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Abstract

Detecting changes within an unfolding event in real time from news articles or social media
enables to react promptly to serious issues in public safety, public health or natural disasters. In
this study, we use on-line Latent Dirichlet Allocation (LDA) to model shifts in topics, and apply
on-line change point detection (CPD) algorithms to detect when significant changes happen. We
describe an on-line Bayesian change point detection algorithm that we use to detect topic changes
from on-line LDA output. Extensive experiments on social media data and news articles show the
benefits of on-line LDA versus standard LDA, and of on-line change point detection compared
to off-line algorithms. This yields F -scores up to 56% on the detection of significant real-life
changes from these document streams.

1 Introduction

In recent years, the detection of emerging events from publicly available data streams such as twitter
messages has received a lot of attention. The approaches used range from topic modeling, incremental
clustering, the concept of interestingness, and others (Hasan et al., 2017). For example, methods relying
on topic models detect latent topics from tweets and use that semantic structure to guide the event de-
tection task. In particular, Latent Dirichlet Allocation, aka LDA (Blei et al., 2003), and extensions have
been widely used to model topics from large corpora. It has been used for event detection (Pozdnoukhov
and Kaiser, 2011; Ertl et al., 2012; Vavliakis et al., 2012; Lau et al., 2012; Zhou and Chen, 2014), sum-
marization, or finding influential users in social media. However, only few studies used LDA to detect
topic changes over time (Lau et al., 2012; Zhou and Chen, 2014).

Once a main event is identified, detecting key sub-events is an essential task. For example, during a
public health epidemic crisis, detecting turning points in the spread of the disease is extremely important.
Relatively little attention has been paid on detecting these change points during an event. For example,
Bruggermann et al. (2016) used the dynamic topic model, aka DTM (Blei and Lafferty, 2006), to detect
and track stories in news articles. In addition, although many studies use topic models for event detection,
very few focus on real-time or sub-event detection.

In statistics, change point detection (CPD) is the task of finding locations where the underlying
stochastic process governing time series changes. Change-point detection algorithms can be split into
two categories: Real-time (or on-line) detection and retrospective (or off-line) detection, depending on
how data is used. Most CPD algorithms are retrospective (Barry and Hartigan, 1993; James and Matte-
son, 2015): the main drawback is that they can’t be run before all the data has been acquired, which is
a significant operational constraint when monitoring unfolding safety or health crises. Few algorithms
address real-time detection (Adams and MacKay, 2007).

Our study focuses on real-time change point detection in document streams by combining on-line
LDA with on-line CPD. Most previous studies on event detection used off-line topic models (Ertl et al.,
2012; Vavliakis et al., 2012), which is not appropriate for document streams. In addition, many studies
using LDA or on-line LDA for event detection only tested on several case studies (Pozdnoukhov and
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Kaiser, 2011; Ertl et al., 2012): there were no reference events to test against. By contrast, we collected
document streams from social media and news articles, and gathered reference change points for each
dataset, in order to evaluate the performance on these datasets.

In the following section, we review some related work in order to position ours. In Section 3 we
describe the methods: topic modeling, CPD and their combination. Sections 4 and 5 report on our
experiments and results, before we discuss our findings (Section 6).

2 Related Work

LDA is a three-level hierarchical Bayesian model (Blei et al., 2003) where each document is a multi-
nomial distribution over topics, and each topic is a multinomial distribution over the vocabulary. The
Dynamic Topic Model (Blei and Lafferty, 2006) is an extension of LDA that captures the evolution of
topics in a sequentially organized corpus of documents. In order to process document streams, several
on-line LDA (oLDA) methods have also been proposed (Hoffman et al., 2010; Lau et al., 2012; Zhai and
Boyd-Graber, 2013).

These models have been used for event detection from social media data. Pozdnoukhov and Kaiser
(2011) used LDA to identify topics and classified tweets according to the most probable topic. Ertl et al.
(2012) combined LDA with Seasonal Trend Decomposition in order to detect and rank topics, remove
daily chatter and detect abnormal topics. Vavliakis et al. (2012) used LDA for topic identification and
event detection in the MediaEval-2012 Social Event Detection task. Zhou and Chen (2014) proposed
a location-time constrained topic model to represent social data information over content, time, and
location. By considering the time and location of messages as additional variables, it outperformed
oLDA on the tested datasets. In addition to using spatial information on top of LDA, none of the previous
studies consider real-time event detection.

Other recent work attempt to build storylines from either news articles or social media data. Brugger-
mann et al. (2016) use the word-topic distribution from the DTM model to represent the changes during
events, but did not evaluate the performance of the DTM model on topic identification, or whether the
turning points from the word-topic distribution discover actual sub-events. Wang and Goutte (2017)
evaluated the performance of change point detection algorithms using the temporal profiles of hashtags
and frequency of tweets on two twitter data sets. Their work is an early attempt to use CPD algorithms
on the content of document streams. Previous studies (Guralnik and Srivastava, 1999; James et al., 2016)
detected significant changes from sensor signals but do not use the textual content of message streams.
Recently, Goutte et al. (2018) used a similar on-line CPD approach, but applied it on time series recording
the sentiment polarity in streams of tweets.

3 Methods

In this section, we describe on-line topic modeling, several competing ways to produce time series from
the topic models, and several change point detection algorithms.

3.1 On-line Topic Model
We use both standard LDA and an on-line version of LDA with infinite vocabulary, oLDA∞. The basic
LDA generates documents from a distribution over topics, each topic having a distribution over words.
For D documents over K topics, the generative process is as follows (Blei et al., 2003):

1. For each doc d=1 . . . D, pick θd ∼ Dir(α),

2. For each topic k=1 . . .K, pick φk ∼ Dir(β),

3. For each word wn, n=1. . .Nd, in document d (of size Nd),

(a) Pick topic z ∼ Mult(θd),
(b) Pick word wn ∼ Mult(φz).

Dir() and Mult() are the Dirichlet and Multinomial distributions, respectively; α and β are hyper-
parameters, and the parameters are usually estimated using collapsed Gibbs sampling. LDA inference
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yields document topic distributions θd and word-topic probabilities φk. Both can be used for further
processing, in particular θd encodes the topics represented in d.

One limitation of LDA and early on-line variants is that words are sampled over a fixed vocabulary.
This makes sense in a batch setting, where all words are known from the collection, but not in a streaming
or on-line setting, where new words may appear as documents are acquired. The on-line LDA with in-
finite vocabulary (oLDA∞) introduced by Zhai and Boyd-Graber (2013) addresses this by 1) processing
data and doing inference in minibatches, and 2) instead of a Dirichlet distribution over a fixed vocabulary,
topic distributions φk are drawn from a Dirichlet Process with a base distribution over all words. Dirich-
let processes are a common tool from non-parametric statistics, allowing sampling and inference in finite
time over unbounded and possibly countably infinite support. Details of the sampling and inference are
provided by Zhai and Boyd-Graber (2013).

The original implementation of oLDA∞ updates the model for each minibatch containing a fixed num-
ber of documents. This does not work well in our setting where news articles or social media messages
do not arrive regularly, and we want to update the model for fixed time increments (e.g. a few minutes or
a few days). We therefore adapted oLDA∞ to process the collection in fixed-time minibatches containing
variable numbers of documents according to their time stamps. We denote this variant by oLDA∞

t . Doc-
uments within the same time interval are placed in the same mini batch, and the model is updated at each
time slot t1, t2, . . . tm. Inference yields corresponding word-topic distributions φ(1), φ(2), . . . φ(m).

3.2 From Topic Models to Topic Change
The evolution of topics in on-line LDA models is usually shown using the most probable words from the
word-topic distributions (Hoffman et al., 2010; Lau et al., 2012; Zhai and Boyd-Graber, 2013). However,
the same top words can appear in different topics, making differences between topics hard to show. This
is in particular the case when documents are related to a particular event, as words typical of that event
are common in all topics. Other approaches rely on the top words in different ways: the cosine similarity
of top words from the DTM Bruggermann et al. (2016), the Jensen-Shannon divergence (JSD) Lau et al.
(2012), and the symmetrized Kullback-Leibler divergence of word distribution Zhou and Chen (2014) to
represent topic change over time.

We propose to evaluate topic change by using the word-topic distribution φ(t) and the document-
topic distribution θn at each time slot. Four methods were tested in our study to represent the topic
change over time: cosine distance, Jensen-Shannon divergence, the word-topic distribution (WD), and
the document-topic distribution (DD). For cosine distance, we used the cosine similarity between the
top-word probabilities of all topics at the current time t and previous time t − 1. From the word-topic
distributions φk(t) and φk(t − 1), we extract the top-word probabilities PW (t) and PW (t − 1) and
compute:

Dcos(t) = 1− cos(PW (t), PW (t− 1)), (1)

cos(PW (t), PW (t− 1)) =
〈PW (t), PW (t− 1)〉
‖PW (t)‖‖PW (t− 1)‖

Dcos(t) is a univariate time series with m − 1 points, which we use to detect significant changes using
the CPD algorithms below.

The second method uses the sum of JSD between the top words in all topics between t and t − 1.
Normalizing the top-word distributions into PW (t) and PW (t− 1):

DJSD(t) = JSD(PW (t), PW (t− 1)), (2)

JSD(P,Q)=
1

2

∑
i

pi log
2pi
pi+qi

+
1

2

∑
i

qi log
2qi
pi+qi

DJSD(t) again forms a univariate time series with m− 1 data points.
The third method directly uses the word-topic distribution of top words. For each topic k, the prob-

ability of word w from the top L words is obtained from φk(t), t = 1 . . .m. This produces a total of
K × L time series representing evolutions in the word-topic distributions.
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The last method uses the average document-topic distribution, for documents in each time interval.
In the document-topic distribution matrix θ , each element θkj represents the probability of topic k in
document j. Averaging over all documents from a minibatch t, we compute the average document-topic
probability πk(t) = 1

|t|
∑

dj∈t θkj . This produces K times series, with m data points each, on which we
run multivariate CPD.

3.3 Change Point Detection

In time series analysis, a change point is a location where the underlying stochastic process changes.
Although it may seem superficially related, this is a different problem than anomaly detection, where
the purpose is to identify observations that do not conform to an expected pattern or distribution in the
data. In change point detection, we assume that data before the change point conforms to one distribu-
tion, while data after the change point comes from a second, different distribution. In our case, we are
interested in identifying where the change has occurred, as soon as possible after it occurs.

Many algorithms have been proposed to detect change points. Most work on univariate time series,
and use the entire time series to detect change points. We will focus on techniques that can be used with
multivariate time series:

bcp

The Bayesian change point detection of Barry and Hartigan (1993) assumes that each block between two
change points arises from a (multivariate) normal distribution. It outputs the posterior probability that a
change occurred at each point in the time series. We use the implementation from the R package bcp
(Erdman and Emerson, 2007), which runs in time linear in the length of the time series, and handles
multivariate time series. The biggest limitations are that it is designed to detect changes in the mean
of independent Gaussian observations, and that it works retrospectively, once the entire time series is
available.

ecp

The nonparametric, hierarchical divisive algorithm of James and Matteson (2015) uses recursive bisec-
tions, identifying change points using a non-parametric divergence measure from Székely and Rizzo
(2005). As the divergence measure is non-parametric, this makes ecp suitable to detect changes with
minimal assumptions on the underlying distributions. The divisive approach by recursive bisections re-
turns a number of consecutive segments between change points, without knowing the number of change
points a priori. In addition, the implementation from the R package ecp handles multivariate time se-
ries. One remaining limitation is that it works only in retrospective mode, once the entire time series is
available.

ocp

The Bayesian online change point detection algorithm of Adams and MacKay (2007) addresses that
issue. It is designed to update the detection of change points sequentially, as new data points are acquired,
rather than wait until the entire times series are available. It relies on two components: a probabilistic
model P (rt|s(1 . . . t)) of the length of a run during which the underlying distribution is stable, given
observations until time t; and an underlying predictive model (UPM) P (s(t+1)|s(1 . . . t), rt) governing
the stochastic generation of new data in each run. Our basic implementation, available in the R package
onlineCPD,1 uses a multivariate Gaussian UPM.

ocp+

We extend the ocp algorithm beyond the Gaussian assumption by using a more flexible UPM, modeling
linear trends within each run, using a multivariate linear regression with additive Gaussian noise. This
allows modeling drifts in the time series without forcing multiple change points. Our implementation is
also available in the onlineCPD R package available from github.

1Available at https://github.com/cyrilgoutte/EuroGames16
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Table 1: Statistics on our two benchmark datasets.

Dataset #Docs #Ref timeline Time interval Time window
Olympics 30,115,218 89 1 hour 2 hours

Zika 31,356 31 1 day 2 days

4 Experiments

4.1 Datasets

To test the performance of our various combinations of online LDA and online CPD, we collected two
datasets. One large collection of tweets related to the 2014 Sochi Winter Olympics, and a collection of
public health news articles related to the 2015-2016 Zika epidemics. Statistics are shown in Table 1.

The 2014 Sochi Winter Olympics Twitter dataset was collected from the Twitter API during the whole
olympic games period (Feb. 6-24th, 2014). Keywords such as “Sochi”, “Olympics” were used to filter
tweets. The dataset contains 3,115,218 tweets after removing re-tweets and non-English tweets. The
reference events were collected from Wikipedia,2 considering finals for most event, plus quarterfinals,
semifinals, bronze and gold medal games for ice hockey, which adds up to 89 reference change points.

During the outbreak of Zika virus from 2015 to 2016, we collected news articles from November
3rd 2015 to December 31st 2016 on the GPHIN system.3 News articles from a variety of sources were
collected and translated into English, named entities and medical terms were identified, then keywords
like “Zika” and “mysterious disease” were used to filter news articles (Carter, 2018). The final, filtered
Zika dataset contains 31,356 news articles. The original reference events were collected from a web
source.4 Events on the same or subsequent days were combined into one, and the final gold standard
contains 31 reference change points.

4.2 Evaluation

The performances of change point detection methods were measured by comparing detected change
points with known reference events, using precision, recall and F-score. We count a detection as a true
positive if it falls into the tolerance time window (Table 1, last column) of the reference change point,
based on the order of references. The precision is computed by dividing true positives by all detections,
while recall is computed by dividing true positives by total references, and the F-score is:

F = 2× Precision× Recall
Precision + Recall

4.3 Experimental settings

In the experiments, we compare two types of LDA models, standard (LDA) and on-line (oLDA∞
t ), and

two categories of CPD algorithms, retrospective or off-line CPD (bcp and ecp) and real-time or on-line
CPD (ocp and ocp+). We used the implementation of standard LDA from the R package text2vec
(Selivanov, 2016) and adapted oLDA∞

t from the code made available by Zhai and Boyd-Graber (2013).5

5 Results

We first examine whether the top words and top documents extracted from the topic models represent
topic changes over time. We then compare four methods of generating time series for CPD from the
on-line topic model. We also compare the performance of CPD using the on-line topic model versus the
off-line topic model and a baseline using counts. Finally, we check how various CPD algorithms work
in a simulated real-time experiment, and analyze the errors made by the different methods.

2https://en.wikipedia.org/wiki/2014_Winter_Olympics
3https://gphin.canada.ca/cepr/aboutgphin-rmispenbref.jsp
4http://www.mapreport.com/keyword/zika.world.da.2016.html
5https://github.com/kzhai/InfVocLDA
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Figure 1: Top words (colored) and top documents for three topics from the Olympics opening ceremony:
the beautiful Ballet, the strange US team uniform, and the malfunctioning 5th ring.

5.1 Validating topics from LDA and oLDA∞
t

We first run a sanity check on the topic models, with qualitative and quantitative evaluations of the
resulting topics.

Figure 1 shows the top words and top documents from the LDA model of the Olympics opening
ceremony, withK = 20 topics. Top words from topics 1, 13 and 17 are shown with colored backgrounds
in the top 5 documents for each topic. Top documents (i.e. tweets, in that collection) provide more
context than the top words, and clearly show that the topics are related to the ballet (topic 1), the US
team uniform (topic 13) and the malfunctioning fifth ring (topic 17).

For a quantitative validation, we compare top documents extracted from the LDA and oLDA∞
t models

to the reference change points. The top documents for each topic were extracted from the portion of the
document-topic distribution table corresponding to the time slot for a reference sub-event, and compared
to its description. For example, at 19:00 on Feb. 22nd, the sub-event is the ice hockey bronze medal game
between US and Finland. Top tweet “Ice hockey USA vs Finland now #sochi” in one topic is counted as
a correct match, whereas “Go Finland ice hockey team! #sochi” is not, as it does not refer to a specific
game. Whenever one top document from one topic matches with the reference, this is counted as the
topic model (LDA or oLDA∞

t ) correctly matching a sub-event. The rate of matching references for each
model is reported in Table 2.

For the Zika dataset, we only use the titles of the five top documents from five topics. For example,
on Aug. 27, 2016, a reference sub-event is Singapore’s Ministry of Health confirming the first case of
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Table 2: Percentage of reference sub-events matched by LDA and oLDA∞
t top documents.

Dataset K #Top docs #Ref changes LDA oLDA∞
t

Olympics 20 5 89 70.89% 79.75%
Zika 5 5 31 54.83% 74.18%

Table 3: Experimental results on Olympics (left) and Zika (right) data. Top: performance of CPD of
four methods for representing topic change: cosine distance, JSD distance, word-topic distribution and
document-topic distribution. Bottom: performance of CPD on LDA and oLDA∞

t .

(Olympics) Precision Recall F-score
bcp count 0.346 0.888 0.498
bcp cosine 0.307 0.787 0.442
bcp JSD 0.280 0.787 0.413
bcp WD 0.196 1.000 0.327
bcp DD 0.196 1.000 0.327
ecp count 0.483 0.326 0.389
ecp cosine 0.478 0.124 0.196
ecp JSD 0.433 0.146 0.218
ecp WD 0.420 0.674 0.517
ecp DD 0.536 0.416 0.468
ocp count 0.338 0.281 0.307
ocp cosine 0.478 0.371 0.418
ocp JSD 0.529 0.416 0.465
ocp WD 0.438 0.629 0.516
ocp DD 0.436 0.652 0.523
ocp+ count 0.371 0.292 0.327
ocp+ cosine 0.463 0.348 0.397
ocp+ JSD 0.500 0.404 0.447
ocp+ WD 0.421 0.629 0.505
ocp+ DD 0.615 0.449 0.519

LDA vs oLDA∞
t (all DD)

bcp LDA 0.196 1.000 0.327
bcp oLDA∞

t 0.196 1.000 0.327
ecp LDA 0.552 0.596 0.573
ecp oLDA∞

t 0.536 0.416 0.468
ocp LDA 0.544 0.416 0.471
ocp oLDA∞

t 0.436 0.652 0.523
ocp+ LDA 0.557 0.438 0.491
ocp+ oLDA∞

t 0.615 0.449 0.519

(Zika) Precision Recall F-score
bcp count 0.198 0.548 0.291
bcp cosine 0.259 0.710 0.379
bcp JSD 0.224 0.613 0.328
bcp WD 0.073 1.000 0.137
bcp DD 0.129 0.355 0.190
ecp count 0.353 0.387 0.369
ecp cosine 0.440 0.355 0.393
ecp JSD 0.343 0.387 0.364
ecp WD 0.269 0.677 0.385
ecp DD 0.278 0.161 0.204
ocp count 0.360 0.290 0.321
ocp cosine 0.407 0.355 0.379
ocp JSD 0.480 0.387 0.429
ocp WD 0.246 0.968 0.392
ocp DD 0.269 0.226 0.246
ocp+ count 0.240 0.194 0.214
ocp+ cosine 0.308 0.258 0.281
ocp+ JSD 0.385 0.323 0.351
ocp+ WD 0.246 0.968 0.392
ocp+ DD 0.308 0.258 0.281

LDA vs oLDA∞
t (all DD)

bcp LDA 0.176 0.484 0.259
bcp oLDA∞

t 0.129 0.355 0.190
ecp LDA 0.556 0.161 0.250
ecp oLDA∞

t 0.278 0.161 0.204
ocp LDA 0.400 0.323 0.357
ocp oLDA∞

t 0.269 0.226 0.246
ocp+ LDA 0.440 0.355 0.393
ocp+ oLDA∞

t 0.308 0.258 0.281

locally-transmitted Zika infections. A top document with title “Singapore confirms the first case of Zika
virus transmitted locally” is counted as correct, whereas “FDA: Screen all blood donations for Zika”
in another topic is not. Results in Table 2 show that top documents from LDA and oLDA∞

t match
the majority of reference change points in both datasets. Top documents from oLDA∞

t clearly match
better than standard LDA. As oLDA∞

t updates the word-topic distribution on-line, adding new words as
necessary, top documents can better reflect recent change.

5.2 Comparing Topic Change Time Series

We compare the different approaches to encode topic change into time series, as described in Section
3.2: cosine distance, JSD, word-topic (WD) and the document-topic (DD) distributions. We compare
with a simple count-based baseline, where the time series is simply the number of document in each time
slot. Table 3 (left) shows the performance obtained on the Olympics dataset. The word-topic distribution
(WD) and document-topic distribution (DD) time series perform better than the cosine and JSD time
series for ecp, ocp and ocp+. The reverse is true for bcp, although its best performance is lower than
the other three CPD algorithms, and lower than using the count baseline. All topic change time series
perform better than counts for ocp and ocp+. Overall best results are obtained by the DD time series
and on-line change point detection.

Table 3 (right) shows the performance obtained on the Zika dataset. Results are not as consistent
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as on the Olympics dataset, but time series derived from the on-line topic models outperform, in some
configuration, the count baseline. The best performance is obtained by ocp on the JSD distance, fol-
lowed by cosine distance on ecp, and the word-topic distribution on ocp and ocp+. ecp, ocp and
ocp+ perform better than bcp again. Top performance (.429) is also lower than on the Olympics dataset
(.523).

The Olympics and Zika datasets are quite different: the Olympics dataset has many documents in
each time interval, whereas the Zika dataset is very sparse in the first several months. Documents from
different topics in Zika are quite similar at first, and become much diverse later. The JSD and word-topic
distribution can capture such changes of topics, but the changes in the document-topic distribution are
subtle. Among these methods, only the document-topic distribution (DD) can be applied in both off-line
and on-line topic models. The other three methods use the dynamic word-topic distribution at each time
slot. Since the performance of the DD time series is best on the Olympic dataset and reasonable on the
Zika dataset, we adopt that method in the following experiments.

5.3 Off-line vs. On-line Topic Models
We now focus on the difference between the off-line and on-line LDA. We use the document-topic distri-
bution from LDA and oLDA∞

t to produce time series on which we run the four CPD algorithms. Results
are reported at the bottom of Table 3. On the Olympics dataset, the performance of CPD from LDA
and oLDA∞

t are much better than the baseline except on bcp. This confirms that the topic time series
extracted from LDA and oLDA∞

t help detect relevant changes. The off-line LDA degrades performance
of ocp and ocp+ but improves that of ecp, which reaches the top performance on that dataset. On the
Zika data set, the performance is better on the LDA time series than on oLDA∞

t . For bcp and ecp the
performance stays below that of the baseline counts, suggesting that information from the topic model
either does not help for these algorithms, or does not fit well with their underlying modeling assump-
tions. This may be due again to the smaller number of documents in the Zika dataset, and lower number
of documents in the earlier time period. Note that although LDA yields better performance than oLDA∞

t

on the Zika dataset, the on-line topic model offers a key functionality: the topic model can be estimated
in real-time as documents are acquired. The time series can then be build on-line and change detection
can be applied on-line as well, in order to produce real-time change detection.

5.4 On-line Change Point Detection
The above change point detection experiments were performed in a off-line mode for bcp and ecp, and
for all CPD algorithms using LDA: CPD algorithms read all data points at all time intervals at once. For
real-time detection, however, it is necessary to test the performance in a real on-line fashion. In order
to simulate that with bcp and ecp, we use a sliding window, feeding the algorithm overlapping slices
of the data, step by step. Although ocp and ocp+ are built as on-line CPD algorithms, processing one
new data point at a time, we used the same sliding window to get a fair comparison. On the Olympics
and Zika datasets, we tested different sliding window sizes and steps to evaluate the impact of this size
on performance. Table 4 shows the result obtained by the four CPD algorithms on either oLDA∞

t topic
scores or baseline message counts. On the Olympics data, oLDA∞

t performs better than counts in all CPD
algorithms except bcp. With smaller steps and window sizes, ecp performs the best. ocp performs best
on the largest step and sliding window sizes (100 and 200 hours, respectively). The best performance for
different settings (bold) are very close. On the Zika data, the performance of CPD algorithms on counts
and oLDA∞

t are not consistent. ocp+ reaches the best performance on counts using a 150 day window
size in 75 day steps, and performs well on oLDA∞

t in two other settings, while ecp performs well on
counts in the remaining situation (100 day window, 50 day steps). Comparing the best performance
obtained in off-line and on-line modes on these two datasets (Table 3 vs. Table 4), we see that the on-line
CPD algorithms using sliding windows achieve better performance than using the entire data set off-line.

5.5 Error Analysis
As error analysis, we would like to understand whether all change point detection algorithms detected
the same set of sub-events. We examined the sub-events detected by different change point detection
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Table 4: F-score of oLDA∞
t versus counts, using several sliding window and step sizes.

Olympics
step (hour) 25 50 75 100
window (hour) 50 100 150 200
bcp count 0.531 0.512 0.472 0.523
bcp oLDA∞

t 0.341 0.333 0.340 0.327
ecp count 0.548 0.489 0.483 0.495
ecp oLDA∞

t 0.582 0.555 0.557 0.521
ocp count 0.353 0.286 0.327 0.346
ocp oLDA∞

t 0.521 0.529 0.527 0.561
ocp+ count 0.480 0.442 0.400 0.340
ocp+ oLDA∞

t 0.463 0.472 0.551 0.513

Zika
step (day) 25 50 75 100
window (day) 50 100 150 200
bcp count 0.254 0.251 0.250 0.250
bcp oLDA∞

t 0.169 0.229 0.216 0.213
ecp count 0.317 0.427 0.392 0.414
ecp oLDA∞

t 0.327 0.190 0.218 0.185
ocp count 0.366 0.395 0.324 0.351
ocp oLDA∞

t 0.326 0.321 0.341 0.361
ocp+ count 0.409 0.383 0.482 0.405
ocp+ oLDA∞

t 0.447 0.390 0.346 0.424

algorithms on the Olympics dataset in the sliding window setting of 100 hours steps and 200 hours
window size (Figure 2). From the top true positives (top), we observe that on oLDA∞

t topic scores,
all change-point detection algorithms agree much more on the detected sub-events (57 out of 89) than
using message counts. All reference sub-events are identified by at least two of four CPD methods.
This demonstrates that the document distribution from oLDA∞

t tracks topic change much better than the
raw volume of tweets. In addition, combining the results of four CPD methods might lead to better
performance than using any of them alone. Also, looking at the performance of the two off-line and
the two off-line methods, we observe that the detected sub-events are more consistent within these two
sub-groups than between them, using either counts or oLDA∞

t .
False positives, shown at the bottom of Fig. 2 are much less consistent across CPD algorithms. Few

false positives are detected by all four CPD algorithms. In addition, it is clear that using either counts
or oLDA∞

t topic scores, bcp generates many more false positives than the other three methods. In
particular, on oLDA∞

t none of the other three method generate a full positive that is not also produced by
bcp. This is reflected in the high recall obtained by bcp (Table 3), at the expense of a very low precision.
ocp also suffers from a large number of false positives on oLDA∞

t . On the contrary, ocp+ generates
few false positives, yielding hogh precision but lower recall. Overall, the combination of oLDA∞

t and
ocp+ reaches the highest true positive rate and lowest false positive rate on the Olympics dataset.

6 Summary

Our study examined real-time detection of topic changes from document streams. The main outcome
from the experiments is that real-time CPD based on the topic change detected by on-line topic models
can reach good performance, identifying more than half the unknown reference changes from content
alone. We also show that top documents extracted from oLDA∞

t match reference change point descrip-
tions better than from LDA. This shows that oLDA∞

t captures the dynamic changes inside each topic.
We compared four methods of representing topic evolution as time series and evaluated them against

reference change points. In the news article stream, the univariate time series based on the JSD distance
performed well, while on the large tweet collection, tracking the multivariate document-topic distribution
time series performed better. This suggests that selecting the best methods of representing topic evolution
for detecting topic changes may depend on the type and genre of documents and remains a challenge.

Our experiments compared off-line with on-line topic models and also off-line CPD with on-line CPD
in different settings. The on-line topic model oLDA∞

t yields better performance than off-line LDA on
the Olympics dataset, but worse performance on the Zika dataset. Also, on-line CPD algorithms ocp
and ocp+ did better than off-line CPD algorithms bcp and ecp on both datasets. The combination of
on-line topic modeling with the on-line change point detection reaches top performance in topic change
detection in our simulated real-time conditions. This demonstrates that our method is promising for real
document streaming applications.

7 Conclusion

We propose a method for real-time detection of topic changes in document streams, using a combination
of on-line topic modeling and Bayesian on-line change point detection algorithms. Four approaches to
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Figure 2: The number of true positives (Top) and false positives (Bottom) detected by A: bcp, B: ecp,
C:ocp, D:ocp+ on all sub-events of the Olympics data, using counts (Left) and oLDA∞

t (Right).

representing topic change time series were explored, and several off-line and on-line modes were ex-
plored. Extensive experiments with off-line and on-line topic models and with retrospective and on-line
change point detection on one Twitter dataset and one news article dataset confirm that the combination
of oLDA∞

t and ocp+ yield top performance, identifying up to 56% of reference changes in real-time
mode on our large twitter collection. Although some off-line combinations yield similar, and sometimes
slightly higher performance, the fully on-line combination is always competitive, while offering the ben-
efit of true real-time detection. The CPD algorithms can also be applied to detect changes in other aspect
of document streams such as sentiment or emotion.
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