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Abstract

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated
analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we
present a novel model called Interpretable Reasoning Network that employs an interpretable,
hop-by-hop reasoning process for question answering. The model dynamically decides which
part of an input question should be analyzed at each hop; predicts a relation that corresponds to
the current parsed results; utilizes the predicted relation to update the question representation and
the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that
our model yields state-of-the-art results on two datasets. More interestingly, the model can offer
traceable and observable intermediate predictions for reasoning analysis and failure diagnosis,
thereby allowing manual manipulation in predicting the final answer.

1 Introduction

Open-domain Question Answering (QA) has always been a hot topic in AI and this task has recently been
facilitated by large-scale Knowledge Bases (KBs) such as Freebase (Bollacker et al., 2008). However,
due to the variety and complexity of language and knowledge, open-domain question answering over
knowledge bases (KBQA) is still a challenging task.

Question answering over knowledge bases falls into two types, namely single-relation QA and multi-
relation QA, as argued by Yin et al. (2016). Single-relation questions, such as “How old is Obama?”, can
be answered by finding one fact triple in KB, and this task has been widely studied (Bordes et al., 2015;
Xu et al., 2016; Savenkov and Agichtein, 2017). In comparison, reasoning over multiple fact triples is
required to answer multi-relation questions such as “Name a soccer player who plays at forward position
at the club Borussia Dortmund.” where more than one entity and relation are mentioned. Compared to
single-relation QA, multi-relation QA is yet to be addressed.

Previous studies on QA over knowledge bases can be roughly categorized into two lines: semantic
parsing and embedding-based models. Semantic parsing models (Yih et al., 2014; Yih et al., 2016)
obtain competitive performance at the cost of hand-crafted features and manual annotations, but lack the
ability to generalize to other domains. In contrast, embedding-based models (Bordes et al., 2014b; Hao
et al., 2017; Yavuz et al., 2017) can be trained end-to-end with weak supervision, but existing methods
are not adequate to handle multi-relation QA due to the lack of reasoning ability.

Recent reasoning models (Miller et al., 2016; Wang et al., 2017) mainly concentrate on Reading
Comprehension (RC) which requires to answer questions according to a given document. However,
transferring existing RC methods to KBQA is not trivial. For one reason, the focus of reasoning in RC is
usually on understanding the document rather than parsing questions. For another reason, existing rea-
soning networks are usually designed in a black-box style, making the models less interpretable. While
in multi-relation question answering, we believe that an interpretable reasoning process is essential.

In this paper, we propose a novel Interpretable Reasoning Network (IRN) to equip QA systems with
the reasoning ability to answer multi-relation questions. Our central idea is to design an interpretable
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reasoning process for a complex question: the reasoning module decides which part of an input question
should be analyzed at each hop, and predicted a KB relation that corresponds to the current parsed
results. The predicted relation will be used to update the question representation as well as the state of
the reasoning module, and helps the model to make the next-hop reasoning. At each hop, an entity will
be predicted based on the current state of the reasoning module.

Different from previous models, our model is interpretable in that the predicted relation and entity
at each hop are traceable and observable. At each hop our model has a specific aim to find an appro-
priate relation based on the iterative analysis of a question, and intermediate output at each hop can be
interpreted by the corresponding linked entity. In this manner, IRN offers the ability of visualizing a com-
plete reasoning path for a complex question, which facilitates reasoning analysis and failure diagnosis,
thereby allowing manual manipulation in answer prediction as detailed in our experiments.

The contributions of this paper are in two folds:

1. We design an Interpretable Reasoning Network which can make reasoning on multi-relation ques-
tions with multiple triples in KB. Results show that our model obtains state-of-the-art performance.

2. Our model is more interpretable than existing reasoning networks in that the intermediate entities
and relations predicted by the hop-by-hop reasoning process construct traceable reasoning paths to
clearly reveal how the answer is derived.

2 Related Works

Recent works on QA can be roughly classified into two types: one is semantic-parsing-based and the
other is embedding-based. Semantic parsing approaches map questions to logical form queries (Pasupat
and Liang, 2015; Yih et al., 2016; Abujabal et al., 2017). These systems are effective but at the cost
of heavy data annotation and pattern/grammar engineering. What’s more, parsing systems are often
constrained on a specific domain and broken down when executing logical queries on incomplete KBs.

Our work follows the line of Embedding-based models (Bordes et al., 2014b; Dong et al., 2015; Xu
et al., 2016; Hao et al., 2017; Yavuz et al., 2017) which are recently introduced into the QA community
where questions and KB entities are represented by distributed vectors, and QA is formulated as a prob-
lem of matching between vectors of questions and answer entities. These models need less grammars as
well as annotated data, and are more flexible to deal with incomplete KBs. To make better matching, sub-
graphs of an entity in KB (Bordes et al., 2014a), answer aspects (Dong et al., 2015; Hao et al., 2017) and
external contexts (Xu et al., 2016) can be used to enrich the representation of an answer entity. Though
these methods are successful to handle simple questions, answering multi-relation questions or other
complex questions is far from solved, since such a task requires reasoning or other elaborated processes.

Our work is also related to recent reasoning models which focus on Reading Comprehension where
memory modules are designed to comprehend documents. State-of-the-art memory-based Reading Com-
prehension models (Sukhbaatar et al., 2015; Kumar et al., 2015; Shen et al., 2016; Wang et al., 2017;
Celikyilmaz et al., 2017) make interactions between a question and the corresponding document in a
multi-hop manner during reasoning. MemNN (Weston et al., 2015), KVMemN2N (Miller et al., 2016)
and EviNet (Savenkov and Agichtein, 2017) transferred the reading comprehension framework to QA
where a set of triples is treated as a document and a similar reasoning process can be applied. However,
reading comprehension makes reasoning over documents instead of parsing the questions.

Other studies applying hop-by-hop inference into QA can be seen in Neural Programmer (Neelakan-
tan et al., 2015; Neelakantan et al., 2016) and Neural Enquirer (Yin et al., 2015), where deep networks
are proposed to parse a question and execute a query on tables. However, Neural Programmer needs
to predefine symbolic operations, while Neural Enquirer lacks explicit interpretation. Mou et al. (2017)
proposed a model coupling distributed and symbolic execution with REINFORCE algorithm, however,
training such a model is challenging. Neural Module Network (Andreas et al., 2015; Andreas et al.,
2016) customized network architectures for different patterns of reasoning, making the reasoning net-
work interpretable. However, a dependency parser and the REINFORCE algorithm are required.
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3 Interpretable Reasoning Network

3.1 Task Definition

Our goal is to offer an interpretable reasoning network to answer multi-relation questions. Given a
question q and its topic entity or subject es which can be annotated by some NER tools, the task is to
find an entity a in KB as the answer.

In this work, we consider two typical categories of multi-relation questions, a path question (Guu et
al., 2015) and a conjunctive question (Zhang et al., 2016), while the former is our major focus.
A path question contains only one topic entity (subject es) and its answer (object a) can be found by
walking down an answer path consisting of a few relations and the corresponding intermediate entities.
We define an answer path as a sequence of entities and relations in KB which starts from the subject
and ends with the answer like es

r1−→ e1
r2−→ ...

rn−→ a. Relations (ri) are observable (in various natural
language forms) in the question, however, the intermediate entities (e1 · · · eH ) are not. For example,
for question “How old is Obama’s daughter?”, the subject is Barack Obama and the answer path is
Barack Obama Children−−−−−−→Malia Obama

Age−−→18. Note that since there are 1-to-many relations1, the range of the
intermediate entities can be large, resulting in more than one answer path for a question.
A conjunctive question is a question that contains more than one subject entity and the answer can be
obtained by the intersection of results from multiple path queries. For instance, the question “Name
a soccer player who plays at forward position at the club Borussia Dortmund.” has a possible an-
swer as the intersection of results from two path queries2 FORWARD

plays position−1

−−−−−−−−−−−→ Marco Reus and
Borussia Dortmund

plays in club−1

−−−−−−−−−−→ Marco Reus. The details for dealing with conjunctive questions are
shown in Fig 2.

3.2 Overview

The reasoning network has three modules: input module, reasoning module, and answer module. The
input module encodes the question into a distributed representation and updates the representation hop-
by-hop according to the inference results of the reasoning module. The reasoning module initializes its
state by the topic entity of a question and predicts a relation on which the model should focus at the
current hop, conditioned on the present question and reasoning state. The predicted relation is utilized
to update the state vector and the question representation hop-by-hop. The answer module predicts an
entity conditioned on the state of the reasoning module.

The process can be illustrated by the example as shown in Figure 1. For question “How old is Obama’s
daughter?”, the subject entity Barack Obama is utilized to initialize the state vector. IRN predicts the
first relation “Children” at the first hop. The “Children” relation is added to the state vector to encode
the updated parsing result, and the corresponding natural language form of this relation in the question
(here is “daughter”) is subtracted from the question to avoid repeatedly analyzing the relation-relevant
word “daughter”. This procedure is repeated until the Terminal relation is predicted.

3.3 Input Module

The input module encodes a question to a vector representation and updates the representation of the
question at each hop of the reasoning process: the predicted relation will be subtracted from the current
representation to compel the reasoning process to attend to other words that should be analyzed.

Formally, the question X = x1, x2, ..., xn can be initialized by the sum of the word embeddings and
updated by subtracting the relation predicted by the reasoning module at the previous hop:

q0 =

n∑
i=1

xi (1)

qh = qh−1 −M rqr̂
h (2)

1For instance, relation Children is one-to-many, where a person may have more than one child.
2Superscript -1 stands for the inverse relation.
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Figure 1: Interpretable Reasoning Network. At each hop IRN computes the probability of selecting the next relation as gh

and obtains a predicted relation r̂h. The predicted relation r̂h is used to update the question qh and the state sh with different

projections. The state is initialized by subject as s0 = es. The answer path (Obama
Children−−−−−−→ Malia Obama

Age−−→ 18) is
composed of the predicted relations and entities (in red).

where M rq is a matrix projecting the KB relation space to the natural language question space, qh−1 is
the question representation at hop h− 1, and r̂h defined by Eq. 4 is the predicted relation at hop h. The
intuition of such update is that the already analysed part of the question should not be parsed again.

Representing a question as a bag of words might be too simple. However, this method works well in
our setting. Future work would consider other sophisticated encoders such as CNN or LSTM.

3.4 Reasoning Module

The reasoning module aims to attend to a particular part of the question at each hop, predict an associated
relation in knowledge base, and then update its state.

The reasoning module takes as input the previous state vector (sh−1) and the previous question vector
(qh−1), and then predicts a relation (r̂h) based on the analysis at the current hop. Once the predicted
relation (r̂h) is obtained, the relation will be used to update the next question representation (qh) and the
state of the reasoning module (sh). In this manner, the reasoning network is traceable and interpretable.

The process can be formally described by the following equations3:

ghj = P (rh = rj |qh−1, sh−1) = softmax((M rqrj)
Tqh−1 + (M rsrj)

Tsh−1) (3)

r̂h =
∑
j

ghj ∗ rj (4)

sh = sh−1 +M rsr̂
h (5)

where rj is the embedding of a relation in KB and all the relation embeddings are stored in a static
memory R, and sh is the state of the reasoning module at hop h. ghj is the probability of selecting the jth

relation in KB and M rs is the projection matrix mapping r from the relation space to the state space.
M rq is the same projection matrix used in Eq. 2 to map r from the relation space to the question space.

We initialize the state vector with the topic entity (subject) s0 = es. IRN will learn to enrich the
state representation hop by hop, for instance, at the first hop s1 ≈ es + r1, and at the second hop
s2 ≈ es + r1 + r2, intuitively. In this manner, the state vector encodes historical information.

3aT b is the inner-product of vector a and b.
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In order to signify when the reasoning process should stop, we augment the relation set with the
Terminal relation. Once the reasoning module predicts the Terminal relation, the reasoning process will
stop, and the final answer will be the output when the last non-terminal relation is added to the state s.

3.5 Answer Module
The answer module chooses the corresponding entity from KB at each hop (denoted as ah). At the last
hop, the selected entity is chosen as the final answer, while at the intermediate hops, the predictions of
these entities can be inspected to help reasoning analysis and failure diagnosis.

More formally, an entity at each hop can be predicted as follows:

eh = M ses
h (6)

ohj = P (ah = ej |sh) = softmax(eTj e
h) (7)

M se is used to transfer from the state space (sh) to the entity space (eh) to bridge the representation
gap between the two spaces. ej is the embedding vector of the jth entity in KB.

3.6 Loss Function
We adopt cross entropy to define the loss function. The first loss term is defined on the intermediate
prediction of relations, while the second term on the prediction of entities.

The loss on one instance is defined as follows:

L =
∑
h

Cr(h) + λCa(h) (8)

Cr(h) = −
nr∑
j=1

[ĝhj ln g
h
j ] , Ca(h) = −

ne∑
i=1

[ôhi ln o
h
i ]

where nr/ne is the number of relations/entities in KB respectively, ĝh is the gold distribution (one-hot)
over relations at hop h, gh is the predicted distribution defined by Eq. 3, ô is the gold distribution over
entities, which is also one-hot representation, and o is defined by Eq. 7. λ is a hyper parameter to balance
the two terms.

Note that the training data is in the form of (q,< es, r1, e1, ..., a >), which indicates that the model
can incorporate supervision not only from the final answer (referred to as IRN-weak), but also from the
intermediate relations and entities along the answer path (referred to as IRN).

3.7 Multitask Training for KB Representation
In order to incorporate more constraints from KB4, we learn the embeddings of entities and relations
as well as the space transition matrix with a multitask training schema. For a given fact triple in KB,
(es, r, eo), the representations of the entities and the relation apply the following constraint:

M se(es + r) = eo (9)

where es, r, eo are embeddings of the subject (or head) entity, relation, and the object (or tail) entity.
This idea is inspired by TransE (Bordes et al., 2013), but we adopt M se (see Eq. 6) as a transfer matrix
to bridge the representation gap between the state space (here es + r = s) and the entity space (here
eo = e).

The parameters are updated with a multi-task training schema. We first learn the KB embeddings e/r
and the transformation matrix M se to fit Eq. 9 with several epoches. This is the task of KB embedding
training. Then, we update all the parameters of IRN under supervision from the QA task with one epoch,
which is the task of QA training. We run the two tasks iteratively.

With the help of the auxiliary KB embedding training, IRN not only utilizes the additional information
from KB to make better inferences, but also has an ability to deal with incomplete answer paths. For
example, even if the connection between Barack Obama and Malia Obama is not present in KB, our
model can still make correct prediction thanks to M se(eBarack Obama + rChildren) ≈ eMalia Obama.

4Constraint from KB means that two entities and a relation form a triple in KB, as (es, r, eo).
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3.8 Dealing with Conjunctive Questions

IRN is not limited to only path questions. For a conjunctive question that contains more than one topic
entity, the answer can be found by executing multiple IRNs with the same parameters in parallel and then
obtaining the intersection of individual results.

Reasoning Module:
individual IRNs

Input Module:
different input pairs

FORWARD

Answer Module:
distribution  over entities 

Assemble:
sum of the two distributions

Name   
a   

……
at

position

at        
the      
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BD

…
…

(q, FORWARD)

…. Mats   M_R   Fred ….
Marco_Reus

…. Mats M_R Fred ….
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es

IRN_1  for
FORWARD-position-1-M_R

IRN_2  for
BD—club-1—M_R

….  Mats  M_R  Fred ….

(q,  BD)

Figure 2: An assembly of two IRNs to handle a conjunctive question with two subjects. Different IRNs take as input the
same question but different subjects and output the distribution over the candidate answers. The final answer is selected after
summing the two distributions.

This process is exemplified by Figure 2. The input question “Name a soccer player who plays at
forward position at the club Borussia Dortmund” has two subject entities, “FORWARD” and “Borus-
sia Dortmund(BD)”. One IRN (IRN 1) takes the original question and “FORWARD” as input, and then
predicts possible objects for path query “FORWARD

plays position−1

−−−−−−−−−−−→ ?(Marco Reus)”.5 The output is a distribu-
tion over entities. Similarly, another IRN (IRN 2) tackles the path query “BD

plays in club−1

−−−−−−−−−−→?(Marco Reus)”

where the input is the same question but another subject entity “Borussia Dortmund(BD)”. After sum-
ming the two output distributions, the answer “Marco Reus” is chosen with the largest probability.

4 Data Preparation

We prepared two KBQA datasets to evaluate our Interpretable Reasoning Network: one is PathQuestion6,
constructed by ourselves, and the other is WorldCup2014, adopted from (Zhang et al., 2016).

4.1 PathQuestion

We adopted two subsets of Freebase (Bollacker et al., 2008) as Knowledge Bases to construct the
PathQuestion (PQ) and the PathQuestion-Large (PQL) datasets. We extracted paths between two en-
tities which span two hops (es

r1−→ e1
r2−→ a, denoted by -2H) or three hops (es

r1−→ e1
r2−→ e2

r3−→ a,
denoted by -3H) and then generated natural language questions with templates. To make the gener-
ated questions analogical to real-world questions, we included paraphrasing templates and synonyms
for relations by searching the Internet and two real-world datasets, WebQuestions (Berant et al., 2013)
and WikiAnswers (Fader et al., 2013). In this way, the syntactic structure and surface wording of the
generated questions have been greatly enriched.

PQL is more challenging than PQ in that PQL utilizes larger KB and provides less training instances.
The statistics are shown in Table 1 and more details are described in the Appendix 6.

4.2 WorldCup2014

We also evaluated our model on the WorldCup2014 (WC2014) dataset constructed by (Zhang et al.,
2016). The dataset contains single-relation questions (denoted by WC-1H), two-hop path questions (WC-
2H), and conjunctive questions (WC-C). WC-M is the mixture of WC-1H and WC-2H. The statistics of
WorldCup2014 are listed in Table 1.

5The question mark indicates the entity to be predicted and the entity in bracket is the expected answer.
6This dataset is available at https://github.com/zmtkeke/IRN
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Dataset #Entity #Relation #Question Exemplar Question
PQ-2H / 3H 2,215 14 1,908 / 5,198 What does the son of princess Sophia’s mom do for a living?

PQL-2H / 3H 5,035 364 1,594 / 1,031 What is the notable type of Jody Harris’s profession?
WC-1H / 2H / M / C 1,127 6 6,482 / 1,472 / 7,954 / 2,208 Name a player who plays at Forward position from Mexico?

Table 1: Statistics and exemplar questions of PathQuestion (PQ), PathQuestion-Large (PQL) and WorldCup2014 (WC).

5 Experiment and Evaluation

5.1 Implementation Details

ADAM optimizer (Kingma and Ba, 2015) was used for parameter optimization. The dimension of all
the embeddings (words in question, entities and relations in KB) was set as dx = de = dr = 50. The
hyper-parameter λ (see Eq. 8) is set to 1 . We partitioned the entire dataset into the train/valid/test subset
with a proportion of 8 : 1 : 1 and set the batch size as 50.

5.2 Performance of Question Answering

In this section, we evaluated the performance of multi-relation question answering on PathQuestion and
WorldCup2014 respectively. To further show that IRN is able to handle more challenging datasets, we
evaluated the model with two configurations:
Incomplete KB To simulate the real KBs which are often far from complete, we removed half of the
triples (entities and relations are retained but the connections between entities were removed) from the
KB of the PQ-2H dataset.
Unseen KB To simulate a real QA scenario where out-of-vocabulary(OOV) words is one of the major
challenges, we removed questions whose answer path includes relation “Cause of Death”, “Gender”
or “Profession” from the PQ-2H training set. The models need to cope with questions related to these
three OOV relations during the test.

Several baselines are included here:
Embed (Bordes et al., 2014b) deals with factoid QA over KB by matching a question with an answer in
the embedding spaces.
Subgraph (Bordes et al., 2014a) improves the Embed model by enriching the representation of an an-
swer entity with the entity’s subgraph.
Seq2Seq (Sutskever et al., 2014) is a simplified seq2seq semantic parsing model, which adopts an LSTM
to encode the input question sequence and another LSTM to decode the answer path.
MemN2N (Sukhbaatar et al., 2015) is an end-to-end memory network that can be used for reading com-
prehension and question answering. The memory units consist of the related triples in a local subgraph
of the corresponding answer path, where the settings are the same as (Bordes et al., 2015).
KVMemN2N (Miller et al., 2016) improves the MemN2N for KBQA as it divides the memory into two
parts: the key memory stores the head entity and relation while the value memory stores the tail entity.
IRN-weak is our model that employs only supervision from the final answer entity rather than the com-
plete answer path. This can be implemented by simply ignoring the loss from the intermediate hops
except the final entity in Eq. 8.

The performance is measured by accuracy7: correct if a predicted entity is in the answer set of input
question. Since there are many 1-to-many relations in Freebase and WC2014, a question may have
several possible answer paths, resulting in multiple answers. For example, given the question “How old

is Obama’s daughter?”, the original path can be “Barack Obama Children−−−−−→ Malia Obama
Age−−→18” or

“Barack Obama Children−−−−−→Sasha Obama
Age−−→ 14”, thus the answer can be either “18” or “14”. For this

question, either answer is correct.
The results in Table 2 demonstrate that our system outperforms the baselines on single-relation ques-

tions (WC-1H), 2-hop-relation questions (PQ-2H/PQL-2H/WC-2H) as well as 3-hop-relation questions
(PQ-3H/PQL-3H). Furthermore, assembled IRNs obtain strong performance when dealing with conjunc-
tive questions in WC-C .

7Reported accuracy is the average accuracy of five repeated runs.
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PathQuestion PathQuestion Large WorldCup2014 Challenging PQ-2H
PQ-2H PQ-3H PQL-2H PQL-3H WC-1H WC-2H WC-M WC-C Incomplete Unseen

Random 0.151 0.104 0.021 0.015 0.085 0.064 0.053 0.073 - -
Embed 0.787 0.483 0.425 0.225 0.448 0.588 0.518 0.642 - -

Subgraph 0.744 0.506 0.500 0.213 0.448 0.507 0.513 0.692 - -
IRN-weak(Ours) 0.919 0.833 0.630 0.618 0.749 0.921 0.786 0.837 - -

Seq2Seq 0.899 0.770 0.719 0.647 0.537 0.548 0.538 0.577 - -
MemN2N 0.930 0.845 0.690 0.617 0.854 0.915 0.907 0.733 0.899(↓ 3.3%) 0.558

KVMemN2N 0.937 0.879 0.722 0.674 0.870 0.928 0.905 0.788 0.902(↓ 3.7%) 0.554
IRN(Ours) 0.960 0.877 0.725 0.710 0.843 0.981 0.907 0.910 0.937(↓ 2.3%) 0.550

Table 2: Accuracy on different QA datasets. WC-C is for conjunctive questions while other datasets for path questions.
Challenging PQ-2H are two more difficult configurations of PQ-2H. The models in the second block utilize the answer path
information but those in the first block do not.

We have further observations as follows:
• IRN-weak outperforms Embed and Subgraph, indicating that multi-hop reasoning indeed helps to an-
swer complex questions even when our model is trained end-to-end in the same configuration of weak
supervision8.
• The Seq2Seq baseline performs worse than IRN. Though they are both interpretable, IRN is more pow-
erful when dealing with complicated KBs and questions.
• IRN is better than MemN2N and KVMemN2N on most of the datasets, and both models are much better
than other baselines using the path information. Note that the memory in (KV)MemN2N consists of fact
triples which are distilled from KB using answer path. In this sense, (KV)MemN2N indirectly employs
strong supervision from answer path. In contrast, IRN has a better (or easier) mechanism to supervise
the reasoning process thanks to its interpretable framework.
• The highest accuracy on PQL-2H/3H reveals that IRN performs better when faced with larger datasets.
IRN deals with relations and entities separately, where the number of entities and relations is much less
than that of triples. However, (KV)MemN2N has to handle much more triples in its memory.
• IRN is more robust than the baselines (↓ 3.7% vs. ↓ 2.3% ) when dealing with incomplete KB, which
is probably because auxiliary KB embedding training facilitates the prediction of missing triples. While
the baselines are more sensitive to the incomplete information stored in the memory units.
• Both IRN and the baselines degrade remarkably (0.9→0.5) in the unseen setting because wrong dis-
tributed representations are influential in embedding-based QA models. In addition, the size of the
training set is much smaller than that of the original PQ-2H, which also leads to worse performance.
• IRN is more interpretable compared with (KV)MemN2N , attributed to the structure of IRN. The rela-
tion/entity predicted at each hop is a part of the answer path. The intermediate outputs offer the possibil-
ity to trace the complete reasoning process, diagnose failures, and manipulate answer prediction through
intermediate interactions (see Section 5.3).

5.3 Interpretable Path Reasoning
In this section, we demonstrated how IRN is interpretable by both quantitative and qualitative analysis.
For the quantitative analysis, we can measure how it performs during the reasoning process by inves-
tigating the prediction accuracy of intermediate relations and entities. In this task, we collected all the
relations and entities with largest probabilities (see Eq. 3 and Eq. 7) at each hop {r1, a1, r2, .., aH} and
compared these intermediate outputs with the ground truth {r1, e1, r2, .., a}. As for KVMemN2N, we
also fetched an entity at each hop by an answer distribution, similar to that at the final hop.

According to the structure of IRN, the relation/entity predicted at each hop constitutes an answer path.
Results9 in Table 3 indicate that IRN can predict intermediate entities more accurately than final answers,
due to the cascading errors in the consecutive prediction.

Though KVMemN2N (KVM) predicts the exact answers well, it lacks interpretability. On the one
hand, KVM can not predict relations to trace the answer path. On the other hand, the hops in KVM all

8Only supervision from question-answer pairs, but without answer path information from KB.
9Note here that only if an output matches the labeled entity exactly, the prediction will be judged as correct.Thus, the

accuracy here has a different definition from that in Table 2.
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r1 e1 r2 e2 r3 a
IRN KVM IRN KVM IRN KVM IRN KVM IRN KVM IRN KVM

PQ-2H 1.000 NA 0.957 0.016 1.000 NA NA NA NA NA 0.934 0.916
PQL-2H 0.968 NA 0.722 0.083 0.836 NA NA NA NA NA 0.673 0.676
WC-2H 1.000 NA 0.531 0.000 1.000 NA NA NA NA NA 0.528 0.382
PQ-3H 1.000 NA 0.883 0.003 1.000 NA 0.772 0.001 1.000 NA 0.738 0.774

PQL-3H 0.808 NA 0.721 0.019 0.702 NA 0.721 0.007 0.683 NA 0.608 0.600

Table 3: Accuracy at different hops along the answer path from IRN and KVMemN2N (KVM). ri indicates the relation at
hop i, ei indicates the entity at hop i. a indicates the final answer. NA means not applicable.

aim at finding the answer entity rather than the intermediate entities along the answer path.
To illustrate how our model parses a question and predicts relations hop-by-hop, we studied the dis-

tributions over all the relations (gh, see Eq. 3) and chose an example from PathQuestion as shown
in Figure 3. It is clear that IRN is able to derive the relations in correct order. For question “What
does john hays hammond’s kid do for a living?”, IRN first detects relation Children (the corresponding
word/phrase in the question is kid) and then Profession (what does..do). When detecting the Terminal
relation, IRN will stop the analysis process.

1st r

2nd  r
last r

hop = 1

hop = 2

hop = 3

Q: What does john_hays_hammond 's kid do for a living?

hop = 1

hop = 2

hop = 3

hop = 4

Q:    Why Ptolemy_xiii_Theos_Philopator 's couple 's daughter died ? 

Figure 3: The predicted relations at each hop. Each row represents a probability distribution over relations. Darker color
indicates larger probability. The terminal relation is highlighted in red.

Our model can map relations in KB to words in question. We sampled some relations in KB and pro-
jected them to the question space by rq = M rqr (see Eq. 2). We then obtained words whose embeddings
are most close to rq measured by cosine similarity cos(rq,xi). The result in Table 4 indicates that IRN
can establish reasonable mapping between KB relation and natural language, such as linking Profession
to words like working, profession, and occupation . Besides mapping to single words, relation in KB can
be associated with some complicate templates, such as Profession → “what does ... do” .

Relation Similar words in natural language questions
Profession profession, do, working, occupation
Insititution institution, organization, work, where
Religion faith, religion, what, belief

Cause of Death died, killed, how, death
Place of Birth hometown, born, city, birthplace

Table 4: Most similar words in questions for some exemplar relations.

The above analysis demonstrates that our model is interpretable. Specifically, IRN has merits at:
•Providing a traceable reasoning path for question answering. With the aid of these intermediate entities
and relations, we can obtain not only the final answer but also the complete path that infers the answer.

•Facilitating failure diagnosis. For instance, IRN fails to answer the question “Where did

the child of Joseph P Kennedy Sr die ?”. The true answer path should be “Joseph P Kennedy Sr
Children−−−−−−→Patricia kennedy Lawford

Place of Death−−−−−−−−−−→New York County”. However, the middle entity decided by
IRN is “Rosemary Kennedy” who is also a child of “Joseph P Kennedy Sr”, but her death is not included in KB.

•Allowing manual manipulation in answer prediction. We updated the state (Eq. 5) and the ques-
tion (Eq. 2) in IRN with the ground-truth relation vectors and compared the performance. The higher
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accuracy in Table 5 implies that we can improve the final prediction by correcting intermediate
predictions.

Dataset PQ-2H PQ-3H PQL-2H PQL-3H
Acc 0.980 (↑ 2.0%) 0.900 (↑ 2.3%) 0.755 (↑ 3.0%) 0.744 (↑ 3.4%)

Table 5: Accuracy when the intermediate predictions are replaced by ground truth.

6 Conclusion

We present a novel Interpretable Reasoning Network which is able to make reasoning hop-by-hop and
then answer multi-relation questions. Our model is interpretable in that the intermediate predictions
of entities and relations are traceable and the complete reasoning path is observable. This property
enables our model to facilitate reasoning analysis, failure diagnosis, and manual manipulation in answer
prediction. Results on two QA datasets demonstrate the effectiveness of the model on multi-relation
question answering.

As future work, there is much room for complex question answering. For instance, answering “How
old is Obama’s younger daughter?” needs to handle arithmetic operation. Furthermore, multi-constraint
questions will also be considered in this framework.
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Appendix A. PathQuestion Construction and Question Templates

We constructed a synthesis dataset by generating questions with templates. The knowledge base for
PathQuestion has more than 60,000 triples which are adopted from FB13 (Socher et al., 2013) with 13 re-
lations and thousands of entities. As for PathQuestion-Large, we adopted another more complex subset of
Freebase (Bollacker et al., 2008). First, we extracted all the paths with two hops (< es, r1, e1, r2, a >),
or three hops (< es, r1, e1, r2, e2, r3, a >) among these triples. Second, we crafted templates to gen-
erate natural language questions from these paths. Last, we collected question and answer path pairs
(q,< es, r1, e1, ..., a >) to construct the PathQuestion (PQ) dataset.

We crafted templates to transfer an answer path extracted from KB to natural language questions.
To make the generated questions analogical to real-world questions, those templates are firstly written
manually, and then enriched by replacing synonyms. Besides, we searched for different syntactical struc-
tures and paraphrases in real-world datasets including WebQuestions (Berant et al., 2013) and WikiAn-
swers (Fader et al., 2013) as well as on the Internet. In this manner, the templates have been greatly
diversified and are much closer to real questions.

Synonyms used in templates for PathQuestion are shown in Table 6 and templates for 2-hop paths (PQ-
2H) are shown in Table 7. The datasets are available at https://github.com/zmtkeke/IRN.

Relation Synonyms

Spouse couple, wife, husband
other half, darling

Children child, offspring, kid
daughter, son, heir

Parents parent, father, mother
dad, mom

Profession job, occupation, work

Institution organization
educational institution

Ethnicity race
Gender sex
Nationality nation, country
Location address

Religion faith, religious belief
type of religion

Table 6: Natural language synonyms for relations appearing in questions in PathQuestion.
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Path Pattern Question-templates

Universal

“What is the r2 of es’s r1?”
“What is the es’s r1’s r2?”
“What is the r2 of r1 of es?”
“The r2 of es’s r1?”
“The es’s r1’s r2?”
“The r2 of r1 of es?”

Ask about a person “Who is the r2 of es’s r1?”
“What is the name of the r2 of es’s r1?”

r2=r1=Parents/ “Who is the grand-r1 of es?”
r2=r1=Children “What is the name of the grand-r1 of es?”

r2=Ethnicity
“What r2 is es’s r1”
“What is es’s r1’s r2 like?”
“What is es’s r1’s r2 about?”

r2=Institution
“Where does es’s r1 work?”
“Where does es’s r1 work for?”
“Which r2 does es’s r1 work for?”

r2=Nationality “Which nationality is es’s r1?”
“Where does es’s r1 come from?”

r2=Religion

“What r2 does es’s r1 follow?”
“What r2 is es’s r1?”
“What r2 does es’s r1 have?”
“What r2 is es’s r1 practice?”

r2=Gender “What r2 is es’s r1?”
“Is es’s r1 a man or a woman?”

r2=Location
“Where is es’s r1 living?”
“Where is es’s r1 staying?”
“Please tell me es’s r1 present address.”

r2=Profession

“What does es’s r1 do?”
“What is es’s r1 working on?”
”What is es’s r1?”
“What line of business is es’s r1 in?”
“What does es’s r1 do for a living?”

r2=Cause of Death

“Why es’s r1 died?”
“How es died?”
“What’s the reason of es’s r1’s death?”
“What caused the death of es’s r1?”
”What killed the es’s r1?”
“What made the es’s r1 dead?”
“What did es’s r1 die from?”

r2=Place of Death
“Where did es’s r1 die?”
“Where did the r1 of es die?”
“What city did es’s r1 die?”

r2=Place of Birth

“Where did es’s r1 born?”
“What city did es’s r1 born?”
“What is the hometown of es’s r1?”
“What is es’s r1’s birthplace?”

Table 7: Templates for generating natural language questions from answer paths in PQ-2H.


