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Abstract
Pooling is an essential component of a wide variety of sentence representation and embedding
models. This paper explores generalized pooling methods to enhance sentence embedding. We
propose vector-based multi-head attention that includes the widely used max pooling, mean pool-
ing, and scalar self-attention as special cases. The model benefits from properly designed penal-
ization terms to reduce redundancy in multi-head attention. We evaluate the proposed model
on three different tasks: natural language inference (NLI), author profiling, and sentiment clas-
sification. The experiments show that the proposed model achieves significant improvement
over strong sentence-encoding-based methods, resulting in state-of-the-art performances on four
datasets. The proposed approach can be easily implemented for more problems than we discuss
in this paper.

1 Introduction

Distributed representation learned with neural networks has shown to be effective in modeling natural
language at different granularities. Learning representation for words (Bengio et al., 2000; Mikolov et
al., 2013; Pennington et al., 2014), for example, has achieved notable success. Much remains to be done
to model larger spans of text such as sentences or documents. The approaches to computing sentence
embedding generally fall into two categories. The first consists of learning sentence embedding with
unsupervised learning, e.g., auto-encoder-based models (Socher et al., 2011), Paragraph Vector (Le and
Mikolov, 2014), SkipThought vectors (Kiros et al., 2015), FastSent (Hill et al., 2016), among others.
The second category consists of models trained with supervised learning, such as convolution neural
networks (CNN) (Kim, 2014; Kalchbrenner et al., 2014), recurrent neural networks (RNN) (Conneau et
al., 2017; Bowman et al., 2015), and tree-structure recursive networks (Socher et al., 2013; Zhu et al.,
2015; Tai et al., 2015), just to name a few.

Pooling is an essential component of a wide variety of sentence representation and embedding models.
For example, in recurrent-neural-network-based models, pooling is often used to aggregate hidden states
at different time steps (i.e., words in a sentence) to obtain sentence embedding. Convolutional neural
networks (CNN) also often uses max or mean pooling to obtain a fixed-size sentence embedding.

In this paper we explore generalized pooling methods to enhance sentence embedding. Specifically,
by extending scalar self-attention models such as those proposed in Lin et al. (2017), we propose vector-
based multi-head attention, which includes the widely used max pooling, mean pooling, and scalar self-
attention itself as special cases. On one hand, the proposed method allows for extracting different aspects
of the sentence into multiple vector representations through the multi-head mechanism. On the other, it
allows the models to focus on one of many possible interpretations of the words encoded in the context
vector through the vector-based attention mechanism. In the proposed model we design penalization
terms to reduce redundancy in multi-head attention.

We evaluate the proposed model on three different tasks: natural language inference, author profiling,
and sentiment classification. The experiments show that the proposed model achieves significant im-
provement over strong sentence-encoding-based methods, resulting in state-of-the-art performances on
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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four datasets. The proposed approach can be easily implemented for more problems than we discuss in
this paper.

2 Related Work

There exist in the literature much previous work for sentence embedding with supervised learning, which
mostly use RNN and CNN as building blocks. For example, Bowman et al. (2015) used BiLSTMs as
sentence embedding for natural language inference task. Kim (2014) used CNN with max pooling for
sentence classification. More complicated neural networks were also proposed for sentence embedding.
For example, Socher et al. (2013) introduced Recursive Neural Tensor Network (RNTN) over parse trees
to compute sentence embedding for sentiment analysis. Zhu et al. (2015) and Tai et al. (2015) proposed
tree-LSTM. Yu and Munkhdalai (2017a) proposed a memory augmented neural networks, called Neural
Semantic Encoder (NSE), as sentence embedding for natural language understanding tasks.

Some recent research began to explore inner/self-sentence attention mechanism for sentence em-
bedding, which can be classified into two categories: self-attention network and self-attention pool-
ing. Cheng et al. (2016) proposed an intra-sentence level attention mechanism on the base of LSTM,
called LSTMN. For each step in LSTMN, it calculated the attention between a certain word and its pre-
vious words. Vaswani et al. (2017) proposed a self-attention network for the neural machine translation
task. The self-attention network uses multi-head scaled dot-product attention to represent each word by
weighted summation of all word in the sentence. Shen et al. (2017) proposed DiSAN, which is composed
of a directional self-attention with temporal order encoded. Shen et al. (2018) proposed reinforced self-
attention network (ReSAN), which integrate both soft and hard attention into one context fusion with
reinforced learning.

Self-attention pooling has also been studied in previous work. Liu et al. (2016) proposed inner-
sentence attention based pooling methods for sentence embedding. They calculate scalar attention be-
tween the LSTM states and the mean pooling using multi-layer perceptron (MLP) to obtain the vec-
tor representation for a sentence. Lin et al. (2017) proposed a scalar structure/multi-head self-attention
method for sentence embedding. The multi-head self-attention is calculated by a MLP with only LSTM
states as input. There are two main differences from our proposed method; i.e., (1) they used scalar
attention instead of vectorial attention, (2) we propose different penalization terms which is suitable for
vector-based multi-head self-attention, while their penalization term on attention matrix is only designed
for scalar multi-head self-attention. Choi et al. (2018) proposed a fine-grained attention mechanism for
neural machine translation, which also extend scalar attention to vectorial attention. Shen et al. (2017)
proposes multi-dimensional/vectorial self-attention pooling on the top of self-attention network instead
of BiLSTM. However, both of them didn’t consider multi-head self-attention.

3 The Model

In this section we describe the proposed models that enhance sentence embedding with generalized
pooling approaches. The pooling layer is built on a state-of-the-art sequence encoder layer. Below,
we first discuss the sequence encoder, which, when enhanced with the proposed generalized pooling,
achieves state-of-the-art performance on three different tasks on four datasets.

3.1 Sequence Encoder

The sequence encoder in our model takes into T word tokens of a sentence S = (w1, w2, . . . , wT ).
Each word wi is from the vocabulary V . For each word we concatenate pre-trained word embedding
and embedding learned from characters. The character composition model feeds all characters of the
word into a convolution neural network (CNN) with max pooling (Kim, 2014). The detailed experiment
setup will be discussed in Section 4. The sentence S is represented as a word embedding sequence:
X = (e1, e2, . . . , eT ) ∈ RT×de , where de is the dimension of word embedding which concatenates
embedding obtained from character composition and pretrained word embedding.

To represent words and their context in sentences, the sentences are fed into stacked bidirectional
LSTMs (BiLSTMs). Shortcut connections are applied, which concatenate word embeddings and input
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hidden states at each layer in the stacked BiLSTM except for the first (bottom) layer. The formulae are
as follows:
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where hidden states hl
t in layer l concatenate two directional hidden states of LSTM at time t. Then the

sequence is represented as the hidden states in the top layer L: HL = (hL
1 ,h

L
2 , . . . ,h

L
T ) ∈ RT×2d. For

simplicity, we ignore the superscript L in the remainder of the paper.

3.2 Generalized Pooling
3.2.1 Vector-based Multi-head Attention
To transform a variable length sentence into a fixed size vector representation, we propose a generalized
pooling method. We achieve that by using a weighted summation of the T LSTM hidden vectors, and
the weights are vectors rather than scalars, which can control every element in all hidden vectors:

A = softmax(W2ReLU(W1H
T + b1) + b2)

T , (4)

where W1 ∈ Rda×2d and W2 ∈ R2d×da are weight matrices; b1 ∈ Rda and b2 ∈ R2d are bias, where da
is the dimension of attention network and d is the dimension of LSTMs. H ∈ RT×2d and A ∈ RT×2d

are the hidden vectors at the top layer and weight matrices, respectively. The softmax ensures that
(A1,A2, . . . ,AT ) are non-negative and sum up to 1 for every element in vectors. Then we sum up the
LSTM hidden states H according to the weight vectors provided by A to get a vector representation v
of the input sentence.

However, the vector representation usually focuses on a specific component of the sentence, like a
special set of related words or phrases. We extend pooling method to a multi-head way:

Ai = softmax(Wi
2ReLU(Wi

1H
T + bi1) + bi2)

T , ∀i ∈ 1, . . . , I , (5)

vi =

T∑
t=1

ai
t � hi

t , ∀i ∈ 1, . . . , I , (6)

where ai
t indicates the vectorial attention from Ai for the t-th token in i-th head and � is the element-

wise product (also called the Hadamard product). Thus the final representation is a concatenated vector
v = [v1;v2; . . . ;vI ], where each vi captures different aspects of the sentence. For example, some heads
of vectors may represent the predicate of sentence and other heads of vectors represent argument of the
sentence, which enhances representation of sentences obtained in single-head attention.

3.2.2 Penalization Terms
To reduce the redundancy of multi-head attention, we design penalization terms for vector-based multi-
head attention in order to encourage the diversity of summation weight across different heads of attention.
We propose three types of penalization terms.

Penalization Term on Parameter Matrices The first penalization term is applied to parameter matrix
Wi

1 in Equation 5, as shown in the following formula:

P = µ

I∑
i=1

I∑
j=i+1

max(λ− ‖Wi
1 −Wj

1‖
2
F, 0) . (7)
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Intuitively, we encourage different heads to have different parameters. We maximum the Frobenius
norm of the differences between two parameter matrices, resulting in encouraging the diversity of differ-
ent heads. It has no further bonus when the Frobenius norm of the difference of two matrices exceeds
the a threshold λ. Similar to adding an L2 regularization term on neural networks, the penalization term
P will be added to the original loss with a weight of µ. Hyper-parameters λ and µ need to be tuned on
a development set. We can also add constrains on Wi

2 in a similar way, but we did not observe further
improvement in our experiments.

Penalization Term on Attention Matrices The second penalization term is added on attention matri-
ces. Instead of using ‖AAT − I‖2F to encourage the diversity for scalar attention matrix as in Lin et al.
(2017), we propose the following formula to encourage the diversity for vectorial attention matrices. The
penalization term on attention matrices is

P = µ
I∑

i=1

I∑
j=i+1

max(λ− ‖Ai −Aj‖2F, 0) , (8)

where λ and µ are hyper-parameters which need to be tuned based on a development set. Intuitively, we
try to encourage the diversity of any two different Ai under the threshold λ.

Penalization Term on Sentence Embeddings In addition, we propose to add a penalization term on
multi-head sentence embedding vi directly as follows:

P = µ

I∑
i=1

I∑
j=i+1

max(λ− ‖vi − vj‖22, 0) , (9)

where λ and µ are hyper-parameters. Here we try to maximize the l2-norm of any two different heads of
sentence embeddings under the threshold λ.

3.3 Top-layer Classifiers

The output of pooling is fed to a top-layer classifier to solve different problems. In this paper we evaluate
our sentence embedding models on three different tasks: natural language inference (NLI), author profil-
ing, and sentiment classification, on four datasets. The evaluation covers two typical types of problems.
The author profiling and sentiment tasks classify individual sentences into different categories and the
two NLI tasks classify sentence pairs.

For the NLI tasks, to enhance the relationship between sentence pairs, we concatenate the embeddings
of two sentences with their absolute difference and element-wise product (Mou et al., 2016) as the input
to the multilayer perceptron (MLP) classifier:

v = [va;vb; |va − vb|;va � vb] , (10)

where� is the element-wise product. The MLP has two hidden layers with ReLU activation with shortcut
connections and a softmax output layer. The entire model is trained end-to-end through minimizing the
cross-entropy loss. Note that for the two classification tasks on individual sentences (i.e., the author
profiling and sentiment classification task), we use the same MLP classifiers described above for sentence
pair classification. But instead of concatenating two sentences, we directly feed a sentence embedding
into MLP.

4 Experimental Setup

4.1 Data

SNLI The SNLI (Bowman et al., 2015) is a large dataset for natural language inference. The task de-
tects three relationships between a premise and a hypothesis sentence: the premise entails the hypothesis
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(entailment), they contradict each other (contradiction), or they have a neutral relation (neutral). We
use the same data split as in Bowman et al. (2015), i.e., 549.367 samples for training, 9,842 samples for
development and 9,824 samples for testing.

MultiNLI MultiNLI (Williams et al., 2017) is another natural language inference dataset. The data are
collected from a broader range of genres such as fiction, letters, telephone speech, and 9/11 reports. Half
of these 10 genres are used in training while the rest are not, resulting in-domain and cross-domain de-
velopment and test sets used to test NLI systems. We use the same data split as in Williams et al. (2017),
i.e., 392,702 samples for training, 9,815/9,832 samples for in-domain/cross-domain development, and
9,796/9,847 samples for in-domain/cross-domain testing. Note that, we do not use SNLI as an additional
training/development set in our experiments.

Age Dataset To compare our models with that of Lin et al. (2017), we use the same Age dataset in
our experiment here, which is an Author Profiling dataset. The dataset are extracted from the Author
Profiling dataset1, which consists of tweets from English Twitter. The task is to predict the age range of
authors of input tweets. The age range are split into 5 classes: 18-24, 25-34, 35-49, 50-64, 65+. We use
the same data split as in Lin et al. (2017), i.e., 68,485 samples for training, 4,000 for development, and
4,000 for testing.

Yelp Dataset The Yelp dataset2 is a sentiment analysis task, which takes reviews as input and predicts
the level of sentiment in terms of the number of stars, from 1 to 5 stars, where 5-star means the most
positive. We use the same data split as in Lin et al. (2017), i.e., 500,000 samples for training, 2,000 for
development, and 2,000 for testing.

4.2 Training Details

We implement our algorithm with Theano (Theano Development Team, 2016) framework. We use the
development set (in-domain development set for MultiNLI) to select models for testing. To help replicate
our results, we publish our code3, which is developed from our codebase for multiple tasks (Chen et al.,
2018; Chen et al., 2017a; Chen et al., 2016; Zhang et al., 2017). Specifically, we use Adam (Kingma
and Ba, 2014) for optimization. The initial learning rate is 4e-4 for SNLI and MultiNLI, 2e-3 for Age
dataset, 1e-3 for Yelp dataset. For SNLI and MultiNLI dataset, stacked BiLSTMs have 3 layers. For
Age and Yelp dataset, stacked BiLSTMs have 1 layer. The hidden states of BiLSTMs for each direction
and MLP are 300 dimension, except for SNLI whose dimensions are 600. We clip the norm of gradients
to make it smaller than 10 for SNLI and MultiNLI, and 0.5 for Age and Yelp dataset. The character
embedding has 15 dimensions, and 1D-CNN filters lengths are 1, 3 and 5, respectively. Each filter has
100 feature maps, resulting in 300 dimensions for character-composition embedding. We initialize word-
level embedding with pre-trained GloVe-840B-300D embeddings (Pennington et al., 2014) and initialize
out-of-vocabulary words randomly with a Gaussian distribution. The word-level embedding is fixed
during training for SNLI and MultiNLI dataset, but updated during training for Age and Yelp dataset,
which is determined by the performance on development sets. The mini-batch size is 128 for SNLI and
32 for the rest. We use 5 heads generalized pooling for all tasks. And da is 600 for SNLI and 300 for the
other datasets. For the penalization term, we choose λ = 1; the penalization weight µ is selected from
[1,1e-1,1e-2,1e-3,1e-4] based on performances on the development sets.

5 Experimental Results

5.1 Overall Performance

For the NLI tasks, there are many ways to add cross-sentence (Rocktäschel et al., 2015; Parikh et al.,
2016; Chen et al., 2017a) level attention. To ensure the comparison is fair, we only compare methods
that use sentence-encoding-based models; i.e., cross-sentence attention is not allowed. Note that this

1http://pan.webis.de/clef16/pan16-web/author-profiling.html
2https://www.yelp.com/dataset/challenge
3https://github.com/lukecq1231/generalized-pooling



1820

Model Test
100D LSTM (Bowman et al., 2015) 77.6
300D LSTM (Bowman et al., 2016) 80.6
1024D GRU (Vendrov et al., 2015) 81.4
300D Tree CNN (Mou et al., 2016) 82.1
600D SPINN-PI (Bowman et al., 2016) 83.3
600D BiLSTM (Liu et al., 2016) 83.3
300D NTI-SLSTM-LSTM (Yu and Munkhdalai, 2017b) 83.4
600D BiLSTM intra-attention (Liu et al., 2016) 84.2
600D BiLSTM self-attention (Lin et al., 2017) 84.4
4096D BiLSTM max pooling (Conneau et al., 2017) 84.5
300D NSE (Yu and Munkhdalai, 2017a) 84.6
600D BiLSTM gated-pooling (Chen et al., 2017b) 85.5
300D DiSAN (Shen et al., 2017) 85.6
300D Gumbel TreeLSTM (Choi et al., 2017) 85.6
600D Residual stacked BiLSTM (Nie and Bansal, 2017) 85.7
300D CAFE (Tay et al., 2018) 85.9
600D Gumbel TreeLSTM (Choi et al., 2017) 86.0
1200D Residual stacked BiLSTM (Nie and Bansal, 2017) 86.0
300D ReSAN (Shen et al., 2018) 86.3
1200D BiLSTM max pooling 85.3
1200D BiLSTM mean pooling 85.0
1200D BiLSTM last pooling 84.9
1200D BiLSTM generalized pooling 86.6

Table 1: Accuracies of the models on the SNLI dataset.

follows the setup in the RepEval-2017 Shared Task. Table 1 shows the results of different models for
NLI, consisting of results of previous work on sentence-encoding-based models, plus the performance
of our baselines and that of the model proposed in this paper. We have three additional baseline models:
the first uses max pooling on top of BiLSTM, which achieves an accuracy of 85.3%; the second uses
mean pooling on top of BiLSTM, which achieves an accuracy of 85.0%; the third uses last pooling,
i.e., concatenating the last hidden states of forward and backward LSTMs, which achieves an accuracy
of 84.9%. Instead of using heuristic pooling methods, the proposed sentence-encoding-based model
with generalized pooling achieves a new state-of-the-art accuracy of 86.6% on the SNLI dataset; the
improvement over the baseline with max pooling is statistically significant under the one-tailed paired
t-test at the 99.999% significance level. The previous state-of-the-art model ReSAN (Shen et al., 2018)
used a hybrid of hard and soft attention model with reinforced learning achieved an accuracy of 86.3%.

Table 2 shows the results of different models on the MultiNLI dataset. The first group is the results
of previous sentence-encoding-based models. The proposed model with generalized pooling achieves an
accuracy of 73.8% on the in-domain test set and 74.0% on the cross-domain test set; both improve over
the baselines using max pooling, mean pooling and last pooling. In addition, the results on cross-domain
test set yield a new state of the art at an accuracy of 74.0%, which is better than 73.6% of shortcut-stacked
BiLSTM (Nie and Bansal, 2017).

Table 3 shows the results of different models for the Yelp and the Age dataset. The BiLSTM with
self-attention proposed by Lin et al. (2017) achieves better result than CNN and BiLSTM with max
pooling. One of our baseline models using max pooling on BiLSTM achieves accuracies of 65.00%
and 82.30% on the Yelp and the Age dataset respectively, which is already better than the self-attention
model proposed by Lin et al. (2017). We also show that the results of baseline with mean pooling and last
pooling, in which mean pooling achieves the best result on the Yelp dataset among three baseline models
and max pooling achieves the best on the Age dataset among three baselines. Our proposed generalized
pooling method obtains further improvement on these already strong baselines, achieving 66.55% on the
Yelp dataset and 82.63% on the Age dataset (statistically significant p < 0.00001 against best baselines),
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Model In Cross
CBOW (Williams et al., 2017) 64.8 64.5
BiLSTM (Williams et al., 2017) 66.9 66.9
BiLSTM gated-pooling (Chen et al., 2017b) 73.5 73.6
Shortcut stacked BiLSTM (Nie and Bansal, 2017) 74.6 73.6
BiLSTM max pooling 73.6 73.0
BiLSTM mean pooling 71.5 71.6
BiLSTM last pooling 71.6 71.9
BiLSTM generalized pooling 73.8 74.0

Table 2: Accuracies of the models on the MultiNLI dataset.

Model Yelp Age
BiLSTM max pooling (Lin et al., 2017) 61.99 77.30
CNN max pooling (Lin et al., 2017) 62.05 78.15
BiLSTM self-attention (Lin et al., 2017) 64.21 80.45
BiLSTM max pooling 65.00 82.30
BiLSTM mean pooling 65.30 81.78
BiLSTM last pooling 64.95 81.10
BiLSTM generalized pooling 66.55 82.63

Table 3: Accuracies of the models on the Yelp and Age dataset.

which are also new state of the art performances on these two datasets.

5.2 Detailed Analysis

Effect of Multiple Vectors/Scalars To compare the difference between vector-based attention and
scalar attention, we draw the learning curves of different models using different heads on the SNLI
development dataset without penalization terms as in Figure 1. The green lines indicate scalar self-
attention pooling added on top of the BiLSTMs, same as in Lin et al. (2017), and the blue lines indicate
vector-based attention used in our generalized pooling methods. It is obvious that the vector-based
attention achieves improvement over scalar attention. Different line styles are used to indicate self-
attention using different numbers of multi-head, ranging from 1, 3, 5, 7 to 9. For vector-based attention,
the 9-head model achieves the best accuracy of 86.8% on the development set. For scalar attention, the
7-head model achieves the best accuracy of 86.4% on the development set.

Effect of Penalization Terms To analyze the effect of penalization terms, we show the results
with/without penalization terms on the four datasets in Table 4. Without using any penalization terms,
the proposed generalized pooling achieves an accuracy of 86.4% on the SNLI dataset, which is already
slightly better than previous models (compared to accuracy 86.3% in Shen et al. (2018)). When we use
penalization on parameter matrices, the proposed model achieves a further improvement with an accuracy
of 86.6%. In addition, we also observe a significant improvement on MultiNLI, Yelp and Age dataset
after using the penalization terms. For the MultiNLI dataset, the proposed model with penalization on
parameter matrices achieves an accuracy of 73.8% and 74.0% on the in-domain and the cross-domain test
set, respectively, which outperform the accuracy of 73.7% and 73.4% of the model without penalization,
respectively. For the Yelp dataset, the proposed model with penalization on parameter matrices achieves
the best results among the three penalization methods, which also improve the accuracy of 65.25% to
66.55% compared to the models without penalization. For the Age dataset, the proposed model with pe-
nalization on attention matrices achieves the best accuracy of 82.63%, compared to the 82.18% accuracy
of the model without penalization. In general, the penalization on parameter matrices achieves the most
effective improvement among most of these tasks, except for the Age dataset.

To verify whether the penalization term P discourages the redundancy in the sentence embedding, we
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Figure 1: The effect of the number of heads and vectors/scalars in sentence embedding. The vertical axis
indicates the development-set accuracy and the horizontal axis indicates training epochs. Numbers in the
legend are the number of heads.

Model SNLI MultiNLI Yelp Age
IN Cross

w/ Penalization on Parameter Matrices 86.6 73.8 74.0 66.55 82.45
w/ Penalization on Attention Matrices 86.2 73.6 73.8 66.15 82.63
w/ Penalization on Sentence Embeddings 86.1 73.5 73.6 65.75 82.15
w/o Penalization 86.4 73.7 73.4 65.25 82.18

Table 4: Performance with/without the penalization term. The penalization weight is selected from
[1,1e-1,1e-2,1e-3,1e-4] on the development sets.

visualize the vectorial multi-head attention according. We compare two models with the same hyper-
parameters except that one is with penalization on attention matrices and the other without penalization.
We pick a sentence from the development set of the Age data: Martin Luther King “I was not afraid of
the words of the violent, but of the silence of the honest” , with the gold label being the category of 65+.
We plot all 5 heads of attention matrices as in Figure 2. From the figure we can tell that the model trained
without the penalization term has much more redundancy between different heads of attention (Figure
3b), resulting in putting significant focus on the word “Martin” in the 1st, 3rd and 5th head, and on the
word “violent” in the 2nd and 4th head. However in Figure 3a, the model with penalization shows much
more variation between different heads.

6 Conclusions

In this paper, we propose a generalized pooling method for sentence embedding through vector-based
multi-head attention, which includes the widely used max pooling, mean pooling, and scalar self-
attention as its special cases. Specifically the proposed model aims to use vectors to enrich the expres-
siveness of attention mechanism and leverage proper penalty terms to reduce redundancy in multi-head
attention. We evaluate the proposed approach on three different tasks: natural language inference, au-
thor profiling, and sentiment classification. The experiments show that the proposed model achieves
significant improvement over strong sentence-encoding-based methods, resulting in state-of-the-art per-
formances on four datasets. The proposed approach can be easily implemented for more problems than
we discuss in this paper.

Our future work includes exploring more effective MLP to use the structures of multi-head vectors,
inspired by the idea from Lin et al. (2017). Leveraging structure information from syntactic and semantic
parses is another direction interesting to us.
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(a) Age dataset with penalization

(b) Age dataset without penalization

Figure 2: Visualization of vectorial multi-head attention. The vertical and horizontal axes indicate the
source word tokens and the 600 dimensions of the attention Ai for different heads.
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