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Abstract

Distributed word representation plays a pivotal role in various natural language processing tasks.
In spite of its success, most existing methods only consider contextual information, which is
suboptimal when used in various tasks due to a lack of task-specific features. The rational word
embeddings should have the ability to capture both the semantic features and task-specific fea-
tures of words. In this paper, we propose a task-oriented word embedding method and apply it
to the text classification task. With the function-aware component, our method regularizes the
distribution of words to enable the embedding space to have a clear classification boundary. We
evaluate our method using five text classification datasets. The experiment results show that our
method significantly outperforms the state-of-the-art methods.

1 Introduction

Learning word representation is a fundamental step in various natural language processing tasks.
Tremendous advances have been made by distributed representations (also known as word embeddings)
which learn a transformation of each word from raw text data to a dense, lower-dimensional vector space.
Most existing methods leverage contextual information from the corpus (Mikolov et al., 2013; Penning-
ton et al., 2014) and other complementary information, such as subword information (Cao and Lu, 2017),
implicitly syntactic dependencies (Shen et al., 2018a; Shen et al., 2018b), and semantic relations (Bolle-
gala et al., 2016; Liu et al., 2018).

In traditional evaluations such as word similarity and word analogy, the aforementioned context-aware
word embeddings work well since semantic information plays a vital role in these tasks, and this infor-
mation is naturally addressed by word contexts. However, in real-world applications, such as text classi-
fication and information retrieval, word contexts alone are insufficient to achieve success in the absence
of task-specific features. Figure 1 illustrates this problem with the classification task as an example. Sev-
eral sentences from different categories are given at the far left of the figure where the words in bold are
salient words for the category distinction. We also illustrated expected word distribution of these salient
words in the embedding space. To obtain a good classification performance, the expected word distribu-
tion should have a clear classification boundary: words within the same category are close to each other
and far away from words in other categories as illustrated in Figure 1. However, the actual distribution
obtained from Word2Vec at the far right of Figure 1 is normally not satisfactory because Word2Vec only
focuses on context similarity. For example, although learning and educational are with similar context
as recognized by Word2Vec, they are salient words to distinguish categories of AI and Sociology, so they
should be far away from each other. Apparently, using word embedding directly from Word2Vec would
not obtain good performance on the text classification task due to the fact that words’ functional features
in the real tasks are ignored in the training process.

In this paper, we propose a task-oriented word embedding method (denoted as ToWE) to solve the
aforementioned problem. It learns the distributed representation of words according to the given specific
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Figure 1: The example sentences from the text classification dataset. Words in bold are salient words
to distinguish the sentence category. Their most similar words in the Word2Vec space are shown in the
right-hand column. The word color indicates the category, and the words in black are general words for
the task.

NLP task. Specifically, we focus on text classification. In our method, the words’ contextual information
and task information are inherently jointed to construct the word embeddings. In the joint learning
framework, the contextual information is captured following the context prediction task introduced by
(Mikolov et al., 2013). To model the task information, we regularize the distribution of the salient
words to have a clear classification boundary, and then adjust the distribution of the other words in the
embedding space correspondingly. To give an intuitive understanding on how our method works from
the classification perspective, we design a 5AbstractsGroup dataset (detailed in Section 4.1) and conduct
a qualitative analysis. Experiments show qualitative improvements of our method over context-based
Skip-gram method on word neighbors for classification. We also perform empirical comparisons on five
text classification datasets, which demonstrate the effectiveness of our method over the other state-of-
the-art methods.

The contributions of this paper can be summarized as following:

• We propose a task-oriented word embedding method that is specially designed for text classifica-
tion. It introduces the function-aware component and highlights word’s functional attributes in the
embedding space by regularizing the distribution of words to have a clear classification boundary.

• We design a 5AbstractsGroup dataset and present a qualitative analysis, giving an intuitive under-
standing on how our method works from the classification perspective. Experimental results on five
text classification datasets also show that the proposed method is more optimal for classification on
account of revealing functional attributes of words.

2 Related Work

Word embeddings that provide continuous low-dimensional vector representations of words have been
widely studied by NLP communities (Yu et al., 2017; Liu et al., 2017; Li et al., 2017b; Chih et al.,
2017). The last few years have seen the development of word embedding methods purely based on the
co-occurrence information in a corpus (Bengio et al., 2003; Mnih and Hinton, 2008; Collobert et al.,
2011; Mikolov et al., 2013; Mnih and Kavukcuoglu, 2013; Lebret and Collobert, 2014; Pennington et
al., 2014; Cao and Lu, 2017; Bollegala et al., 2018). Some studies also pay attention to the semantic
knowledge stored in the knowledge bases (Nie et al., 2015). For example, Faruqui et al. (2015) refine
word representations using relational information from semantic lexicons, Liu et al. (2015b) represent
semantic knowledge as a number of ordinal similarity inequalities of related word pairs to learn semantic
word embeddings.

Recent works have thrown light on the problems associated with directly applying word embeddings
into real-world applications. Diaz et al. (2016) demonstrated that the globally trained word embedding
underperform corpus and query-specific embeddings for retrieval tasks. They proposed locally training
word embeddings in a query-specific manner for the query expansion task. Zamani and Croft (2017)
indicated that the underlying assumption in typical word embedding methods is not equal to the need
of IR tasks, and they proposed relevance-based models to learn word representations based on query-
document relevance information, which is the primary objective of most IR task. For the sentiment
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analysis task, Yu et al.(2017) refined word embedding to avoid generating similar vector representations
for sentimentally opposite words. For the contradiction detection task, Li et al. (2017a) developed
contradiction-specific word embedding to recognize contradiction relations between a pair of sentences.
These studies show that general trained word embeddings cannot be optimized for a specific task, thus,
they are likely to be suboptimal. To meet the needs of real-world applications, rational word embeddings
should have the ability to capture both the semantics of words and the task-specific features of words.

In this work, we focus on task-oriented word embedding for the text classification task. Several at-
tempts have shown that revised word embeddings can boost the performance of classification. For exam-
ple, topical information is shown to be effective in generating high quality word embeddings (Liu et al.,
2015c; Liu et al., 2015a), which can enhance the performance of text classification. On the other hand,
to enhance the performance of sentiment classification, Chih et al.(2017) proposed a word embedding
refinement model to refine existing semantically oriented word vectors using sentiment lexicons in or-
der to distinguish words with similar vector representations but opposite sentiment polarities. Our work
departs from previous work in that it directly models task-specific features to construct the embedding
space with a clear boundary for classification.

3 Method

Given the unlabeled corpus C and the labeled training setD = {D1,D2, · · · ,Dg} with g text categories,
our method aims to train the task-oriented d-dimensional word embedding wi ∈ Rd for the i-th word
wi in vocabulary V . Formally, the document collection belonging to the k-th category is denoted as Dk.
Our proposed joint learning framework contains two components, i.e., the context-aware component and
function-aware component. The context-aware part models the co-occurrence in corpus C and captures
the word semantic features. The function-aware part reveals the word’s functional attributes following
the task-specific features observed in D. We next describe these two parts respectively.

3.1 Context-aware Component

Our method uses the Word2Vec method to model the context information and uses log-linear models to
produce word embeddings. It applies a sliding window moving on the corpus. The word in the center of
the window is the target word and the others are context words. Word2Vec has two versions, i.e., CBOW
and Skip-gram. The CBOW model uses the average/sum of context words as input to predict the target,
and the Skip-gram model uses the target word as input to predict each context word. To simplify, we
represent the objective of each prediction as

Lcontext = Pr(w|c) =
exp(w · c)∑

w′∈V exp(w′ · c)
. (1)

In CBOW, w is the target word, and c is the vector of the context words, and in Skip-gram, w is each
word in the context, and c is the vector of the target word.

3.2 Function-aware Component

In the function-aware component, we define salient words as those words with the ability to distinguish
the document category. These salient words are first extracted from the labeled training set D in an
offline process. Then the correlations among these words are used to model the functional features in the
embedding space.

Each salient word w of the k-th category is offline extracted according to the following the two prin-
ciples: (1) The term frequency of the word w in this category (i.e., Dk) is much higher than that in other
categories; (2) w is common in other categories, expressed as a small variance of term frequencies in
other categories. Formally, we design the following formula to measure the importance of word w to the
k-th category as a salient word:

Score(w, k) =
tk − 1

g

∑
1≤i≤g ti

var(T−k(w))
, (2)



2026

where ti is the term frequency in the i-th category, T−k(w) is the collection of term frequencies except
the k-th category (i.e., T−k(w) = {tj |1 ≤ j ≤ g, j 6= k}), and var(·) is the variance.

According to this importance score, we generate a salience words set by selecting the top N words for
each category, denoted as Sk = {wj |1 ≤ j ≤ N}, k ∈ [1, g]. Then, for the task, the words in the salient
words set S = {S1, S2, · · · , Sg} have the ability to distinguish different categories.

The salient words are next utilized to capture the functional relations between words in the embedding
space. In the learning framework, if the predicted word w is in S, the function-aware component will
be activated. As to modeling the correlations of function-salient words, we expect to constrain w to be
close to the words in the same category and far away from the words in different categories. According
to this idea, we construct a set P (w) with n word-pairs for each salient word w. Each word-pair contains
a positive word u and a negative word v. The positive words are randomly selected from S which belong
to the same category with w, and the negative words are randomly sampled from other categories. We
maximize a margin-based ranking criterion over the training set S:

Lfunction = argmax

n∑
<u,v>∈P (w)

[γ + s(w,u)− s(w,v)], (3)

where γ is a margin hyper parameter, n is the size of sample set P (w), and s(·, ·) is similarity measure.
Following the recommendations in prior work on word similarity measurement, we apply the cosine
similarity of a pair of words by computing s(a,b) = a·b

|a|·|b| . The objective function favors higher values
of the similarity for positive word-pairs than for negative word-pairs, and is thus a natural implementation
of the intended criterion.

3.3 Joint Learning

The context-aware component and the function-aware component are jointly optimized, so we then ob-
tain the following object function:

L = argmax
Θ

λLcontext + (1− λ)Lfunction, (4)

where Θ is a set of all parameters in Lcontext and Lfunction, and λ is the combination parameter which
balances the contribution of each component in the training process.

The goal of the training objective is to maximize L with respect to the model parameters. The op-
timization process is conducted via Stochastic Gradient Descent (SGD). The optimization of Lcontext
follows the negative sampling introduced in (Mikolov et al., 2013). If the predicted word w is in the
salient words set S, the corresponding optimization process for Lfunction will be activated, and the pa-
rameters are updated as w← w + η ∂L

∂w , u← u+ η ∂L
∂u , and v← v + η ∂L

∂v , where η is the learning rate,
and the gradients are calculated as follows:

∂L
∂w

=λ

n∑
<u,v>∈P (w)

∂s(w,u)

∂w
− ∂s(w,v)

∂w
,

∂L
∂u

=λ

n∑
<u,v>∈P (w)

∂s(w,u)

∂u
,

∂L
∂v

=λ

n∑
<u,v>∈P (w)

−∂s(w,v)

∂v
,

(5)

where w is the predicted word, u is its positive word and v is its negative word. Since we apply cosine
distance to compute the similarity between two words, the optimization can be derived as follows:

∂s(a,b)

∂a
= −

Sa,b · a
|a|2

+
b

|a| · |b|
, (6)
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Algorithm 1 Task-oriented Word Embedding Method.
Input: Corpus C, the labeled training set D with g categories, dimensionality d, sampling times n, and

word vocabulary V
Output: Embeddings w ∈ Rd of all words in the vocabulary V .

Initialization: randomly set w ∈ Rd for all words in V; generate the salient words set S; constructing
T prediction tasks using a sliding window.
for t = 1, 2, . . . , T do

optimize Lcontext using negative sample method introduced in (Mikolov et al., 2013)
if w in S then

for n do
sampling the positive word u and the negative word v.
optimize Lfunction using Eq.(5) to update w, u, v.

end for
end if

end for
return w for all words in V .

where Sa,b = a·b
|a|·|b| . The pseudo code for our word embedding method is shown in Algorithm 1, and the

source code is available on the Github1.

4 Experiments

4.1 Datasets
To undertake an extensive evaluation, we investigate the empirical performances of our proposed method
on five text classification datasets. The detailed statistics of all the datasets are listed in Table 1. Each
dataset is briefly described as follows:

Datasets Type Train Size Test Size #Classes Avg.L Vocab Size #Tokens
20NewsGroup Doc. 11,314 7,532 20 315 179,092 6,555,230
5AbstractsGroup Doc. 2,500 3,756 5 223 38,103 1,203,022
IMDB Doc. 25,000 25,000 2 126 170,543 6,141,136
MR Sen. 32,361 32,359 2 21 47,568 974,626
SST Sen. 5,928 5,927 2 12 19,362 152,474

Table 1: Statistics of the five mainstream datasets for text classification.

(1) The 20NewsGroup2 is a popular text classification dataset which contains 18,846 documents from
20 different newsgroups. Each document contains several sentences. The dataset is separated into a
training set of 11,314 documents and a test set of 7,532 documents. (2) The 5AbstractsGroup dataset
is academic papers from five different domains collected from the Web of Science namely, business,
artificial intelligence, sociology, transport and law. We extracted the abstract and title fields of each
paper as a document. The dataset contains 6,256 documents, and we randomly selected 500 papers in
each category as the training set, and the others as the test set. The dataset is published on the Github3.
(3) The IMDB4 contains movie reviews with binary classes (i.e., positive and negative). It consists of
50,000 movie reviews (Maas et al., 2011), and each movie review has several sentences. (4) The MR5

dataset consists of movie reviews from Rotten Tomato website with two classes labeled by (Pang and
Lee, 2005). Each review contains only one sentence. (5) The SST6 dataset contains the movie reviews

1https://github.com/qianliu0708/ToWE
2http://qwone.com/ jason/20Newsgroups/.
3https://github.com/qianliu0708/5AbstractsGroup
4https://www.cs.jhu.edu/mdredze/datasets/sentiment/unprocessed.tar.gz
5https://www.cs.cornell.edu/people/pabo/movie-review-data/
6http://nlp.stanford.edu/sentiment
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Business AI Law Sociology Transport

employee distributional jurisdiction educational driver
entrepreneur predefine interpreted sport departure
stakeholder inference law food urban
trait recognition dispute farmer intersection
consumer variant qualified sociology accident
marketplace analytic congress experience incident
asset learn interfere poverty route
bond aggregate contract religious transferring
manager object victim youth passenger
markets uncertain permit ethnicity vehicle

Figure 2: Top ten salient words for each category
in the 5AbstractsGroup dataset.
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Figure 3: Performance of the ToWE method with
varying N on the 5AbstractsGroup dataset.
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Figure 4: Performance of the ToWE method with the varying parameter λ and the size of sampling n.
The Y-axis represents the accuracy (%) on the 20NewsGroup dataset.

in the Stanford Sentiment Treebank labeled by (Socher et al., 2013) comprising one sentence for each
review. 50% of the MR and SST datasets are partitioned randomly into the training set and 50% into the
test set.

4.2 Baseline Methods
To evaluate our method, we consider the following baselines: (1) the BOW method is employed as a
basic baseline. It represents each document as a bag of words and the weighting scheme is TFIDF.
We select the top 2,000 words according to the TFIDF scores as features; (2) the Word2Vec method
is a neural network language method which learns word embeddings by maximizing the conditional
probability leveraging contextual information. It comprises two models, i.e., CBOW which predicts the
target word using context information, and the Skip-gram (denoted as SG) which predicts each context
word using the target word; (3) the GloVe (Pennington et al., 2014) method is a state-of-the-art matrix
factorization method. It leverages global count information aggregated from the entire corpus as word-
word occurrence matrix to learn word embeddings; (4) the Topical Word Embedding method (denoted
as TWE) (Liu et al., 2015c) learns a topic model from the training set, then generates word embeddings
by jointly considering words and topics in a neural network; (5) the Retrofit method (Faruqui et al.,
2015) is a popular method that refines pre-trained word embeddings using relational information from
the knowledge base (e.g., WordNet used in our experiments).

4.3 Experimental Settings
In this paper, we use the text classification task to evaluate the performance of word embeddings. Word
embeddings are used to construct the document embeddings d by simply averaging all word embeddings
in the given document, i.e., d = 1

|d|
∑

w∈d w, where w is a word in document d. We regard document
embedding as a document feature and trained a linear classifier using Liblinear7 (Fan et al., 2008), since
the feature size is large, and Liblinear can quickly train a linear classifier with high dimension features.
The classifier is then used to predict the class labels of documents in the test set. The multi-group

7https://www.csie.ntu.edu.tw/ cjlin/liblinear/.
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Methods
20NewsGroup 5AbstractsGroup IMDB MR SST

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Acc. Acc.

BOW 73.6 73.6 72.8 73.0 77.1 76.6 77.2 76.5 85.3 59.3 73.4
GloVe 62.3 61.2 61.1 60.5 79.6 78.4 79.4 79.4 87.4 58.7 75.5
CBOW 74.5 73.6 73.5 73.4 79.4 78.6 78.8 78.8 87.1 61.8 77.9
SG 76.7 75.9 75.6 75.4 85.2 84.0 85.0 84.4 89.1 63.5 77.3
TWE 81.5 81.2 80.6 80.6 81.5 80.5 81.2 80.7 87.1 56.0 76.9
Retrofit-CBOW 75.6 75.9 73.5 72.1 78.2 77.4 77.6 77.3 86.6 61.9 78.0
Retrofit-SG 77.4 77.9 75.5 74.3 83.3 82.3 83.0 82.6 88.8 63.7 77.9

ToWE-CBOW 80.9 80.2 79.9 79.9 84.7 84.0 84.4 84.4 90.1 64.5 78.8
ToWE-SG 86.0 85.5 85.0 85.0 87.2 86.2 87.1 87.1 90.8 65.1 78.4

Table 2: Performance of our methods on five datasets against the baselines. Bold scores are the best
overall.

classification performance was evaluated in terms of four measures: accuracy (Acc.), precision (Prec.),
recall (Rec.) and F-measure (F1), and the binary classification performance was evaluated by accuracy
(Acc.). All the measures are computed by averaging the metrics of each class and are weighted by the
number of true instances for each class.

For each dataset, all documents are joined together as a corpus for embedding training. We tokenized
the corpus with the Stanford Tokenizer8 and converted it to lower case, then removed the stop words. For
a fair comparison, all word embeddings adhere to the following settings: the dimensionality of vectors
is 300, the size of the context window is 5, the number of negative samples is 25.

In our method, an offline process is used to extract salient word set S from labeled training set D. To
obtain an intuitive understanding of these salient words, we list the top ten words for each category in the
5AbstractsGroup dataset. The result is displayed in Table 2. We vary parameter N (detailed in section
3.2) in the range between 30 and 200, and show the performance in Figure 3. Our method achieves the
best performance when N is set to 150 for the 5AbstractsGroup dataset. If the value of N is too large,
this may hinder the performance because too much noise will be involved. The recommended N is 150
with the constraint that the total size of S is under 1200 based on practical experience.

There are two hyper-parameters in our method, i.e., the combination parameter λ in Eq.(4) and the
size n of sample set P (w) in Eq.(3). We carefully tune these parameters by fixing one and varying the
other. The parameters corresponding to the best accuracy in 20NewsGroup are used to report the final
settings. As shown in Figure 4, the optimal values for λ were tuned from 0 to 1, with a step size of
0.1. The proposed method based on Skip-gram and CBOW reaches optimal performance when λ = 0.4
and λ = 0.3, respectively. We tuned the value for n from 50 to 300, and the methods achieve the best
performance when n = 150. We follow the optimal settings in this work, with recommended settings of
λ ∈ (0.3, 0.4) and n ∈ (100, 150).

4.4 Overall Performance

We compared our proposed method with the baseline methods. Table 2 shows the evaluation results.
Based on the experiment results, we make several observations:

(1) Our method performs better than the other methods, and are proved to be highly reliable for the
text classification task. In particular, the ToWE-SG method significantly outperforms the other baselines
on the 20NewsGroup, 5AbstractsGroup, and MR. This is mainly attributed to the task-specific modeling
mechanism, which enables our models to capture functional features among words, therefore, it can more
accurately distinguish classes.

(2) The word embedding methods outperform the basic bag-of-words methods in most cases, indi-
cating the superiority of distributed word representation over the one-hot representation. Moreover, the

8https://nlp.stanford.edu/software/tokenizer.shtml
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manager (Business) layer (AI) congress (Law) poverty (Sociology) accident (Transport)
ToWE-SG SG ToWE-SG SG ToWE-SG SG ToWE-SG SG ToWE-SG SG

managerial innovate appearance form federal chapter deprivations urbanization accidents crash
extant pursuing recurrent forgetting permit authorized belonging projections drivers severity
executives incentives architecture symbolic administrative secrecy homeless urbanization severity injury
stakeholder subfield automatic space enforcement prohibiting inequality auto red rtc
investors accord collecting encoding earned bureaucrats affordability commuting mobility crashes
bond strategically cognitive involves regulating dockets malnutrition deforestation road fatal
moderates helps proposed structures exception wrongful adulthood anthropogenic elasticity rollover
innovation strategic learning polarization submitted defense ethnicity co-benefits safety single-vehicle
marketing tailor algorithms activation regulate hear religious modal estimated taz
asymmetry create neural discontinuous defense he discursive ownership delay crash-related

Table 3: Ten most similar words to the salient words using the ToWE-SG method and SG method. The
bold words are salient words, and their category is marked in italic.
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Figure 5: Performance of SG and ToWE-SG methods for each category in the 5AbstractsGroup dataset.

methods which integrate the abundant information discovered from the datasets (i.e., TWE and ToWE)
achieve better performance compared to those that only consider contextual information, such as GloVe,
CBOW, and SG. This demonstrates the effectiveness of refining context-aware word embeddings with
task information.

(3) The Retrofit method is the knowledge-base enhanced word embedding method. Our method
achieves better performance over Retrofit method, indicating that the task-specific features could be
more effective compared with general semantic relations constructed by humans in the knowledge bases.

(4) In sentence classification, such as the MR and SST datasets, it is obvious that TWE achieves a
relatively lower performance. This observation shows that topical information enhanced word embed-
ding does not accurately represent a short text. Our method outperforms the TWE method on both
the document-level and sentence-level tasks, which shows the stability and reliability of modeling task-
specific features in real-world applications.

4.5 Case Study
A case study was conducted to qualitatively analyze in-depth why task-oriented word embedding meth-
ods surpass typical context-aware word embedding methods. We selected several salient words from
different categories in the 5AbstractsGroup dataset, and then compared the top ten similar words ob-
tained by ToWE-SG and SG, respectively. The results are displayed in Table 3. We observe that the
similar words selected by the ToWE-SG method belong to the same category, while the SG method may
select words from different categories. Taking the word manager as an example, the most similar words
selected by ToWE-SG all belong to the Business category, whereas the SG method selects helps, create
which can hardly be regarded as being in the Business category. This demonstrates that our method is
capable of capturing a clear boundary in the embedding space. For further investigation, we compared
the classification performance of these two word embeddings in each category. As shown in Figure 5,
ToWE-SG outperforms SG in all these categories. This indicates that by forcing words in the same
category to have similar representations, the classifier achieves better performance.

5 Conclusion

In this paper, we proposed a novel approach for learning task-oriented word embedding, especially for
the text classification task. Instead of learning embedding vectors merely based on context information,
we incorporate task-specific features into the training process in order to reveal the words functional
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attributes in the embedding space. The results of the experiments with different datasets show that the
proposed method outperforms the existing state-of-the-art word embedding learning methods on text
classification tasks. In the future, we will study how to effectively construct the task-oriented word
embeddings with the help of transferable task-features across domains.
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003. A neural probabilistic language

model. Journal of Machine Learning Research, 3:1137–1155.

Danushka Bollegala, Mohammed Alsuhaibani, Takanori Maehara, and Ken-ichi Kawarabayashi. 2016. Joint word
representation learning using a corpus and a semantic lexicon. In Proceedings of AAAI, pages 2690–2696.

Danushka Bollegala, Yuichi Yoshida, and Ken-ichi Kawarabayashi. 2018. Using k-way co-occurrences for learn-
ing word embeddings. In Proceedings of AAAI, pages 5038–5044.

Shaosheng Cao and Wei Lu. 2017. Improving word embeddings with convolutional feature learning and subword
information. In Proceedings of AAAI, pages 3144–3151.

Yu Liang Chih, Wang Jin, Lai K. Robert, and Xuejie Zhang. 2017. Refining word embeddings for sentiment
analysis. In Processings of EMNLP, pages 534–539.
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