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Abstract

Neural Machine Translation (NMT) with source side attention have achieved remarkable perfor-
mance. however, there has been little work exploring to attend to the target side which can po-
tentially enhance the memory capbility of NMT. We reformulate a Decoding-History Enhanced
Attention mechanism (DHEA) to render NMT model better at selecting both source side and tar-
get side information. DHEA enables a dynamic control on the ratios at which source and target
contexts contribute to the generation of target words, offering a way to weakly induce struc-
ture relations among both source and target tokens. It also allows training errors to be directly
back-propagated through short-cut connections and effectively alleviates the gradient vanishing
problem. The empirical study on Chinese-English translation shows that our model with proper
configuration can improve by 0.9 BLEU upon Transformer and achieve the best reported results
in the same dataset. On WMT14 English-German task and a larger WMT14 English-French task,
our model achieves comparable results with the state-of-the-art NMT systems.

1 Introduction

Neural Machine Translation(Sutskever et al., 2014) generally adopts an encoder-decoder framework,
where the encoder reads and encodes the input text into a distributed representation and the decoder
generates translated text conditioned on the input representation. A potential issue with this encoder-
decoder approach is that a neural network needs to be able to compress all the necessary information of a
source sentence into a fixed-length vector. This may make it difficult for the neural network to cope with
translating long sentences. A recent successful extension of NMT models is the attention mechanism
which conducts a soft search over source tokens and yields an attentive vector to represent the most
relevant segments of the source sentence for the current decoding state (Bahdanau et al., 2014; Jean et
al., 2015; Luong et al., 2014; Vaswani et al., 2017).

The typical attention mechanism frees the neural translation model from having to squash all the infor-
mation of the source sentence into a fixed vector, however, it ignores some important information hidden
in the target sequence (Cheng et al., 2016). At least three challenges still remains in the translation pro-
cess. The first issue relates to the memory compression problems in the decoding process. During each
translation step, a hidden state vector implicitly maintains at least two types of information, including
both the most relevant source contexts and the language model over the partially translated sentence. The
memory capacity of a single dense vector is not powerful enough to store these information. The sec-
ond challenge comes with the training and optimization problem associated with vanishing or exploding
gradients, which has been studied in the context of vanilla RNNs. Although some RNN variants such as
LSTMs provide a temporal shortcut path to avoid the problem in the temporal domain, it is not guaran-
teed to be sufficient. At last, it should be acknowledged that the target side context is solely based on the
sequence model which, in practice, is prone to a fixed vector and lacks the ability to capture effectively
nonsequential dependencies among words.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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猫 坐在 垫子 上 The cat sat on the mat

猫 坐在 垫子 上 cat sat on the mat eos

0.05 0.05 0.4 0.05 0.05 0.2 0.1 0.1

Figure 1: DHEA: Decoding-History Enhanced Attention mechanism. The interaction with hidden states
that cross both the source and target side can be enhanced by these short-cut connections. The atten-
tion weights controls the individual contribution of each hidden states. In this example, the semantic
dependency between the word “sat” and “mat” can be be explicitly captured.

In order to address these limitations, we introduce a Decoding History Enhanced Attention (DHEA) as
a powerful extension to the typical attention based NMT architecture, where the attention over decoding
history contributes directly to the prediction of the next word. As illustrated in Figure 1, DHEA explicitly
looks back at multiple preceding steps and automatically decides how much previous information should
be “seen” by weighting them. Basically, this sort of attention paid on the decoding history facilitates the
flow of information from the distant past and is able to emphasize any of the previously translated words,
hence it enables the learning of syntactic structures which are useful for the translation task. It also
introduces some shortcut connections which connect far-away states to ensure training error signal to
be back-propagated directly and alleviate gradient vanishing problem. Further more, we apply attention
on the source and target side contexts synchronously, which can better characterize the dependencies
within the two sides. Acting in this way, the system learns to determine the ratos of information from
the two sides and properly select the amount of context information with regard to the generation of next
word in the decoding process. For example, content words in the target sentence should depend more
on the source context but less on its prefix (e.g. “mat” depends more one “dianzi” and takes “cat” as
complementarity). In contrast, function words in the target sentence are often more related to the target
context (e.g. “on” after “sat”).

Our evaluation on three language pairs shows that the proposed model improves over several base-
lines, with only a small increase in computational overhead. On the NIST Chinese-English task, DHEA
with proper settings yields the best reported result and a 0.9 BLEU improvement over a strong NMT
system (Transformer). On WMT English-German and English-French tasks, it again leads to consis-
tent improvements and achieves performance superior or comparable to the state-of-the-art. Finally, we
analyze the learned attention function, providing additional insights to its actual contributions.

2 Neural Machine Translation

The NMT model aims to compute the conditional distribution of generating a sentence in a target
language given a sentence in a source language, denoted by pθ(y|x), where x = {x1 · · · , xT } and
y = {y1, · · · , yT ′} represent the source and target sentences as sequences of words respectively. θ is a
set of parameters usually trained to maximize the conditional log-probability of the correct translation y
given the source sentence x:

θ∗ = argmax
θ

N∑
i=1

log p(y(i)|x(i)) (1)

where N is the size of the training corpus. In this section, we will first briefly introduce the NMT
model used in our work. Our model modifies the attention based architecture proposed by Bahdanau et
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al. (2014), and implements as a deep stack LSTM framework. The whole architecture has three main
components: encoder, decoder and attention mechanism.
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Figure 2: The structure of deep neural machine translation model with DHEA. The dashed arrow directly
connects the decoding history and the current state. If we remove this connection, the model degrades to
the source side attention based NMT.

Encoder The goal of the encoder is to build meaningful representations of source sentences. The typ-
ical encoder consists of a bidirectional RNN which processes the raw input in backward and forward
direction with two separate layers, and then concatenates them together. In this work, we choose another
bidirectional approach to process the sequence in order to learn more temporal dependencies. Specifi-
cally, an RNN layer processes the input sequence in a forward direction. The output of this layer is taken
by an upper RNN layer as input, processed in a reverse direction (Zhou et al., 2016).

More formally,The encoder network reads the source input x = {x1, ..., xT } and processes it into a
source side memory M s = {h1, h2 · · · , hT }. where xi ∈ Rdx . The output on layer ` is

h`t =

{
xt, ` = 1

LSTM(h`t+d, h
`−1
t ), ` > 1

(2)

where

• h`t ∈ Rdh gives the output of layer ` at location t.

• The directions are marked by a direction term d = (−1)`. If we fixed d to −1, the input will be
processed in forward direction, otherwise backward direction.

• We only apply the top-most hidden states as the source side memory which is then fed to the decoder.

Decoder The decoder uses another RNN to generate the translation y = {y1, · · · , yT ′} based on the
source side memory M s produced by the encoder. In this work, we use a unidirectional deep stacked
LSTM for the decoder RNN. More formally, the hidden state s`t ∈ Rds on decoder layer ` is

s`t =

{
yt, ` = 1

LSTM(s`t−1, s
`−1
t , c`t), ` > 1

(3)

Where yt is the target word embedding at time step t and the context vector c`t ∈ Rdh is dynamically
obtained from M s by the attention mechanism. At inference stage, we only utilize the top-most hidden
states s to make the final prediction with a softmax layer:

p(yi|y<i, x) = softmax(siWo) (4)
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Attention The attention mechanism allows the decoder to select which parts of the source sentence are
more useful to predict the next output word. It can be viewed as mapping a query and a set of key-value
pairs to an output. The output is computed as a weighted sum of the values, where the weight assigned
to each value is computed by a compatibility function of the query with the corresponding key. More
specifically, the attention model get context vector ct after reading from the source representation M src:

c`i = Read(si,M s)

=
T∑
j=1

α`ij(hjW
`
V )

(5)

Each weight coefficient, α`ij , is computed using a softmax function:

αij =
exp(eij)∑n
k=1 exp(eik)

(6)

And e`ij is computed using a compatibility function that compares two input elements. The two most
commonly used attention functions are additive attention, and dot-product attention. Additive attention
computes the weights of the values using a feed-forward network with a single hidden layer. In this
work, we consider dot-product with a scaling factor as the compatibility function for its simplicity and
efficiency:

e`ij =
1√
ds

(s`−1
i W `

Q)(hjW
`
K)

T (7)

Linear transformations of the inputs add sufficient expressive power. WK ,WV ∈ Rdh×ds and WQ ∈
Rds×ds are parameter matrices. In general ds and dh are set to the same. These parameter matrices are
unique per layer. It should be noticed that in Eqn.(7), we apply s`−1

i to compute the weights of layer ` on
the values. In this way the query vector can be prepared in anvance which benifits the implementation of
using highly optimized matrix multiplication code.

3 Decoding-History Enhanced Attention for NMT

From Eqn.(5), it is not difficult to observe that the attention weights are associated with the only source
side memory. As we have argued before, it is easy for the conventional attention-based NMT models to
suffer from generating incoherent texts due to the conflict between the source side attention mechanism
and the decoding history. We therefore propose decoding-history enhanced attention to better control
over target side contexts. In addition to the source memoryM s, DHEA is equipped with a buffer memory
MB as an extension to the conventional approach. MB is identical to the source side memory MS,
except that MB changes per time step. MB

i is defined as {s1, s2, · · · , si}. The new context vector is
then defined as a combination of the two sides contexts:

ĉ = Read(s,MS,MB) (8)

In this work investigate three strategies for integrating these contexts.

Sum Combination At time step i, DHEA reads from MB:

z`i = Read(si,MB)

=

i∑
j=1

α`ij(s
`−1
j W `

V )
(9)

Similarly, αij is computed by Eqn.(6) where j ≤ i and e`ij is computed as :

e`ij =
1√
ds

(s`−1
i W `

Q)(s
`−1
j W `

K)T (10)
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One simple way to aggregate information from zi and ci is by summing them, then the new context
vector is computed as:

ĉ = z + c (11)

It is also worth mentioning that we use s`−1 as the context information to update the hidden state on
layer `, since the lower layer states can be perpared in advance to facilitate parallel training.

Gate Combination As argued by Tu et al. (2016a), the source side context and the target side context
plays a different role during the decoding process, we therefore design a context gate which assigns an
element-wise weight to the two-side input:

ĉ = g(c, z) · c+ (1− g(c, z)) · z (12)

where g(c, z) ∈ (0, 1) is a sigmoid neural network which dynamically controls the amount of information
flowing from the source and target contexts. ĉ is the new context vector fed to the decoder in Eqn.(3)
which refines s`t = LSTM(s`t−1, s

`−1
t , ĉ`t).

With the gated control, the new context vector ĉ can be rectified based on the decoding history and the
source side information. The memory storing useful information of the partial translation can encourage
the model to translate contents that are less repeated compared with the already translated contents.

Hybird Combination Considering that we apply the similar attention function to read from the sourc-
side memory and the target side memory, it is natural to merge these two memorys into a hybird memory
block MS+B. After that, the decoder directly reads from this memory block.

ĉ = Read(s,MS+B) (13)

Where the memory block MS+B is the concatenation of MS and MB. The method can be viewd as
a simple implementation of gate combination where the the gating weights are equal to the attention
weights.

4 Experiments

4.1 Datasets

We mainly evaluated our approaches on the widely used NIST Chinese-English translation task. In
order to show the usefulness of our approaches, we also provide results on other two translation tasks:
English-French, English-German. The evaluation metric is BLEU. For Chinese-English task, we apply
case-insensitive NIST BLEU. For other tasks, we tokenized the reference and evaluated the performance
with multi-bleu.pl. The metrics are exactly the same as in previous work (Papineni et al., 2002).

For Chinese-English, our training data consists of 1.25M sentence pairs extracted from LDC corpora1,
with 27.9M Chinese words and 34.5M English words respectively. We choose NIST 2002 (MT02)
dataset as our development set, and the NIST 2003 (MT03), 2004 (MT04), 2005 (MT05), and 2006
(MT06) datasets as our test sets.

For English-German, to compare with the results reported by previous work, we used the same subset
of the WMT 2014 training corpus that contains 4.5M sentence pairs with 91M English words and 87M
German words. The concatenation of news-test 2012 and news-test 2013 is used as the validation set and
news-test 2014 as the test set.

To evaluate at scale, we also report the results of English-French. To compare with the results reported
by previous work on end-to-end NMT, we used the same subset of the WMT 2014 training corpus that
contains 36M sentence pairs. The concatenation of news-test 2012 and news-test 2013 serves as the
validation set and news-test 2014 as the test set.

1The corpora include LDC2002E18, LDC2003E07, LDC2003E14, Hansards portion of LDC2004T07, LDC2004T08 and
LDC2005T06.
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4.2 Training details
Our training procedure and hyper parameter choices are similar to those used by (Vaswani et al., 2017).
In more details, we limited the source and target vocabularies to the most frequent 30K words in Chinese-
English translation. For English-German translation and English-French translation, we use 50K sub-
word tokens as vocabulary based on Byte Pair Encoding(Sennrich et al., 2015).

We initialized parameters by sampling each element from the Gaussian distribution with mean 0 and
variance 0.012. Parameter optimization was performed using stochastic gradient descent. Adam (Kingma
and Ba, 2015) was used to automatically adapt the learning rate of each parameter (β1 = 0.9, β2 = 0.98
and ε = 10−8). To avoid gradient explosion, the gradients of the cost function which had `2 norm larger
than a predefined threshold 25 were normalized to the threshold (Pascanu et al., 2013). We batched
sentence pairs by approximate length, and limited input and output tokens per batch to 8192 per GPU.
Each resulting training batch contained approximately 60,000 source and 60,000 target tokens. We
trained our NMT model with the sentences of length up to 150 words in the training data. During
training, we employed label smoothing of value ε = 0.1(?).

Translations were generated by a beam search and log-likelihood scores were normalized by the sen-
tence length. We used a beam width of 8 and length penalty α = 0.6 in all the experiments. Dropout
was applied on each layer to avoid over-fitting (Hinton et al., 2012). The dropout rate was set to 0.1. Ex-
cept when otherwise mentioned, NMT systems had 6 layers encoders and 4 layers decoders. We trained
for 300,000 steps on 8 M40 GPUs, and averaged the last 20 checkpoints, saved at 30 minute intervals.
For our small model, the dimensions of all the hidden states were set to 512 and for the big model, the
dimensions were set to 1024.

4.3 Results on Chinese-English Translation

SYSTEM MT03 MT04 MT05 MT06 AVE.
Existing systems

Moses 31.61 33.48 30.75 30.85 31.67
DEEPLAU(Wang et al., 2017) 39.35 41.15 38.07 37.29 38.97
FRNN+PRNN (Zheng et al., 2017) 37.90 40.37 36.75 34.55 37.39
COVERAGE+Context Gate(Tu et al., 2016a) - - 34.13 34.83 -
Transformer (Vaswani et al., 2017) 45.16 46.81 44.62 43.53 45.03

Our deep NMT systems
Source Attn. 45.08 46.90 44.32 43.13 44.85

DHEA + Hybird Comb. 46.58 47.20 45.45 43.47 45.66
DHEA + Sum Comb. 46.38 47.15 45.30 43.60 45.50
DHEA + Gate Comb. 46.60 47.73 45.35 43.97 45.90

Table 1: Case-insensitive BLEU scores on Chinese-English translation.

Table 1 shows BLEU scores on Chinese-English datasets. Clearly DHEA leads to remarkable im-
provements over their competitors. Compared to the source side attention based model, DHEA is +1.05
BLEU score higher on average four test sets, showing the modeling power gained from the decoding
history. Among the combination method of the contexts, the context gate function drives consistent
improvements over sum and hybrid function by +0.4 and +0.2 in terms of BLEU. We conjecture it is
because the adaptive gate function conditioned on the decoding history make it able to automatically
decide how much information should be transferred during decoding to the next step.

To show the power of DHEA, we also make a comparison with previous work. Our best single model
outperforms both a phrased-based MT system (Moses) as well as a strong source attention-based NMT
system (DeepLau) by +14.2 and +6.8 BLEU points respectively on average. The result is also better
than some other state-of-the-art variants of attention-based NMT model with big margins. Compared to
Transformer, DHEA yields a gain of +0.9 BLEU and achieves the best performance ever reported this
dataset.
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4.4 Results on English-German and English-French Translation

SYSTEM Architecture EN-Fr BLEU EN-DE BLEU
Existing systems

Buck et al. (2014) Winning WMT14 system 35.7 20.7

Wu et al. (2016) GNMT + Ensemble 40.4 26.3
Gehring et al. (2017) ConvS2S 40.51 25.16

Vaswani et al. (2017) Transformer (small) 38.1 27.3
Vaswani et al. (2017) Transformer (large) 41.0 28.4

Our deep NMT systems
this work Source Attn (small) 39.3 27.5
this work DHEA + Gate Comb. (small) 40.4 27.9
this work DHEA + Gate Comb. (large) 41.6 28.7

Table 2: Case-sensitive BLEU scores on English-German and English-French translation. Our proposed
model outperforms the state-of-the-art models including the Transformer (Vaswani et al., 2017).

The results on English-German and English-French translation are presented in Table 2. We compare
our NMT systems with various other systems including the winning system in WMT14 (Buck et al.,
2014), a phrase-based system whose language models were trained on a huge monolingual text, the
Common Crawl corpus. For end-to-end NMT systems, to the best of our knowledge, GNMT is the best
RNN based NMT system. Transformer (Vaswani et al., 2017) is currently the SOTA system which is
about 2 BLEU points better than GNMT on the English-German task and 0.6 BLEU points better than
GNMT on the English-French task.

DHEA achieves a 0.6 BLEU score improvement over the state-of-the-art on the English-to-German
task for the smaller network and 0.3 BLEU improvement for the larger network. In the case of the
larger English-to-French task, we obtain a 2.3 BLEU improvement for the smaller model and a 0.6
improvement for the larger one. Also, note that the performance of the smaller model for DHEA is close
to that of the larger baseline model, especially for the English-to-French task. This suggests that DHEA
better utilizes available model capacity.

4.5 Analysis

李娜 上周 夺得 她 职业生涯 第四次 冠军 

Lina won the fourth championship of her career last week 

我 很 饿 到 沃尔玛 买了 一个 汉堡 

I was hungry and bought a hamburger at Wal-Mart 

Figure 3: Examples of the target side attention during decoding process. Solid arrows denote which word
is being focused when attention is computed, but not the direction of the relation. Red lines indicate long-
term dependencies. Dashed lines denote which word is bing second focused.

In order to better understand whether the network benefits from the decoding history, we biefly visual-
ized the skeleton of the target side attention. In Figure 3, although we explicitly allow DHEA to attend to
any memory cell, much attention selects the immediately previous word. This agrees with the linguistic
intuition that long-term dependencies are relatively rare and hard to learn. This model still finds some
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long-term dependencies among words (e.g., the dependency between won and championship, bought
and was, hungry and hamburger). These detected dependencies reflect some head-modifier relations in
dependency graphs.

5 Related Work

Memory Networks There are variety of studies proposed to increase the LSTM memory capacity by
using memory networks. The two most salient examples are Neural Turing Machine (NTM) (Graves
et al., 2014) and Memory Network (Weston et al., 2014). Cheng et al. (2016) propose a machine
reading simulator which processes text incrementally from left to right. In the NMT task, Wang et al.
(2016) present a decoder enhanced decoder with an external shared memory which extends the capacity
of the network and has the potential to read, write, and forget information. In fact DHEA can be viewed
as a special case of memory networks, with only reading mechanism for the translation task. Quite
remarkably DHEA incorporates two different types of memory (source memory and decoding history
memory) and significantly improves upon state-of-the-arts.

Attention Mechanism Attention in neural networks (Bahdanau et al., 2014; Luong et al., 2015) is
designed to assign weights to different inputs instead of threating all input sequences equally as original
neural networks do. A number of efforts have been made to improve the attention mechanism(Tu et al.,
2016b; Mi et al., 2016; Zhang et al., 2017). Some of them incorporated the previous attention history
into the current attention for better alignment, but none of them are based on the decoding history.

The application of self-attention mechanisms in RNNs have been previously studied, and in general, it
appears to capture syntactic dependencies among distant words (Liu and Lapata, 2017; Lee et al., 2017;
Kim et al., 2017; Lin et al., 2017). Vaswani et al. (2017) resort to self-attention mechanism and showed
outstanding performance. Our approach is diffrent from their work in two aspect. First, our method can
be viewed as a variant of RNN decoder which allows a form of memory, thus has the the potential to better
handle sentences of arbitrary length. Second, we forcus on controlling the information flow between the
source side memory and the target side memory and design a gate to balance the contribution of the
two-sides.

Recurrent Residual Networks Our work is also related to residual connections, which have been
shown to improve the learning process of deep neural networks by addressing the vanishing gradient
problem (He et al., 2015; Szegedy et al., 2016). Recently, several architectures using residual connections
with LSTMs have been proposed (Kim et al., 2017; Wang, 2017; Wang and Tian, 2016) for sequence
prediction. These connections create a direct path from previous layers, helping the transmission of
information. Related to our work, Miculicich et al. (2018) propose a target sideattentive residual recurrent
network for decoding, where attention over previous words contributes directly to the prediction of the
next word. Comparatively, DHEA attends to the previous hidden state and make a combination with the
source context.

Exploiting Contextual Information A thread of work in sequence to sequence learning attempts to
exploit auxiliary context information(Wang and Cho, 2016; Li et al., 2017; Zhang and Zong, 2016).
Recently Tu et al. (2016a) propose using context gates in NMT to dynamically control the contributions
from the source contexts and the RNN hidden state. Our approach focuses on integrating the decoding
history and the source side context to NMT architecture. In addition, we have a multi-layer approach to
better utilize the contextual information. Experiments in Section 4.3 show the superiority of DHEA.

In the same period of our work, Lin et al. (2018) and Xia et al. (2017) first turn eyes to the target side
attention of NMT architecture. Our approach share the similar idea with these work. The diffrence lies
in that we concernd more about the integrating of the souce side context and the target side context and
designed three types of combination functions. In addition, we approached in a multi-layer way which
is more effective.
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6 Conclusion

We presented a decoder history enhanced attention mechanism to enrich the target side contextual infor-
mation for neural machine translation. Our empirical study in three translation tasks shows that it can
significantly improve the performance of NMT.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to

align and translate. arXiv preprint arXiv:1409.0473.

Christian Buck, Kenneth Heafield, and Bas Van Ooyen. 2014. N-gram counts and language models from the
common crawl. In LREC, volume 2, page 4. Citeseer.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016. Long short-term memory-networks for machine reading.
empirical methods in natural language processing, pages 551–561.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. 2017. Convolutional sequence
to sequence learning. CoRR, abs/1705.03122.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014. Neural turing machines. arXiv preprint arXiv:1410.5401.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2012. Improv-
ing neural networks by preventing co-adaptation of feature detectors.
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