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Abstract

Fake news spreading through media outlets poses a real threat to the trustworthiness of infor-
mation and detecting fake news has attracted increasing attention in recent years. Fake news
is typically written intentionally to mislead readers, which determines that fake news detection
merely based on news content is tremendously challenging. Meanwhile, fake news could con-
tain true evidence to mock true news and presents different degrees of fakeness, which further
exacerbates the detection difficulty. On the other hand, the spread of fake news produces various
types of data from different perspectives. These multiple sources provide rich contextual infor-
mation about fake news and offer unprecedented opportunities for advanced fake news detection.
In this paper, we study fake news detection with different degrees of fakeness by integrating
multiple sources. In particular, we introduce approaches to combine information from multiple
sources and to discriminate between different degrees of fakeness, and propose a Multi-source
Multi-class Fake news Detection framework MMFD, which combines automated feature ex-
traction, multi-source fusion and automated degrees of fakeness detection into a coherent and
interpretable model. Experimental results on the real-world data demonstrate the effectiveness
of the proposed framework and extensive experiments are further conducted to understand the
working of the proposed framework.

1 Introduction

Given its negative impacts, fake news has been identified as a global threat (Webb et al., 2016). Detecting
fake news has become increasingly important and can benefit individuals and even our society in many
aspects. First, people will be well-informed about events and news and their political and social activities
will not be misguided. Second, despite a few recent initiatives by some social media providers like
Facebook, there is no systematic fake news detection by social media platforms. Third, identifying fake
news is one step toward targeting financial incentives encouraging the spreaders running their “business”.
For instance, Google attempts to stop providing its ad services to fake news websites (Wingfiled et al.,
2016). Fourth, people would not lose their trust in web and social media.

However, fake news detection is naturally challenging especially in the era of social media. First,
fake news is usually written intentionally to mislead its readers and the content of fake news is rather
diverse in terms of length, topics, and styles (Shu et al., 2017a). For example, fake news in social media
is short, informal and is often related to newly emerging and time-critical events. Thus, since we have
not gained enough insights into the nature of fake news, hand-crafted features based on the news content
are generally not sufficient (Ruchansky et al., 2017). Second, to mock true news, fake news could mix
false statements with true ones. For example, fake news can cite true evidence to support a non-factual
claim (Shu et al., 2017a). Hence, fake news has different degrees of fakeness such as half-true, false,
etc. However, the majority of existing algorithms consider fake news detection as a binary classification
in the form of the true/false dichotomy. Considering degrees of fakeness adds further difficulty on fake
news detection.
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Figure 1: An overview of the proposed model for fake news detection (MMFD)

On the other hand, recent advances in mobile techniques and the popularity of emerging media (e.g.,
social media) enable the widespread of fake news and this process produces a large amount of data,
which allows us to collect information about fake news from various perspectives such as the origin
of fake news, the fake news writers and their historical data, etc. Such data provides rich contextual
information beyond the news content. For example, a writer who created plenty of fake news is likely
to create more fake news (Del Vicario et al., 2016); while news from authoritative organizations such as
governments is less likely to be false. Thus, the availability of multiple sources related to fake news has
the great potential to help fake news detection.

In this paper, we study the problem of multi-class fake news detection with multiple sources. In par-
ticular, we aim to answer two major research questions – (1) how to effectively combine information
from multiple sources for fake news detection and (2) how to discriminate between degrees of fakeness
mathematically. Our solutions to these two questions result in the proposed Multi-source Multi-class
Fake news Detection (MMFD) framework. Our main contributions are summarized as a) we introduce
an automated and interpretable way to integrate information from multiple sources; b) we provide a
principled approach to discriminate between degrees of fakeness mathematically; c) the proposed frame-
work MMFD coherently incorporates automated feature extraction, multi-source fusion and degrees of
fakeness discrimination in an end-to-end way; and d) we conduct experiments on real-world data to
demonstrate the effectiveness of the proposed framework.

The rest of the paper is organized in the following manner. In Section 2, we formally define the
multi-source multi-class fake news detection problem. Section 3 describes the proposed approach for
fake news detection. Section 4 evaluates the proposed method and presents the experimental results and
discussions. In Section 5, we present the related work. Section 6 concludes the paper and sheds light
onto the future directions.

2 Problem Definition

In this section, we introduce the mathematical notations and formally define the multi-source multi-class
fake news detection problem. We follow the previous work (Allcott and Gentzkow, 2017; Shu et al.,
2017b) and define fake news as follows.

Definition. A news item is called fake if its content is verified to be false and true otherwise.
Let X = {X1, X2, · · · , Xn} denote a multi-source dataset containing n news items. Each new item

j ∈ [1, n] contains k sources of data and is denoted as Xj = {x1j , x2j , · · ·xkj }. Additionally, let Y =
{y1, y2, · · · , yn} denote a set of class labels associated with news items of dataset X . Each class label
yi ∈ Y takes a label from the label set L = {l1, l2, · · · , lm} where m denotes the number of recognized
degrees of fakeness in our framework and lj ∈ L is a particular degree of fakeness e.g., half-true.
With the aforementioned notations and definitions, the problem of multi-source multi-class fake news
detection is formally defined as follows:

Given the multi-source dataset X and its corresponding multi-class labels Y , we aim to learn the
model M mapping X to Y , which can automatically predicts the degrees of fakeness for unlabeled
news.
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3 The Proposed Framework

Multi-source multi-class fake news detection faces three challenges. First, hand-crafted features based
on news content are not very efficient for fake news, which calls for an automated feature extraction ap-
proach from multiple sources. Second, multiple sources of fake news data offer complementary informa-
tion and combining the multiple sources while delivering an interpretable solution is another challenge.
Third, degrees of fakeness offer a better understanding of fake news; however, fake news with differ-
ent degrees may not be easily separable. In this work, we propose a framework which can tackle these
challenges simultaneously. Figure 1 demonstrates an overview of the proposed Multi-source Multi-class
Fake news Detection framework (MMFD). MMFD incorporates three coherent components into an end-
to-end way – automated feature extraction (Section 3.1), interpretable multi-source fusion (Section 3.2),
and fakeness discrimination (Section 3.3). In the following, we detail each component, followed by
presenting the training procedure of the proposed model in Section 3.4.

3.1 Automated feature extraction
Since hand-crafted features (Gupta et al., 2014; Yang et al., 2012; Khurana and Intelligentie, 2017) are
not very effective, automated feature extraction is more desired. Thus, we employ a deep neural network
model to extract powerful features from each source inspired by the promising performance of deep
learning in representation learning (Bengio et al., 2013). Different types of sources may need different
deep network architectures. Since most of the sources in our dataset are textual sources (see Section 4),
we propose a method to automatically extract features from a textual source.

The textual data can contain indicative information revealing the nature of fake news. Inspired by
recent advancements in deep neural networks for modeling the text, we propose a deep model to extract
features from textual sources based the CNN (convolutional Neural Network) (LeCun et al., 2015) and
the LSTM (Long Short-Term Memory) network (Hochreiter and Schmidhuber, 1997). A CNN extracts
local patters from a text similar to n-grams features (Kalchbrenner et al., 2014). Then, we apply an
LSTM on top of the features extracted from the CNN aiming at capturing the temporal dependencies in
the entire text.

Suppose a textual source contains x words. To apply the CNN model, we represent the text by an
input matrix of word embeddings denoted as W ∈ Rx×e where e is the dimension of the word em-
bedding. More specifically, wj ∈ W is a e dimensional vector representing j-th word of the text and
populates j-th row of matrix W . This matrix is produced from a word representation method such as
word2vec (Mikolov et al., 2013). Then, convolution operations on W are performed M iterations (e.g.,
M = 2 in Figure 2). At each iteration m ∈ [1,M], a filter (a weight matrix) fm ∈ Rlm×e is convolved
with W where lm is the length of the filter. Convolution of fm with the input matrix W produces feature
maps pm ∈ Rx−lm+1. Each entry pj ∈ pm (1 ≤ j ≤ x− lm + 1) is generated as follows:

pj = G(rj � fm + b) (1)

where rj = {wj , wj+1, · · · , wj+lm−1} is a window of lm consecutive words inW (a region ofmwords),
G is a non-linear activation function such as sigmoid, � denotes element-wise product operation, and
b ∈ R is a bias term. Following the common way in CNNs, we repeat the process described above
nm times producing the sequence Um = [pm

1 ||pm
2 || · · · ||pm

nm ] where || denotes the vector concatenation
operator (one can see U1 and U2 in Figure 2 shown as colorful column vectors). Rows of Um represent
the local patterns extracted from a text via the CNNs. In order to find the global patterns throughout
the entire text, we feed rows of Um to an LSTM network as depicted in Figure 2. The output of the
LSTM network is considered as the hidden output of its last unit and is denoted as sm having size q i.e.,
|sm| = q. Then, the final feature vector of the proposed CNN-LSTM model is generated by passing
the concatenation of all last hidden outputs through a Fully Connected Network (denoted as FCN in
Figure 2) as follows:

v = G([s1||s2|| · · · ||sM]T ×A+ b) (2)

where v denotes the extracted feature vector of a textual source, A ∈ R(M×q)×d is a weight matrix, and d
is the desired final feature vector size. Note that [s1||s2|| · · · ||sM] is flattened into a vector of size M× q.
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Figure 2: An illustration of the proposed deep
model for fake news textual source feature ex-
traction.
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Figure 3: An illustration of the proposed inter-
pretable multi-source fusion.

3.2 Interpretable multi-source fusion
The interpretable multi-source fusion component aims to combine features from different sources. A
naive way of doing this is concatenating the feature vectors extracted by automated feature extraction
component i.e., v1 to vk in Figure 1, into a single vector. This scheme considers all sources equally.
However, different sources may have substantially different powers to detect fake news. Hence, when
combining multiple sources, we propose to consider their contributions via an attention mechanism as
shown in Figure 3. The attention mechanisms have achieved great success in many applications such as
language translation (Bahdanau et al., 2014), image captioning (Xu et al., 2015), etc. Next, we present
the details of the interpretable multi-source fusion component

The set of source-specific features of a news item is extracted by the automated feature extraction
component as described in Section 3.1. Then suppose each source’s extracted feature vector is denoted
by vi ∈ Rdi (1 ≤ i ≤ k) and has the dimension di. Now, to ensure feature vectors from different sources
all have the same dimension h, we map each vi to the vector ri via a linear projection as follows:

ri = vTi ×Wi + bi, ∀1 ≤ i ≤ k (3)

where Wi ∈ Rdi×h is a weight matrix, and bi ∈ Rh is a bias vector. Then, the proposed attention method
is carried out as follows:

zj = G(
k∑

i=1

airi), ∀1 ≤ j ≤ n (4)

where zj denotes the final feature vector of j-th news item and the scalar ai is the attention score as-
sociated with i-th source i.e., the contribution of i-th source at zj . Typically the attention scores are
represented by a probability distribution. Therefore, each attention score ai is normalized by the softmax
function as follows.

ai =
eui∑k
l=1 e

ul
, ∀1 ≤ i ≤ k (5)

where ui is a real value number denoting attention score of source i and is calculated according to Eq. 6:

ui = wT tanh(ri), ∀1 ≤ i ≤ k (6)

where w ∈ Rh is a weight matrix.
We should emphasize that attention scores ai (1 ≤ i ≤ k) are learned along with other parts of the

model in an end-to-end manner where they are optimized to capture the informativeness of the different
sources at the fake news detection task. As a result, capturing contributions of different sources reflected
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at scalar values ai (1 ≤ i ≤ k) makes the proposed framework somehow interpretable. This is due to the
fact that now we can identify the roles of different sources in the determining the veracity of a news item
as will be verified in Section 4.4.

3.3 Fakeness discrimination
Many of the existing fake news detection approaches look into the problem from a binary perspective.
However, in practice, a piece of news might be a mixture of factual and false statements. Therefore, it
is crucial to classify fake news into multiple classes reflecting degrees of fakeness. Nevertheless, multi-
class fake news detection (i.e., fakeness discrimination) is challenging. The classifier needs to offer a bet-
ter discriminative power because the boundary between two classes becomes more and more intertwined
as the number of classes increases. To handle this challenge, we propose Multi-class Discriminative
Function (MDF) and is described in the following.

Classification accuracy on unknown test cases mostly depends on how we map our input data into a
new feature space. In general, we want to group similar samples together and dissimilar ones far apart.
To achieve this, we can learn the ‘centers’ of the classes in the feature space. If the centers are too close
to one another, their samples might overlap resulting in less discriminative feature learning. Additionally,
samples should be close to their class centers. This guarantees that samples belonging to the same class
will be mapped into the same cluster (Wen et al., 2016). In general, the two aforementioned goals can
be regarded as optimizing the precision and recall of the clusters in the learned feature space. Therefore,
we include two terms in MDF: one which pushes the centers by a margin referred as inter-class term and
one which pulls the samples toward their centers referred as intra-class term. The proposed inter-class
term helps to learn discriminative features. Next, we introduce the MDF mathematically.

We present the MDF in a generalized non-convex form. The interpretable multi-source fusion compo-
nent yields output feature vector of each news item (zj in Eq. 4). For convenience, let D denote a dataset
that contains features of all news items in X (i.e., D = {z1, z2, · · · , zn}) and Di denote all samples
belonging to class i where 1 ≤ i ≤ m. We calculate the centers of the different classes in the output
feature space by the following equation.

ci =
1

|Di|
∑
zj∈Di

zj , ∀i ∈ C (7)

During the optimization process, centers are not fixed anymore, as both weights and centers are getting
updated. Also, the centers and feature outputs are normalized as ||cj ||2 = 1 and ||zj ||2 = 1, and therefore
they reside on a unit hyper-sphere. Eq. 8 shows the formulation of MDF.

εintra =
1

|D|
∑
∀Di∈D

∑
zj∈Di

‖zj − ci‖22

εinter =
1(
m

2

) m∑
o=1

m∑
r=1,r 6=o

max(0, α− ‖co − cr‖22)

MDF = β1ε
intra + β2ε

inter

(8)

where εintra term is the intra-class term that tries to minimize a sample’s distance to its class center,
and εinter is the inter-class term that is responsible for enforcing margin α between centers of every two
classes. Two hyperparameters β1 and β2 control the intra-class and inter-class terms, respectively.

3.4 Training procedure
In this subsection, we describe the training procedure of MMFD as shown in Algorithm 1. At each itera-
tion of the algorithm, a mini-batch of samples is selected for training (line 2). The features of each source
are extracted by the automated feature extraction component described in Section 3.1 (line 5). The ex-
tracted features are re-weighted according to the proposed attention mechanism described in Section 3.2
(line 8). We combine MDF (Eq. 8) and cross entropy as the model loss function and their contributions



1551

Algorithm 1: Training procedure of MMFD.
Data: Sample X = {X1, · · · , Xn} and labels Y = {y1, · · · , yn}
Input: Learning rate: η; weight of MDF : λ; and hyperparameters of MDF: β1, β2 and α
Output: ModelM and parameters θ = {θ1, · · · , θp}

1 while Not convergent do
2 Select mini-batch B ⊆ X
3 foreach Xj ∈ B do
4 foreach xij ∈ Xj do
5 vi = FEi(x

i
j) /* see Figure 1 */

6 ri = vTi ×Wi + bi /* see Figure 3 */
7 end
8 zj = G(

∑k
i=1 airi) /* see Figure 3 */

9 p(zj) = Softmax(zj)
10 end
11 CrossEntropy = −

∑
zj
p(yj)× log(p(zj))

12 J = λ× CrossEntropy + (1− λ)(β1εintra + β2ε
inter) /* refer to Eq. 8 for ε terms */

13 Backpropagate the error to get∇θJ(θ)
14 ∀θi ∈ θ, θi = θi − η∇θiJ(θ)
15 end
16 if condition = TRUE then
17 CalculateCenters(X ;M)
18 end
19 returnM, {θ1, · · · , θp}

are controlled by the hyperparameter λ (line 12). Algorithm 1 backpropagates the error to compute gra-
dients of the loss function with respect to each parameter of the model. Following the common way,
we use Stochastic Gradient Descent (SGD) to update the parameters (line 14). Finally, once the training
converges, the optimized parameters are returned, which can be used for prediction.

4 Experiment

In this section, we empirically evaluate the proposed framework on a real-world fake news dataset. We
demonstrate the effectiveness of the approach by conducting a set of experiments. Particularly, we seek
to answer the following research questions.

• Q1. How does the proposed framework perform on fake news detection?

• Q2. Can the proposed framework handle multiple sources effectively?

• Q3. How does each component of the proposed framework affect the performance?

We first present the experimental settings. Then, the experiments and their results are conducted to
answer the aforementioned questions. Finally, we present a case study to qualitatively demonstrate the
effectiveness of the proposed approach.

4.1 Experimental settings
In this work, we use the dataset published in (Wang, 2017) known as LIAR. LIAR is one of the largest
publicly available fake news datasets. It has been constructed from a collection of statements investigated
by experts in politifact.com, which is a well-known fact-checking service. The author did split the dataset
into three sets: train, test, and development. His sample selection for sets is random where the train, test,
and development sets contain, respectively, 80%, 10%, and 10% of the entire dataset. We use the same
split as Wang (Wang, 2017). LIAR contains three sources of data. We supplement it and add another
source. In the following, we describe the sources used to evaluate the proposed framework.

• Statements. The statements are short sentence(s), mostly from American politicians covering dif-
ferent topics. The statements have been manually classified into six classes including True, Mostly-
True, Half-True, Barely-True, False, and Pants-on-Fire. We use the architecture presented in Sec-
tion 3.1 (Figure 2) to model the statements.
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• Metadata. The metadata is a textual context about the statements or their speakers if known. This
includes the name of a statement’s speaker, his/her job title, his/her political party affiliation, the
U.S state associated with a speaker, and the venue/location that a statement has been made. When
a speaker is unknown, the related fields are blank. We combine all metadata fields and use the
architecture presented in Section 3.1 (Figure 2) to model it.

• History. The history is a non-textual source. It is a 5-dimensional vector representing a speaker’s
count of statements on five classes, namely Mostly-True, Half-True, Barely-True, False, and Pants-
on-Fire. The history is modeled by a single-layer fully connected network with 10 hidden units.

• Report. In addition to the sources described above, we supplement the dataset by adding the verdict
reports generated by experts in politifact.com. The reports are longer than the statements and meta-
data. We remove the class labels from the reports. Similar to other textual sources, the architecture
presented in Section 3.1 (Figure 2) is utilized to model the reports.

We use the train set to train the model. For the textual sources, we populate word embeddings (see
Figure 2) from the Google word2vec embeddings trained on roughly 100 billion words from Google
News (Mikolov et al., 2013). In all experiments, we utilize the development set to tune the hyperparam-
eters, which have been done carefully with grid search over ranges of different values. We utilize the
mini-batch 32, apply the dropout rate 60%, and use Adam optimizer (Kingma and Ba, 2014) to apply the
gradient descent with the learning rate of 0.001. For center computation in MDF (Eq. 7), we gradually
increase the center computation period starting from 20 optimization steps to 160 steps as the training
proceeds. The hyperparameters β1, β2, and α are set to 0.6, 0.4, and 0.3, respectively. The number of
hidden units in LSTM network is set to 200. The test set is used to evaluate the effectiveness of the model
and the performance reported in this paper is based on the evaluation of the test set. For the performance
metric, we use accuracy since the dataset is fairly balanced and also consistent with Wang (Wang, 2017),
we found that f-measure performs similarly as accuracy.

4.2 Performance comparison

To answer questions Q1 and Q2, we compare our approach, MMFD, with a set of representative base-
lines:

• Basic-SVM. For this baseline, we extract a set of features from sources. For the textual sources, we
extract Bag-of-Words, bigrams, and 3-grams, and simply combine them with the history. Since the
number of features is large, we apply PCA to reduce the dimension to 300. Finally, we train a SVM
model (Support Vector Machine) on the extracted features. We use a grid search on the performance
of the development set to tune the SVM classifier hyperparameters.

• Basic-RandomForests. This baseline is similar to Basic-SVM except that Random Forests is em-
ployed as the classifier.

• Basic-NN. In addition to the employed traditional classifiers, i.e., SVM and Random Forests, we
also use a NN (Neural Network) as the baseline. The input to NN is the same with other two
classifiers. We use a fully connected network with one layer. Again, the hyperparameters are set
using the development set. Basic-NN further refines the initial features.

• Wang (Wang, 2017). Wang (Wang, 2017) developed a model based on CNN and BLSTM (Bi-
directional LSTM) for fake news detection on LIAR dataset.

• Random. Random includes randomly selecting the class of a test sample.

• Majority. In this method, each test news item is labeled with a class having the largest number of
samples i.e., the Half-True class.
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Table 1: Performance comparison. S1: Statement, S2: Metadata, S3: History, S4: Report

Sources Method Accuracy (%)
– Random 17.4
– Majority 20.8

S1

Basic-SVM 20.12
Basic-RandomForests 23.19

Basic-NN 21.73
Wang (Wang, 2017) 27.00

MMFD 29.06

S1+S2+S3

Basic-SVM 25.07
Basic-RandomForests 27.63

Basic-NN 28.16
Wang (Wang, 2017) 27.04

MMFD 34.77

S1+S2+S3+S4

Basic-SVM 29.98
Basic-RandomForests 27.01

Basic-NN 29.12
Wang (Wang, 2017) N/A

MMFD 38.81

The comparison results on different combinations of sources have been shown in Table 1. As men-
tioned before, the original dataset (Wang, 2017) contains only the sources “S1: Statement”, “S2: Meta-
data” and “S3: History” and we enrich the dataset by adding the fourth source “S4: Report”. Thus, we
only report combinations with news content (i.e., S1), all sources in the original dataset (i.e., S1+S2+S3)
and all sources in the enriched dataset (i.e., S1+S2+S3+S4). Note that the performance of Wang (Wang,
2017) is not available on the enriched dataset. We make the following observations from these results:

• MMDF outperforms Wang (Wang, 2017) when only using the news content (e.g., S1). Both methods
are based on CNN + LSTM. However, the proposed framework also has the model component to
discriminate between multiple classes. This observation supports the importance of the proposed
discriminative function i.e., MDF.

• By incorporating more sources, the performance of all methods tends to increase. Compared
to baselines, the proposed framework MMDF enjoys more performance improvement with more
sources. These observations suggest that the proposed framework can effectively combine multiple
sources.

• The proposed framework always obtains the best performance with all settings. In the following
subsection, we further investigate how each model component contributes to the performance im-
provement.

To sum up, the proposed framework outperforms representative baselines and it is also effective in
integrating information from multiple sources.

4.3 MMFD component analysis
In this subsection, we conduct several experiments to study the impact of model components on the
performance of the proposed framework to answer Q3. The experiment are as follow:

• MMFDPCA. In this experiment, we remove feature extractors in MMDF (FEs in Figure 1). In-
stead, we apply PCA (with dimension 100) on each input of the textual sources. We keep the history
and the interpretable multi-source fusion and the fakeness discrimination components unchanged.
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Table 2: Impact of model components on the
proposed framework.

Investigated
component Setting Accuracy (%)

Automated
feature extraction

MMDFPCA 26.06
MMDFNN 30.95

Multi-source
fusion

MMDFConcat 28.69
MMDFEQ 32.08

Fakeness
discrimination

MMDFCE 31.11
MMDFCL 35.17

– MMFD 38.81

Table 3: A case study demonstrating the inter-
pretability of the proposed framework.

Source Content Attention
score

Statement

”Virtually every person across
this country has seen premiums
going up and up and up due to

Obamacare”

0.17

Metadata
Ted Cruz, Senator
Texas, Republican

a conversation with reporters
0.09

History [36 33 15 19 8] 0.43

Report
The full report is available

from the URL1 0.31

• MMFDNN . For this configuration, we perform the same feature extraction as MMFDPCA ex-
cept that instead of PCA, we extract features from a NN.

• MMFDConcat. In this setting, we keep the automated feature extraction and the fakeness dis-
crimination components. However, we replace the interpretable multi-source fusion component by
concatenating extracted features.

• MMFDEQ. Similar to MMFDConcat, in this setting, we keep the automated feature extraction
and the fakeness discrimination components. However, we replace the interpretable multi-source
fusion component by explicitly considering all the sources equally important. In other words, in
Eq. 4 all ais are set to the same value.

• MMDFCE . In this setting, we evaluate the effectiveness of the fakeness discrimination component.
We keep two other components and remove MDF from the loss function of the model and just keep
Cross Entropy (CE).

• MMDFCE . Center Loss (CL) was proposed in (Wen et al., 2016). This function penalizes cross
entropy by an intra-class sparsity. In other words, it just tries to move samples toward their class
centers. In this setting, we use Center Loss and cross entropy.

The results of component analysis with all sources in the enriched dataset are presented in Table 2. It
can be observed that:

• Automated feature extraction effectively extracts features. NeitherMMFDFCN norMMFDPCA

can extract informative features compared to the automated feature extraction component.

• Hand-crafted features are ineffective. Features in MMFDFCN and MMFDPCA are basic lin-
guistic features which are not effective as much as the automated ones from deep networks.

• The interpretable multi-source fusion component integrates features effectively. Simple concate-
nation methods such as MMFDConcat and MMFDEQ fail to distinguish different sources. The
reason for better performance of MMFDEQ is because the linear projection presented in Eq. 3.

• MMFD can discriminate different classes effectively. Neither MMDFCE nor MMDFCL can
effectively discriminate different classes. The reason for better accuracy of MMDFCL is due to
the extra penalty added to the cross entropy.

In conclusion, the three major model components including automated feature extraction, multi-source
fusion, and fakeness discrimination can help boosting the performance of the proposed framework in
detecting fake news.

1http://www.politifact.com/truth-o-meter/statements/2013/oct/17/ted-cruz/sen-ted-cruz-says-premiums-have-gone-
virtually-eve/
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4.4 A case study
As mentioned before, the interpretable multi-source fusion components equips the proposed framework
with a sort of interpretability. To investigate the interpretability power of the framework , we present a
case study demonstrated in Table 3. In this case study, we randomly select a sample news item from
the test set. The ground truth label of this news item is False and the model correctly predicts it as
False. Then, we show the attention score of each source. As shown in Table 3, the highest score is
given to the history source. This seems reasonable as the history of the speaker, Ted Cruz, regarding
the number of previous false statements is quite high. Moreover, the report attains the second highest
attention score. This seems reasonable as well because the report includes contextual detail about a news
item. In addition, it is quite hard to predict the fakeness of news from the short news statement and the
writer’s profile; hence low scores are given to these two sources.

5 Related Work

There have been substantial number of works studying fake news and misinformation detection in recent
years. One well-known approach is taking advantage of linguistic features. In their seminal work (De-
Paulo et al., 2003), DePaulo et al. shed light on cues of fake stories from physiological point of view.
They pointed out that fake stories contain an unusual language. Li et al. (Li et al., ) discovered that
linguistic features such as sentiments and singular pronouns are informative in online spam reviews.
In (Qazvinian et al., 2011), the authors used unigram, bigram and Part-of-Speech (POS) features of
tweets for rumor detection. Martinez-Romo and Araujo (Martinez-Romo and Araujo, 2013) used dis-
crepancy and lack of semantic relation between the language of spam tweets and that of the websites
redirected by those tweets. Kumar et al. (Kumar et al., 2016) showed that Wikipedia hoaxes tend to con-
tain more words than genuine articles. Also, Linguistic Inquiry and Word Count (LIWC) (Pennebaker et
al., 2015) has been employed to investigate the role of individual words in a document for deception de-
tection (Ott et al., 2011). For a review of other linguistic features, you can refer to survey papers (Conroy
et al., 2015; Heydari et al., 2015).

Despite the success of aforementioned works, we still lack a comprehensive and optimized set of
features for fake news. This is even more stressed for short statements as they offer little to fake news
detection. Hence, deep neural networks as automatic feature extractors have gained attention for fake
news detection (Ruchansky et al., 2017). Closely related to our work is (Wang, 2017). Wang (Wang,
2017) introduced the dataset used for our evaluation. Further, he developed a combination of CNN and
LSTM for modeling fake news detection. Our model is substantially different from that of Wang (Wang,
2017) because, 1) we provide an interpretable model component to combine multiple sources, (2) we
propose a new discriminative function, MDF, to discriminate degrees of fakeness, (3) we supplemented
the dataset and modeled the verdict reports.

6 Conclusion

In this study, we investigated the challenging task of multi-source multi-class fake news detection.
The task faces several challenges – how to incorporate multiple sources and how to discriminate de-
grees of fakeness. To address these challenges, we proposed a coherent and interpretable framework
MMFD, which incorporates automated feature extraction, multi-source fusion and fakeness discrimi-
nation. Through extensive experiments, we demonstrated that our model can effectively distinguish
different degrees of the fakeness of news. In fakeness discrimination, we treated all classes the same.
Thus, we would like to incorporate class differences by enforcing larger margin between certain classes.
By doing so, several classes can be merged easily if needed, allowing for a less fine grained but possi-
bly more precise detection. Another possible research direction is to incorporate more sources such as
temporal information, social networks and user interactions.
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