from WMT, two collections of human judgments of GEC system outputs were released (Grund-
kiewicz et al., 2015; Napoles et al., 2015). We use the former in our study as it has a much higher number
of human pairwise comparisons (109,098) compared to the latter (28,146). Also, (Napoles et al., 2015)
includes references as one of the compared systems in order to act as a control measure to ensure quality
of human judgments. However, this is unfair to systems that compare more often against the reference as
noted by Callison-Burch et al. (2012), since human raters may prefer the reference corrections more of-
ten. This bias is further worsened by explicitly displaying the reference corrections to the human judges
in (Napoles et al., 2015). Reference translations are neither included in rankings nor shown to judges in
(Grundkiewicz et al., 2015). Also, all subsequent studies used the judgments released by Grundkiewicz
et al. (2015) for comparing GEC metrics. Grundkiewicz et al. (2015), however, did not compare to
GLEU as it was not available at the time. Later work which measured system-level correlation using
GLEU failed for a number of reasons which motivate this paper. Apart from using different variations of
GLEU, there was a mistake6 in GLEU computation that produced different results and incorrect conclu-
sions in earlier studies. Moreover, no proper significance tests to compare the differences in correlations
between metrics were done. Significance tests that reject the null hypothesis of having no correlation to
humans is not adequate for comparing differences in correlations between metrics (Graham and Baldwin,
2014). Also, (Napoles et al., 2016b; Asano et al., 2017) use 18 references for CoNLL-2014 sentences for
generating metric rankings, of which 2 are the references used in the shared task, 8 are from (Bryant and
Ng, 2015), and another 8 are annotated by both experts and non-experts as sentence-rewrites (Sakaguchi

6The brevity penalty was incorrectly implemented as exp(1−lh/lr) instead of exp(1−lr/lh). This was fixed in the version
that we use (fixed on 10 June, 2017: https://github.com/cnap/gec-ranking/commit/50b503)



2739

et al., 2016). Automatically constructing M2 and I-measure annotations from sentence rewrites will be
sub-optimal. Also, we observed that the non-determinism of GLEU scores is more pronounced when
more number of references are used, resulting in large differences in correlation values. In the end, we
decided to use the standard two references for CoNLL-2014 as used in the original shared task and con-
tinues to be the standard benchmark used to evaluate GEC systems to date. Also, prior studies had not
conducted sentence-level agreement with human judgments, which we did in this paper. Sakaguchi et al.
(2017) qualitatively compared metrics using contrived, gamed examples, which are rather irrelevant in
practice (such as a system that outputs a dummy hypothesis “a”, “a a”, or “a a a” for any input sentence)
and showed that M2 under-penalized such systems. On the contrary, our qualitative assessment is based
on naturally occurring examples and highlights the practical strengths and weaknesses of current GEC
metrics.

6 Conclusion

Through carefully designed experiments and significance tests, we find no evidence of GLEU being a
better metric than M2 for ranking systems as claimed in prior work (Napoles et al., 2015; Sakaguchi et
al., 2016; Napoles et al., 2016b). In fact, at the sentence level, when correctly predicting human ties
are rewarded, M2 works better than GLEU. We believe that GEC metrics should be interpretable and
must provide intuitive scores. In our qualitative assessment, we find that GLEU is less interpretable and
produces absurd scores in common scenarios. Our analysis suggests that GLEU cannot be considered as
a replacement of existing GEC metrics. The code to replicate the evaluations in this paper is available at
https://github.com/nusnlp/gecmetrics.
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